
Abstract
We show an artificial world where animals (humans) and
animats (software agents) interact in a coevolutionary
arms race. The two species each use adaptation schemes
of their own.

Learning through interaction with humans has been
out of reach for evolutionary learning techniques because
too many iterations are necessary. Our work demonstrates
that the Internet is a new environment where this may be
possible through an appropriate setup that creates
mutualism, a relationship where human and animat
species benefit from their interactions with each other.

1. Introduction

1.1 Humans vs. Agents on the Internet.
In nature, anecosystem is a community of organisms and
their environment functioning together. The Internet can be
seen as a virtual ecosystem — a community of human users
and artificial environments where complex phenomena are
taking place.

In the future, more and more such environments will con-
tain software agents that interact with human users and adapt
according to the behavior displayed in those interactions
(Lieberman, 1997). Such a bi-adaptive relationship could be
considered a form of mutualism (Gilbert and Raven, 1975), as
both humans and agents participating have their own goals
and adaptation strategies.

We have built a coevolutionary environment with a real-
time computer game, implemented in Java, that matches arti-
ficial agents (“animats” or “robots”) against human (“ani-
mal”) Internet users. While humans participate for fun — and
for outperforming other humans — our artificial agents try to
win as many games as they can, learning via an evolutionary
algorithm.

1.2 Coevolution in Natural and Artificial Systems
In nature, organisms and species coexist in an ecosystem;
each species has its own place orniche in the system. The en-
vironment contains a limited number and amount of resourc-

es, and the various species must compete for access to those
resources. Through these interactions, species grow and
change, each influencing the others’ evolutionary develop-
ment. This process of reciprocal adaptation is known asco-
evolution.

In evolutionary computation, the term “coevolution” has
been used to describe any iterated adaptation involving “arms
races”, either between learning species or between a learner
and its learning environment. Examples of coevolutionary
learning include the pioneering work by Hillis on sorting net-
works (Hillis, 1992), Backgammon learning (Tesauro, 1992,
Pollacket al., 1996, Pollack and Blair, 1997), predator/prey
games (Reynolds, 1994, Miller and Cliff, 1994, Miller and
Cliff, 1996) and spacial distribution problems (Juillé and Pol-
lack, 1996, Juillé and Pollack, 1996b).

We use coevolutionary programming techniques to main-
tain our robot populations. Two types of coevolution are in-
volved: robot vs. robot in our background server and robot vs.
human in our foreground server. The idea is that, within a
species — the animat species — selection occurs and only the
fittest are sent out to coevolve with the opposing “animal”
population.

1.3 Evolutionary Learning
Evolutionary learning methods such as Genetic Algorithms
(GA’s) provide general-purpose approaches to the problem
of machine learning. With them we can build engines that
create a succession of partial results whose success at dealing
with a problem (hopefully) increases over time.

Evolutionary learning calls for three basic ingredients: (a)
a representation that is capable of encoding each candidate
solution, (b) reproductive operators that can be applied to
such a representation, and (c) afitness function that is the
standard measure against which to test each candidate solu-
tion during the iterative process (Holland, 1975, Goldberg,
1989).

In natural as in artificial evolution, a population moves to-
ward fitness optimality while maintaining variation over all
the dimensions of the genetic space, including those dimen-
sions that are not being selected. This iterated generation/se-
lection process is regulated in genetic algorithms by the

Animal-Animat Coevolution:

Using the Animal Population as Fitness Function*

Pablo Funes, Elizabeth Sklar, Hugues Juillé and Jordan Pollack
Volen Center for Complex Systems

Brandeis University
415 South St., Waltham MA 02254 USA

{pablo,sklar,hugues,pollack}@cs.brandeis.edu

*Pfeifer, R. et. al. (eds.)From Animals to Animats 5: Proceed-
ings of the Fifth International Conference on Simulation of Adap-
tive Behavior. MIT Press, 1998. pp 525-533.

fitness function, which must be applied to each single indi-
vidual as it is produced.

1.4 Too Many Fitness Evaluations
The need to evaluate the fitness of a large number of individ-
uals is a critical factor that restricts the range of application of
GA's. In many domains, a computer can do these evaluations
very fast; but in others, the time spent by this process may
render the GA solution impractical. Examples of the latter
case include a computer playing a game with people and try-
ing to learn from experience or a robot attempting to com-
plete a task in the physical world.

Robots that are reliable enough can run repeated trials of
the same experiment over a long time in order to learn using
evolutionary computation techniques. Floreano and Mondada
(Floreano and Mondada, 1994, 1996) run their robots for sev-
eral days in order to evolve controllers for basic tasks. Most
evolutionary roboticists have preferred to rely on computer
simulations to provide them with faster evaluations, but the
crafting of appropriate simulations is also very difficult (Ma-
taric and Cliff, 1996).

1.5 Using Humans for Fitness
Evolution of interactive adaptive software faces similar diffi-
culties. On the one hand, it is nearly impossible to design a
fitness function whose virtual environment will prepare it for
meeting the enormous variation of human responses. On the
other hand, if users themselves are asked to provide fitness
evaluations, then hundreds of trials will be necessary and the
process will take a long time. Humans — unlike robots — get
tired of repetitive tasks. Humans act irregularly; they may re-
act differently each time when faced with the same situation
more than once. If users provide fitness evaluations, adaptive
software would need to be able to filter out such sources of
“noise” provided naturally by human users.

Our theory is that the Internet, with millions of human us-
ers, could be fertile ground for the evolution of interactive
adaptive software. Instead of relying on a few selected testers,
the whole community of users together constitutes a viable
gauge of fitness for an evolutionary algorithm that is search-
ing to optimize its behavior.

1.6 The problem of generalization
Given that it is an arduous task to evaluate fitness for multi-
tudes of individuals, one might ask: is it possible to limit the
search to just a few? The problem of lack of generalization or
lack of transfer to a more general environment defeats this
idea. The fact that an algorithm performs well in a certain
group of test cases does not usually mean that it will general-
ize to a wider range of situations.

Neural networks are thought to have generalization capa-
bilities (Wolpert, 1990, Darwen, 1996), successfully induc-
ing, for example, a good backgammon player from a set of
suggested moves (Tesauro, 1989). Supporters of the Genetic

Programming (GP) paradigm (Koza, 1992) suggest that this
may be the case for GP as well (Rosca, 1996). (Juillé and Pol-
lack, 1996b) argues that the dynamics of coevolutionary fit-
ness help to get “perspicacious” solutions to a problem of
recognizing 194 points arranged in a spiral pattern. The GP
function they obtain indeed defines two roughly spiral surfac-
es that continue outside the boundary of the original test
points.

1.7 Learning game playing
Game playing is one of the traditional domains of AI re-
search. Ever since Samuel’s early experiments with checkers
(Samuel, 1959), we have hoped that the computer would be
able to make good use of experience, improving its skills by
learning from its mistakes and successes.

In his work with the game of backgammon, Tesauro be-
gan collecting samples from human games to provide a fit-
ness measure for training neural networks (Tesauro, 1989).
Later, he abandoned this methodology and used introspective
self-play (Tesauro, 1995). Of the earlier approach, he argued
that “building human expertise into an evaluation function
[...] has been found to be an extraordinarily difficult under-
taking” (p. 59).

Learning to play a game by self-play involves a problem
of transfer as well. The fitness landscape (even in the coevo-
lutionary case, where the “landscape” is redefined in every
generation) might be an insufficient sample of the larger
problem defined by the whole game and the way humans ap-
proach it. While learning backgammon (Tesauro, 1995, Pol-
lack et al., 1996) is a success for coevolution, the same
approach has failed in most other cases.

Real-time, interactive games (e.g. video games) have dis-
tinctive features that differentiate them from the better known
board games. (Koza, 1992) and others (Rosca, 1996) evolved
players for the game of Pacman. There has been important re-
search in pursuer-evader games (Reynolds, 1994, Miller and
Cliff, 1994, 1996) as well as contests in simulated physics en-
vironments (Sims, 1994). But these games do not have human
participants, as their environments are either provided by the
game itself, or emerge from coevolutionary interactions in-
side a population of agents.

1.8 A space where agents can thrive and evolve
In this paper, we propose that learning complex behaviors can
be achieved in a coevolutionary environment where one pop-
ulation consists of the human users of an interactive software
tool and the “opposing” population is artificial, generated by
a coevolutionary learning engine. A niche must be created in
order for the arms race phenomenon to take place, requiring
that:

1. A sufficiently large number of potential human
users must participate.

2. The artificial population must provide a useful envi-
ronment for the human users, even when — in the
early stages — many instances perform poorly.

3. A (crude) estimation of the artificial population’s
performance must be measurable from its interac-
tion with the human users.

As a prototype, we have created an experimental learning
environment on the Internet for the game calledTron , meet-
ing the requirements mentioned above. First, the game is
played in a Java applet window on our web site. We know
that there is considerable interest in Java-based games in the
Internet community, so advertising our site in some Java
games lists should attract visitors. Second, our earlier exper-
iments with Tron have shown us that, by self-play, we can
produce players that are not entirely uninteresting when faced
by humans. And third, each round of Tron results in a perfor-
mance measure: a win, a loss or (rarely) a tie.

This means that a form of mutualism is necessary in order
for an experiment such as we are proposing to be successful.
Both human users and learning agents must have their own
reasons and rewards for interacting. Both being adaptive spe-
cies, this relationship between software agents and human us-
ers implies coadaptation of both species.

From the point of view of the learning agent species, the
human environment is very noisy and adapts very fast. The
evolutionary process finds its way through this noise as the
better agents are being selected, slowly but surely. The moti-
vations in this case are very simple, as rewards come from the
fitness function we programmed.

People have reasons for participating that are much more
complex. Fun, curiosity, competition against an unfamiliar
intelligence, and competition against each other to appear in
the ‘ranking’ page are among them. The evolutionary proper-
ties of the animat population create a changing artificial envi-
ronment that makes people come back searching for a
renewed challenge.

Figure 1. Still from the movieTron

2. Tron

Tron, a 1982 movie from Walt Disney Studios, shows a game
in a virtual world where two futuristic motorcycles run at

constant speeds, making only right angle turns and leaving
solid wall trails behind them. As the game advances, the are-
na fills with walls and eventually one opponent dies by crash-
ing into a wall. This popular game has been implemented on
all kinds of computers with varying rules and configurations.

We have built a version of Tron using a Java applet and
released it on the Internet. In our interpretation, the motorcy-
cles are abstracted and represented only by their trails. Two
players (one human, one animat) start in the middle region of
the screen, moving in the same direction (fig. 2). The edges
of the arena are not considered “walls”; players move past
them and reappear on the opposite side, thus creating a
“wraparound”, or toroidal, game arena. The size of our arena
is 256×256 pixels.

Figure 2. The Tron game arena. Both players
need to avoid walls. The edges are “wrap
around”.

Figure 3. A Tron robot has eight sensory inputs.

Our robots, provided with simple “sensors”, perceive the
world in eight directions. Each sensor evaluates the distance

in pixels from the current position to the nearest obstacle in
these directions: Front, Back, Left, Right, FrontLeft, Front-
Right, BackLeft and BackRight (fig. 3). Every sensor returns
a maximum value of 1 for an immediate obstacle (i.e. a wall
in an adjacent pixel), a lower number for an obstacle further
away, and 0 when there are no walls in sight.

In earlier exploratory experiments (Funes, 1996), we used
a Genetic Algorithm (GA) to learn the weights of a percep-
tron network that played Tron. It became evident that while
this simple architecture is capable of coding players that
could perform interestingly when facing human opponents,
such “good” weights were difficult to find in evolutionary or
coevolutionary scenarios.Collusion (Pollack and Blair,
1997) was likely to appear in most evolutionary runs in the
form of “live and let live” strategies such as that shown in
Figure 4.

Figure 4. “Live and let live”: Two artificial
Tron players make tight spirals in order to stay
as far from the opponent as possible. This form
of collusion is a frequent suboptimal
equilibrium that prohibits artificial learning
through self-play.

2.1 System Overview
In our present work, we are using Genetic Programming (GP)
(Koza, 1992) as a means for coding artificial Tron players.
The set of terminals is {_A,_B,...,_H (the eight sensors) and
ℜ (random constants between 0 and 1)}. The functions are
{ +, -, * (arithmetic operations),% (safe division),IFLTE (if
a ≤ b then-else),RIGHT (turn right) andLEFT (turn left)}.
A maximum depth of 7 and a maximum length of 512 limit
the valid s-expressions. A robot reads its sensors and evalu-
ates its s-expression every three steps during a game. If a
RIGHT orLEFT function is output, the robot makes the cor-
responding turn; otherwise, it will keep going straight.

We have written a Java applet and launched our game on
the Internet. The architecture of the system takes advantage
of Java’s ability to run a “client” on the user’s local machine

and a “server” on our host (Web server) machine. As shown
in Figure 5, the Java Applet runs on the user’s local machine;
the Foreground and Background servers execute on our ma-
chine.

The Tron applet receives a GP s-expression (from our
server), representing a Tron-playing strategy. The applet
runs, playing one game with the human user, until a crash oc-
curs. When the game ends, the applet opens a connection to
our server, reports the results of the game and receives a new
s-expression for the next game. This cycle continues until the
human decides to quit playing.

We use a two layer server architecture to maintain two
separate Tron-playing artificial populations simultaneously,
as illustrated in Figure 5. The Foreground Server plays games
with humans, while the Background Server engages in self-
play to create brand new artificial players that will be incor-
porated into the foreground population when the foreground
process is ready for a new generation.

Figure 5. Scheme of information flow

The interaction between robots and humans occurs at a
relatively slow pace: only a few hundred games may happen
every day. An evolving population idles, waiting while these
games are accumulated, until there is enough information to
evaluate its individuals. The role of the background process
is to replace the usual reproduction stage, exploiting all this
idle time to produce the best robot players that self-play can
give us. Instead of raw crossover and mutations, the new in-
dividuals of the population will have been trained and filtered
through self-play.

2.2 Foreground Server
The foreground portion of the Tron system controls the inter-
play between robots and humans. It maintains a population of
100. Every time a player requests a new game, the server sup-
plies one of these robots at random. When a user finishes a
game, the foreground process saves the outcome in its data-
base.

A generation in the foreground process lasts until all 100
agents have played a minimum number of games. The new
agents that are playing for the first time in the current gener-
ation play a minimum of 10 games, while the “veterans” that
have survived from previous generations play only 5 games.
When all agents have completed their minimum number of
games, the generation is finished and the next generation is
started.

Java
AppletUser

Foreground
Population

Background
Population

keyboard internet local
network

PC SERVER BACKGROUND
SERVER

results

robots best robots

new robots

human−robot games
robot−robot games

To start a new generation, the 100 current agents are sort-
ed by fitness. The worst 10 are eliminated and replaced by 10
fresh ones, supplied by the background process. A new gen-
eration begins.

The fitness of robots is a shared fitness measure designed
to promote speciation (Beasleyet al., 1993; Juillé and Pol-
lack, 1996) by giving points for doing better than average
against a human player, and negative points for doing worse
than average. For each agenta, the fitness is calculated as

(1)

where l(h,a) is the number of games lost by each human op-
ponenth againsta; p(h,a) is the total number of games be-
tween the two; l(h) is the total games lost byh; and p(h) is the
number of games thath has played. The measure is summed
across all games played (not just those that belong to the cur-
rent generation). The exponential factor on the right is a con-
fidence measure that devalues the average scores of those
humans that have played only a few games.

An inherent exploitation/exploration bias occurs when we
make 10 new robots play 10 times per generation and 90 vet-
eran agents play 5 times each. This means that 18% of the
games are played by the rookie agents, who have not been
evaluated yet.

2.3 Background Server
The role of the background process is to supply the fore-
ground process with good artificial players for each new gen-
eration, the best that can be produced given the results that
have been accumulated. We proceed as follows: every time
the foreground population begins a new generation, the back-
ground receives the 15 fittest agents from the foreground.
This group of 15 agents comprises part of a training set
against which a new population of 1000 random agents is
generated and evolved. When the foreground process finishes
one generation, it receives the 10 best agents that emerge
from this procedure, adding them to its own population, and
the cycle restarts (Figure 6).

The background process plays all the individuals in its
population against the training set of 25 agents. Fitness is
evaluated, and the bottom half of the population is replaced
by random mating with crossover of the best half. The fitness
function is defined as follows:

(2)

whereT is the training set, pt(a, a’) = {0 if a loses againsta’,
0.5 if they tie and 1 ifa wins} and l(a’) is the number of

F a() l h a,()
p h a,()
---------------- l h()

p h()
----------–

 1 e

p h()
10

----------–

–

h:p h a,() 0>{ }
∑=

FT a()
pt a a′,()

l a′()

a′ T∈ : pt a a′,() 0>{ }
∑=

games lost bya’. Thus we give more points for defeating
good players than bad players.

As indicated above, the training set consists of two parts.
The first 15 members are fetched from the foreground pro-
cess. The remaining 10 members of the training set are re-
placed each generation with a fitness sharing criteria. The
new training setT’ is initialized to the empty set and then new
members are added one at a time, choosing the highest ac-
cording to the following shared fitness function:

(3)

This selection function is adapted from (Rosin, 1997) and
acts to decrease the relevance of a case that has already been
“covered”, that is, when there is already a player in the train-
ing set that beats it.

When the best players from the foreground population re-
enter the background as members of the training set, their
genotype is isolated: they do not reproduce explicitly. They
do so only implicitly as they disfavor players they can beat,
and favor players that beat them.

Figure 6. Scheme of foreground and
background evolutionary populations.

3. Results

Our server has been operational since September 1997, and as
of this writing we have collected the results of over 35,000
(animal vs. animat) games. This is a small amount compared
with the number of games played by the background process,

FT T′, a()
pt a a′,()

1 pt a″ a′,():a″ T′∈{ }∑+()

a′ T∈
∑=

best 15

...

tr
ai

ni
ng

 s
et

generation n generation n+1Foreground

Background

generation 1 generation k

best 90

10 best

best 10

po
pu

la
tio

n
=

 1
00

po
pu

la
tio

n
 =

 1
00

0

which plays 25,000 games per generation, approximately one
generation per hour. We are keeping the system running, con-
tinuing to make adjustments and experiment with different
ideas. The results presented here are based on the first 82 days
of data, or 37,295 games.

Our basic performance measure is thewin rate, that is, the
fraction of games that the artificial players have won. The av-
erage win rate over the total number of games played is 0.42,
meaning that 42% of all games completed have resulted in
animat victories.

The graph in fig. 7 uses a sampling rate of 1000 to plot the
evolution of the win rate over time. It illustrates two impor-
tant factors. First, there are oscillations. This is a natural phe-
nomenon in a coevolutionary environment, and occurs here
more noticeably since one of the evolving populations con-
sists of randomly selected human players. Each of the 416 in-
dividuals sampled here has a different level of expertise1, has
played a different number of games, and so on2.

Figure 7. Evolution of the win rate.

The second important feature is that there is a visible
trend toward improvement. The winning rate has gone up
roughly from 28% to 55% over the time that the system has
been operational.

3.1 Adaptation in humans
Humans learn very fast, so the Tron animats are chasing a

moving target. The graph in Figure 8 illustrates the average
human learning rate. A human playing his first game against
our robots will have a 73% chance of losing; but by the time
he has played 10 games, this expectation will be reduced to

1. Another variable factor is the speed of the game in the
client machine, which goes down due to the low speed
of Java interpreters inside Internet browsers.

2. We have called the low peak at 8000 games the “khith
anomaly” because it consists mostly of games by the
same one person, with login name “khith”.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Game no * 1000

C
om

pu
te

r
w

in
 r

at
e

53%. The animats win 67% of the first games, but then only
52% of the second games, etc. By the 10th game, the rate de-
scends to 44%. (We smoothed with a moving average to show
the trend over the right side of the graph.)

Figure 8. Averaged learning of human players3.

3.2 Adaptation in animats

Figure 9. Performance of Tron during first 10

games with each opponent4.

It would be desirable to factor out the influence of human

3. Smoothing obtained by convolution with , normalized.
α = 0.25.

4. Smoothing obtained by convolution with ,
normalized.α = 1024.

0 5 10 15 20 25 30 35 40 45 50
0.45

0.5

0.55

0.6

0.65

0.7

0.75
Human learning: first 50 games of each person

Game no
C

om
pu

te
r

w
in

 r
at

e

Raw data
Smoothed

e

xln
α

 2

–

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
First 10 games of every human

Game no

C
om

pu
te

r
w

in
 r

at
e

Raw data
Smoothed

e

x
α

 2
–

learning from the data in fig. 7 in order to visualize the raw
improvement of the animats. The technique of sampling sug-
gested by (Cliff and Miller, 1995) cannot be used in this case;
it is not possible to play for example ‘playerH0001 from De-
cember 10th against robotR230001’ because the human of
that day is not available. Instead, we apply an averaging tech-
nique. We consider that a ‘virgin’ user — a human that plays
for the first time — is at the same average level of expertise
no matter when he plays his first game. Examining only the
first 10 games of every person who has played 10 or more
games, we obtain the graph shown in Figure 9.

The raw data is very noisy since each point is the score of
a single human: some players log into the Tron system for the
first time and win their first 10 consecutive games, showing a
computer winning ratio of 0. Others lose their first 10 games
and end up with a computer winning ratio of 1. Most players
perform somewhere in between. But smoothing with a mov-
ing average shows a steady trend towards robot improve-
ment. Starting at around 40%, the computer winning ratio has
increased to nearly 74%.

Using our raw approximate measure (the win ratio), we
obtain a score for each robot. But since luck determines the
opponents of each artificial player, this ratio will only be an
estimation that approaches a true value as the number of
games played increases. In Table 1, we have listed the best ar-
tificial players, out of those who have played at least 50
games.

The two first digits in an robot’s ID number represent the
generation where it first appeared in the foreground popula-
tion. The current 10 best robots belong to generations 51, 46,
40, 48, 54 and 33. Among the most veteran agents there are a
few strategies born in generation 10, each with around 300
games played. The worst robot presently alive has a win rate

Table 1: Best robots

Ranking
Robot
 ID No.

Wins/
Games

Games
 Played

1 510006 0.87 63

2 460003 0.82 94

3 460008 0.80 94

4 400010 0.78 132

5 480001 0.78 85

6 540004 0.77 52

7 460002 0.71 94

8 330003 0.74 167

9 540006 0.74 54

10 460007 0.73 91

...

40 100009 0.60 288

...

100 150001 0.45 269

of 0.45. Strategy 100009 is noteworthy as it maintains a
steady win rate of 60% after nearly 300 games. The longest-
lived agent from the original population (generation 1) lasted
334 games before being retired, with a final win rate of
39.5%.

3.3 Analysis of sample robots
Following is the GP s-expression for the current champion,
R.510006:

(* _H (IFLTE _A 0.92063 _H (- (% _D (- (+ 0.92063 (IFLTE
0.92063 _F 0.92063 (LEFT_TURN))) (IFLTE (- (IFLTE _C
_G (RIGHT_TURN) (LEFT_TURN)) (IFLTE
(+(LEFT_TURN) (LEFT_TURN)) _G _F _G)) _H
(RIGHT_TURN) _G))) (RIGHT_TURN))))

This can be roughly reduced to pseudocode as:

if FRONT < 0.92063 go straight
else if 0.92063 >= REAR_RIGHT turn left
else if LEFT < RIGHT turn right
else turn left

This robot will always go straight, unless there is an ob-
stacle in front of him closer than 8% of the size of the arena.
At this point, he will turn right or left. The use of the
rear_right sensor is confusing, and its is difficult to infer from
the code the actual behavior of this expression, as complex
variations arise from its interactions with the Tron environ-
ment.

When inserted in a Tron arena, this code shows an inter-
esting behavior. It will avoid obstacles, get out of dead ends
and do tight turns to maximize space when in a confined
space.

Figure 10. Sample games of robot 510006
(black) vs. a human opponent (grey). It quickly
beats a novice player (left). It fights against an
expert player, making tight turns when
confined in a small space (right).

3.4 Analysis of Humans
We are also studying the characteristics of the human popu-
lation that is playing our Tron. At present, we want to know
if our Tron Web site has created an “egosystem”, attracting

Tron fans to our site (as opposed to other Tron sites) and en-
ticing them to keep coming back in order to improve their
ranking in our “Hall of Fame”.

Figure 11. Longevity of human players (see
text).

Figure 11 shows the longevity of human players, high-
lighting “return” players. Time is plotted along the horizontal
axis, for the duration of the data analysis period. The vertical
axis represents each individual human player that played any
games during the time period shown. Each dot on the graph
stands for one or a few consecutive games played (13 games
on average).

This graph shows that players who came to the site at the
beginning of the experiment are still coming back, since some
horizontal lines start in the left edge of the graph and continue
(though sporadically) to the right edge. The sporadicism is a
positive feature because it means that players go away for a
while and periodically come back to check the artificial play-
ers that have evolved since the last time and to monitor their
ranking in the table of scores.

The continual rise of the left edge of the data points indi-
cates that new players keep coming to the site at a steady
pace. The implication here is that there is enough new interest
in the site so that our coevolutionary space will continue to
thrive.

4. Conclusions

Our experiment has succeeded in establishing an interactive
space where animal and animat adaptation happen simulta-
neously.

Once an ecological niche is created, and by this we mean
that a piece of adaptive software like our Tron game succeeds
in attracting a collectivity of users, a coevolutionary arms
race will occur where human and artificial learning chase
each other. We can observe human learning rates by averag-
ing all performances of players at the same levels of experi-

11−Sep 4−Oct 27−Oct 19−Nov 13−Dec
0

100

200

300

400

500

600

700

800

In
di

vi
du

al
 H

um
an

 P
la

ye
rs

Time

ence, and we can observe agent learning rates by looking at
their performance over time against new incoming oppo-
nents.

The exploration vs. exploitation trade-off is linked to the
problem of creating a niche. On one hand we want to offer
users our best level of performance, but on the other we need
to take risks with untested versions. We address this problem
in two ways. First, we set our parameters so that only 18% of
the games are played by rookies. Second, we exploit the slow
pace of human interactions, evolving new robots in the
background, so that our novice robots will be as good as
possible.

Regarding the algorithmic setup, several details were cho-
sen arbitrarily. The way the background population is reset
every time the front end completes a generation is question-
able, and other approaches may be better, such as not reset-
ting it at all, or doing so when the dynamics of its own
evolutionary process indicate. Genetic isolation between
front and back end populations is an arguable factor, since it
prevents new players from capitalizing on older genotypes.

The issue of diversity is a central point throughout our co-
evolutionary setup that needs to be emphasized. Shared fit-
ness functions stimulate diversity by promoting original
candidates in every new generation. Resetting the back-
ground population and genetic isolation are also promoting
diversity, creating new solutions from scratch in each cycle.
Diversity and speciation are key in addressing the problem of
transfer, or lack of generalization, by widening the spectrum
of solutions produced by an introspective learner that needs
strategies to cope with a wider environment than the one de-
fined by a limited fitness function that describes only a few
points of a larger problem.

The shared fitness function of robots vs. humans (eq. 1)
addresses the problem of diversity of levels of expertise
among the user population, but also attempts to prevent coop-
erative phenomena at this level, as robots are given points not
for winning or losing, only for doing better or worse than the
average of the other robots. The factor of human adaptation
has not been accounted for in this function, and future ver-
sions should try to adjust accordingly, perhaps using an expo-
nential decay factor.

As perceived by each individual user, our virtual Tron is
playing differently every time, since we randomly switch
Tron programs for each individual game. Simultaneously, the
overall level of play is going up over time. This heterogenous
behavior is part of the success; when we say that a certain ro-
bot is winning 87% of its games, this is a valid indicator of its
level of playgiven the collective behavior of all other robots.
If we were to send the same identical robot over and over, hu-
mans would quickly learn strategies against it, and the system
as a whole would be boring.

There are severe representational limitations to our Tron
agents due to their limited sensory perception. Whereas hu-
mans observe the entire state of the game in every screenshot,
robots only “see” the nearest object in eight fixed directions.

They have no perception of the position and heading of their
opponents, and are incapable of analyzing the game board as
a whole in order to make their decisions. Future research
should contemplate a more powerful version of their sensors.

We have shown that evolutionary techniques can be suc-
cessfully applied in the context of an environment of connect-
ed human users. The variable input of random players with
diverse expertise and interests exhibits exploitable average
trends. The trend toward collusion through cooperation in co-
evolutionary agents can be broken in adaptive software envi-
ronments by incorporating the raw fitness evaluation
emerging from its end-users.

References

Axelrod, R. M. (1984).The Evolution of Cooperation. New York,
Basic Books.

Beasley, D., Bull, D. R. and Martin, R. R. (1993). A sequential
niche technique for multimodal function optimization.Evolu-
tionary Computation 1(2). 101-125.

Gilbert, L. E. and Raven, P. H. (eds.) (1975)Coevolution of animals
and Plants. University of Texas Press.

Cliff, D. and Miller, G. F. (1995). Tracking the Red Queen: Mea-
surements of adaptive progress in co-evolutionary simulations.
In F. Moran, A. Moreno, J. J. Merelo and P. Cachon (eds.)
Advances in Artificial Life: Proceedings of the Third European
Conference on Artificial Life (ECAL95). Lecture Notes in Arti-
ficial Intelligence 929, Springer-Verlag, pp.200-218.

Darwen, P. J. (1996).Co-evolutionary Learning by Automatic Mod-
ularisation with Speciation. University of New South Wales,
1996.

Floreano, D. and Mondada, F. (1994). Automatic Creation of an
Autonomous Agent: Genetic Evolution of a Neural Network
Driven Robot. In D. Cliff, P. Husbands, J.-A. Meyer, and S.
Wilson (Eds.),From Animals to Animats III, Cambridge, MA.
MIT Press.

Floreano, D. and Mondada, F. (1996). Evolution of Homing Navi-
gation in a Real Mobile Robot.IEEE Transactions on Systems,
Man, and Cybernetics--Part B: Cybernetics, 26(3), 396-407.

Funes, Pablo (1996). The Tron Game: An experiment in Artificial
Life and Evolutionary Techniques. Unpublished.

Goldberg, David E. (1989).Genetic Algorithms in Search, Optimi-
zation, and Machine Learning.Addison-Wesley.

Hillis, W. D. (1992). Co-evolving parasites improve simulated evo-
lution as an optimization procedure. In Langton, C. et al. (Eds.)
Artificial Life II, Addison-Wesley. pp. 313-324.

Holland, John H. (1975).Adaptation in Natural and Artificial Sys-
tems.The University of Michigan Press.

Juillé, H. and Pollack, J. (1996). Dynamics of Co-evolutionary
Learning. InProceedings of the Fourth International Confer-
ence on Simulation of Adaptive Behavior. MIT Press. pp 526-
534.

Juillé, H. and Pollack, J. (1996b). Co-evolving Intertwined Spirals.
in Proceedings of the Fifth Annual Conference on Evolutionary
Programming, MIT Press.

Koza, John R. (1992). Genetic Programming: On the Programming
of Computers by Means of Natural Selection. Cambridge, MA:

The MIT Press.
Lieberman, H. (1997). Autonomous Interface Agents,ACM Con-

ference on Human-Computer Interface [CHI-97], Atlanta.
Mataric, M and Cliff, D. (1996). Challenges In Evolving Control-

lers for Physical Robots. InEvolutionary Robotics, special
issue ofRobotics and Autonomous Systems, Vol. 19, No. 1. 67-
83.

Miller, G. F. and Cliff, D. (1994). Protean Behavior in Dynamic
Games: Arguments for the Co-Evolution of Pursuit-Evasion
Tactics.From Animals to Animats 3: Proceedings of the Third
International Conference on Simulation of Adaptive Behavior
(SAB94). D Cliff, P. Husbands, J.-A Meyer and S W Wilson,
eds. MIT Press Bradford Books, pp.411--420.

Miller, G. F. and Cliff, D. (1996). Co-evolution of Pursuit and Eva-
sion II: Simulation Methods and Results. InProceedings of the
Fourth International Conference on Simulation of Adaptive
Behavior. MIT Press. pp 506-515.

Pollack, J. B., and Blair, A.D. (1997). Why did TD-Gammon work?
Advances in Neural Information Processing Systems 9.10-16.

Pollack, J. B., Blair, A. and Land, M.(1996). Coevolution of A
Backgammon Player.Proceedings Artificial Life V, C. Langton,
(Ed), MIT Press.

Reynolds, C.W. (1994). Competition, Coevolution and the Game of
Tag”, Proceedings of Artificial Life IV. R. Brooks and P. Maes,
eds. MIT Press.

Rosca, J. P. (1996). Generality versus Size in Genetic Program-
ming.Proceedings of the Genetic Programming 1996 Confer-
ence (GP-96).The MIT Press.

Rosin, C. D. (1997).Coevolutionary Search Among Adversaries.
Ph.D. thesis, University of California, San Diego.

Samuel, A. L. (1959). Some Studies in Machine Learning Using the
Game of Checkers.IBM Journal of Research and Development,
vol. 3, 210-229.

Sims, K. (1994). Evolving 3D Morphology and Behavior by Com-
petition.Artificial Life IV Proceedings, MIT Press.

Tesauro, G. (1989). Neurogammon Wins Computer Olympiad.
Neural Computation I,321-323.

Tesauro, G. (1992). Practical issues in temporal difference learning.
In Machine Learning. 8:257-277.

Tesauro, G. (1995) Temporal difference learning and TD-Gammon.
Communications of the ACM,38(3): 58-68.

Wolpert, D. H. (1990). A Mathematical Theory of Generalization.
Complex Systems 4: 151-249.

