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ABSTRACT
In this paper we present a new technique for evolving mod-
ular programs with genetic programming. The technique is
based on the use of “tags” that evolving programs may use
to label and later to refer to code fragments. Tags may refer
inexactly, permitting the labeling and use of code fragments
to co-evolve in an incremental way. The technique can be
implemented as a minor modification to an existing, general
purpose genetic programming system, and it does not re-
quire pre-specification of the module architecture of evolved
programs. We demonstrate that tag-based modules readily
evolve and that this allows problem solving effort to scale
well with problem size. We also show that the tag-based
module technique is effective even in complex, non-uniform
problem environments for which previous techniques per-
form poorly. We demonstrate the technique in the context of
the stack-based genetic programming system PushGP, but
we also briefly discuss ways in which it may be used with
other kinds of genetic programming systems.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
Program synthesis; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Procedures, functions, and
subroutines

General Terms
Algorithms

Keywords
Push, PushGP, genetic programming, stack-based genetic
programming, modularity, automatically defined functions,
tags, lawnmower problem, obstacle-avoiding robot problem

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12–16, 2011, Dublin, Ireland.
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

1. INTRODUCTION
It has long been recognized that genetic programming

(GP) systems will be more powerful when they can more
readily evolve programs with modular architectures, just
as human programmers can be more productive when they
make proper use of the modularization facilities that are
provided by modern programming languages. The factors
underlying the utility of modularity may ultimately be quite
deep, as Simon claims in his discussions of“nearly decompos-
able”hierarchical systems [23], but for the present discussion
we will merely stipulate the common belief that modularity
is often useful and that systems that support modularization
will therefore often be more powerful.

While many previous genetic systems have employed mech-
anisms that allow for the evolution of modular programs,
the most popular of these (described more fully below) are
either complex or limiting with respect to the kinds of mod-
ules that can evolve. One exception, on which the present
work builds, involves the evolution of programs expressed in
the Push programming language [25, 31, 29]. Push supports
the evolution of arbitrary modules using only the facilities
for code self-manipulation that are built into the core of the
language, even when using a GP system that is quite generic
aside from its use of Push as the representation for evolv-
ing programs (as with PushGP). In particular, it is possible
to evolve modular programs in Push without pre-specifying
the modular architecture and without modifying genetic op-
erators for mutation and crossover. Features of Push that
support this capability are described more fully below.

That said, some of the facilities for modularization in
Push are rarely used in programs produced by evolution.
One Push feature in particular, the ability to name arbi-
trary pieces of code and later to run those pieces of code
by re-using the same names, seems closest in spirit to the
modularization mechanisms most frequently used by human
programmers. But in practice, this feature has almost never
been used in evolved Push programs. In order to improve the
usefulness of named modularity we devised an alternative
modularization scheme, based not on names but on a closely
related concept, tags [6, 7, 18]. Whereas a name-based refer-
ence refers only to an entity with an exactly matching name,
a tag-based reference refers to the tagged entity with the
closest matching tag. This small difference in functional-
ity can make a big difference in evolution. In a tag-based
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system every reference refers to some entity as long as at
least one entity has been tagged. Additionally, the number
of tagged entities maintained by a program can grow in an
incremental way over the course of evolution.

We studied the effectiveness of tag-based modules first in
the context of the “lawnmower problem,” which was used
by Koza to demonstrate the utility of his own modulariza-
tion scheme (“automatically defined functions”—see below)
for problems of increasing size [13]. We found (see below)
that systems using tag-based modules also scale well on this
problem, as do systems that make use of a mechanism that
has long been available in Push: direct manipulation of the
execution stack.

We hypothesized that the good performance of execution
stack manipulation on the lawnmower problem depended
in part on the exceptional regularity of the problem, and
that tag-based modules might perform better in less regular
problem environments. The lawnmower problem is so excep-
tionally regular that even the simplest forms of modularity,
in which one merely repeats exactly the same code over and
over again, will suffice. Facilities that would permit more
flexible modular architectures are unnecessary.

To explore this hypothesis we conducted runs on a more
difficult and less regular problem called the “dirt-sensing,
obstacle-avoiding robot problem” [24]. Here we found that
the new tag-based modularity mechanism does in fact per-
form dramatically better than execution stack manipulation,
confirming our intuition that it provides a robust facility for
the evolution of modularity in complex environments.

In the sections below, we first briefly describe some of
the ways that modularization has been supported previ-
ously in GP. We then describe Push and PushGP, with a
focus on the ways in which Push (without tags) can support
the evolution of modular programs. Next we describe the
new tag-based modularization scheme and show how it can
be used by a GP system to evolve modular programs. We
then present our results for the lawnmower problem, demon-
strating good scaling performance both of systems that use
tag-based modularization and of systems that use only exe-
cution stack manipulation. Next we present our results for
the dirt-sensing, obstacle-avoiding robot, demonstrating ex-
ceptional performance of the new tag-based modularization
mechanism. We briefly discuss how tags might be used in
other forms of GP and we conclude with some suggestions
for future work.

2. MODULES IN GP
A variety of specific techniques have been developed for

incorporating modules (including functions, subroutines, co-
routines, macros, etc.) in the programs that are produced
by GP systems [11, 12, 1, 10, 24, 2, 17, 19]. The most
widely used of these techniques is probably the “Automati-
cally Defined Function” (ADF) framework presented in de-
tail by Koza in his first and second GP books [12, 13]. In
the original ADF framework the structure of all of the pro-
grams in a population is restricted to a single pre-specified
modular architecture, with some fixed number of function
definitions (each of which takes some fixed number of ar-
guments) and a “result-producing branch.” The user of an
ADF-enabled system also specifies, in advance, which ADFs
can call which other ADFs and which ADFs can be called by
the result-producing branch. For a GP system to handle pro-
grams with ADFs, its program generation and manipulation

procedures (e.g. mutation and crossover procedures) must
be modified to respect the restrictions of the pre-specified
modular architecture.

Koza showed that when ADFs are available a GP system
can often exploit problem regularities, which may allow the
system to handle much larger problem instances. He also
showed that the use of ADFs often allows solutions to be
found more quickly and that the solutions found are often
smaller than those found by the traditional GP technique.
He subsequently showed how one can add another “architec-
ture altering” layer to the GP process to allow ADF archi-
tecture to evolve during a run [14]. Other researchers have
explored the utility of “run-transferable” libraries of code
that allow modules evolved in one problem-solving episode
to be used again in later episodes in the same problem do-
mains [20, 9].

Several other approaches to the evolution of modular pro-
grams have been explored in the GP literature more recently,
some of which allow modular architectures to evolve dynam-
ically or to be transferred across runs (e.g. [15, 8, 5, 33, 22,
35]). Additional work has been done on the theoretical anal-
ysis of modularity in evolutionary algorithms more generally
[34]. Space constraints prohibit detailed discussion of these
or other approaches to evolving modular programs; such a
survey and comparisons to the method presented here are
a topic for future work. We believe that the method pre-
sented here has merit on its own terms, and that the core
mechanism of tag-based modularity is novel and worthy of
further study.

3. MODULES IN PUSH
Push is a programming language designed specifically for

use in evolutionary computation systems, as the language in
which evolving programs are expressed [25, 31, 29]. Push is
a stack-based language (among others that have been used
for GP, e.g. [16]) with the novel feature being that a sepa-
rate stack is used for each data type. Instructions are im-
plemented to take their arguments from—and leave their
results on—stacks of the appropriate types, which allows in-
structions and literals to be freely intermixed regardless of
type while still ensuring execution safety. Instructions that
find insufficient arguments on the relevant stacks act as “no-
ops” (that is, they do nothing). Push implementations now
exist in C++, Java, JavaScript, Python, Common Lisp, Clo-
jure, Scheme, Erlang, and R. Many of these are available for
free download from the Push project page.1

Many of Push’s most powerful features stem from the fact
that “code” is itself a Push data type, and from the fact that
Push programs can easily (and often do) manipulate their
own code as they run. This capability is supported by a
variety of code-manipulating instructions that act on code
stored on two stacks: the “exec” stack, from which the inter-
preter iteratively fetches program fragments for execution,
and the “code” stack, which is treated as any other data
stack. The code stack can be used for “off line” manipula-
tion of arbitrary code which may later be transferred to the
exec stack for execution. These data types and their asso-
ciated instructions allow an evolved program to transform
code in ways that produce the effects of ADFs or automat-
ically defined macros [24] without pre-specification of the
number of modules and without new mechanisms such as

1http://hampshire.edu/lspector/push.html
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architecture-altering operations [14]. They support condi-
tionals, recursion, iteration, combinators, co-routines, and
novel control structures, all through combinations of the
built-in code-manipulation instructions. This allows a Push-
based system to evolve modular programs in a particularly
simple and flexible way, even if the system is otherwise quite
simple. All of the work described here uses PushGP, which
was designed to be as simple and generic as possible (e.g. it
has no ADFs, strong typing mechanisms, or syntactic con-
straints) aside from using Push as the language for evolving
programs.

A particularly simple form of modularity supported by
Push involves exec stack manipulation. Consider the pro-
gram (3 exec.dup (1 integer.+)). This program first
pushes 3 onto the integer stack and then executes exec.dup.
The exec.dup instruction duplicates the item that is on the
top of the exec stack. At the time that exec.dup is exe-
cuted (1 integer.+) will be on top of the exec stack, so
after the execution of exec.dup there will be two instances
of (1 integer.+) on top of the exec stack. They will both
be executed. The first will push 1 onto the integer stack (on
top of the 3) and then add 3 and 1, leaving 4 on top of the
integer stack. Then the second instance of (1 integer.+)

will then be executed: it will push a 1 on top of the 4 and
then add 4 and 1, leaving 5 on top of the integer stack. This
shows a simple module for adding 1 to an integer being run
twice; as such it is a minimal instance of modular code reuse.

Other forms of modularity can be implemented using other
stack-manipulation instructions on the exec stack, for exam-
ple exec.swap (which swaps the top two items on the exec
stack) and exec.rot (which rotates the top three items on
the exec stack), perhaps in conjunction with other calls to
exec.dup. And much more exotic forms of modularity can
be implemented by manipulating code in arbitrary ways
prior to execution; the full Push instruction set includes
a rich suite of code manipulation instructions inspired by
Lisp’s list manipulation functions, including versions of car,
cdr, list, append, subst, etc.

Another elegant way to implement complex, modular con-
trol structures in Push involves the use of the K, S and Y
combinator instructions, which are derived from combina-
tory logic [21, 3]. The exec.k combinator instruction sim-
ply removes and discards the second element from the exec
stack. The exec.s combinator instruction pops three items,
A, B and C from the exec stack and then pushes back three
separate items: (B C), C and A (leaving the A on top).
This produces two calls to C, so it has a dup-like effect in
terms of potentially inducing a module. Note that C might
itself be a large, complex expression. The exec.y combina-
tor inspects (but does not pop) the top of the exec stack, A,
and then inserts the list (exec.y A) as the second item on
the exec stack. This generates a recursive call that can be
terminated through further manipulation of the exec stack;
this further manipulation may occur within A.

These various mechanisms have been shown to support the
evolution of programs with rich, evolved control structures
that are in some senses modular and that solve a wide range
of problems. For example, even before the introduction of
the exec stack manipulation instructions (which appeared
with “Push 3” in 2005 [29]) Push’s code manipulation mech-
anisms had been shown to automatically produce modular
solutions to parity problems [31] and to induce modules in
response to a dynamic fitness environment [32]. More recent

work has produced solutions to a wide range of standard
problems (including list reversal, factorial regression, Fi-
bonacci regression, parity, exponentiation, and sorting [29])
along with the production of human-competitive results in
quantum circuit design [26] and pure mathematics [27].

Nonetheless, one modularity-supporting facility of Push—
the facility for naming values—has failed to produce signifi-
cant results even though it is arguably the mechanism closest
in spirit to the tools most commonly used by human pro-
grammers and even though it has been revised repeatedly
with an aim toward making the use of naming more evolv-
able. The most recent Push specification (version 3.0, [30])
allows one to name a module with an expression such as
(plus1 exec.define (1 integer.+)). When the Push in-
terpreter sees plus1 for the first time it does not recognize it
as an instruction, so it pushes it onto the “name” stack. The
exec.define instruction takes the name on top of the name
stack (which will be plus1) and binds it to the item on top of
the exec stack (which will be (1 integer.+)). Henceforth
when the Push interpreter sees plus1 it will treat it essen-
tially as an instruction that pushes its bound value onto the
exec stack. This implements a named module for adding 1 to
the top item on the integer stack, and of course one could do
the same thing with any arbitrarily complex module code.

When using names, however, the question arises of how
many names to include in the instruction set, or of how
many names to allow an ephemeral random constant mech-
anism to introduce into the population. If the number is
very small then the number of modules that can be used
will be quite limited, but on the other hand if it is not very
small then it will be extremely unlikely that random pro-
grams will successfully bind and then reference the same
names. A previous approach to this problem was to start
with a very small number of names and to allow this number
to grow only slowly, but this is ad hoc and unsatisfying, and
in any case it has not been shown to be effective. It is in this
context that the idea of tag-based modules was developed
as a more principled and potentially more useful alternative
to name-based modules.

4. TAG-BASED MODULES
The concept of a “tag” that we use here derives from Hol-

land’s work on general principles of complex adaptive sys-
tems [6, 7], but it has also been adopted in more specific con-
texts such as the evolution of cooperation [18, 4, 28]. The es-
sential idea of a tag is that it is a mechanism that serves to al-
low selective binding or aggregation through matching, even
though specific tags may initially have no intrinsic meaning.
Examples given by Holland include banners or flags used by
armies and “the ‘active sites’ that enable antibodies to at-
tach themselves to antigens” [7, p. 13]. Particularly in the
work on the evolution of cooperation the aspect of inexact
tag-matching is stressed. For example, in the model of Ri-
olo, Cohen, and Axelrod an agent will donate to a second
agent if the tags of the two agents are more similar than
allowed by the “tolerance” threshold of the donor, and both
tags and tolerances are allowed to change over evolutionary
time [18].

Our implementation of tags in Push does not reify tags as
an independent data type; instead, we add instructions for
tagging and tag-based reference that incorporate the tags
into the instruction names. Tags themselves are simply in-
tegers between zero and a pre-set maximum—this choice is
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Table 1: Push instructions available for use in
evolved programs for the lawnmower problem (see
text for instruction descriptions).

Condition Instructions

Basic left, mow, v8a, frog, Rv8

Tag left, mow, v8a, frog, Rv8,
tag.exec.[1000], tagged.[1000]

Exec left, mow, v8a, frog, Rv8,
exec.dup, exec.pop, exec.rot,
exec.swap, exec.k, exec.s, exec.y

arbitrary but allows for a simple implementation—and the
tagging and tag-based reference instructions are produced
during code generation by an ephemeral random constant
mechanism. The associations between tags and tagged val-
ues are stored in an auxiliary data structure (not on a stack),
much as name bindings have long been stored in Push. For
example, an instruction such as tag.exec.123 pops the exec
stack and creates a binding, stored in the auxiliary data
structure, between the tag 123 and the popped value. A
later call to the instruction tagged.123 will push the asso-
ciated value back onto the exec stack, from whence it will
next be executed. Inexact matching is implemented in a
particularly simple way: if there is no exact match then
we count upwards until a stored tag is reached, wrapping
back to zero if the maximum is reached without finding a
stored tag. So in the previous example tagged.100 will have
the same effect as tagged.123 as long as nothing has been
tagged with a tag that is greater than or equal to 100 and
less than 123. If no value has been tagged at all then a call
to a tagged instruction will act as a no-op; otherwise ev-
ery tagged instruction will refer to some stored value and
retrieve it for execution.

Our full implementation of the tags includes not only
tag.exec and tagged instructions but also untag instruc-
tions for removing tag/value associations and variants that
operate on stacks other than the exec stack. For the ex-
periments presented here, however, only the tag.exec and
tagged instructions were used.

5. LAWNMOWER PROBLEM RESULTS
In the lawnmower problem the goal is to completely“mow”

a virtual lawn with a programmable virtual lawnmower [13].
In the original version of the problem, the grid contains 64
lawn squares arranged in an 8 x 8 grid with location (0, 0),
the lawnmower’s initial location, in the upper left. To for-
mulate this problem for traditional GP, Koza specified a
terminal set containing (left), an operator that takes no
arguments and rotates the lawnmower 90◦ counterclockwise,
(mow), an operator that takes no arguments and moves the
lawnmower one space forward, mowing the grass that is in
the destination square (and wrapping around toroidally if
necessary), and the ephemeral random constant generator
Rv8 that can produce constant vectors of the form (i, j)
where i and j range from 0 to 7. He specified a function
set containing V8A, a two-argument vector addition func-
tion modulo 8, FROG, a one-argument operator that jumps
the lawnmower ahead and sideways an amount indicated by
its vector argument (mowing the destination square), and
PROGN, a two argument sequencing function. He allowed a
program to execute a total of 100 turns (calls to (left)) or

Table 2: Parameters for PushGP runs on the
lawnmower problem and the dirt-sensing, obstacle-
avoiding robot problems. Additional details of
the runs may be found in the source code at
http://hampshire.edu/lspector/tags-gecco-2011.

fitness squares unmowed/unmopped
(lower is better)

runs per condition 100
population size 1000

max generations 1001
tournament size 7

mutation percent 45
crossover percent 45

reproduction percent 10
node selection 90% internal nodes,

10% leaves
limits on moves problem size 8x4: 50

and turns problem size 8x6: 75
problem size 8x8: 100
problem size 8x10: 125
problem size 8x12: 150

limits on program size problem size 8x4: 500
(in points) and problem size 8x6: 750
execution steps problem size 8x8: 1000

problem size 8x10: 1250
problem size 8x12: 1500

Table 3: Number of runs that succeeded, out of 100,
in each combination of problem size (columns) and
instruction set (rows), on the lawnmower problem.

8x4 8x6 8x8 8x10 8x12
Basic 100 100 99 85 66
Tag 100 100 100 100 99
Exec 100 100 100 100 99

100 movement operators (calls to (mow) or FROG) before it
would be aborted.2 Although neither the toroidal structure
of the lawn nor the FROG function relate particularly well to
real lawnmower environments, this function set nonetheless
defines a clear problem that involves regularity that can be
exploited by modular systems.

In Push there is no distinction between functions and ter-
minals. Instead the relevant distinction is between instruc-
tions and literals, with these being distinguished only by the
fact that instructions are callable. There is also no need for
a dedicated sequencing function because sequencing is im-
plicit. To implement the lawnmower problem for PushGP
we added a stack for 2D vectors (of the form (i, j)), used in-
structions left, mow, v8a, frog, each of which was identical
to Koza’s operators aside from taking arguments from stacks
and pushing results onto stacks, and used an ephemeral ran-
dom constant generator Rv8.

We ran tests in this“basic”condition and also in two other
conditions: “tag” in which we also allowed instructions of the
form tag.exec.i and tagged.i where i could range from 0
to 999, and “exec” in which we also allowed standard exec
stack manipulation and combinator instructions. Table 1
shows the instruction sets for all three conditions.

2A program would be aborted when it reached 100 moves
or 100 turns, whichever came first.
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Table 4: Mean best fitnesses (lower is better)
achieved in each combination of problem size
(columns) and instruction set (rows), on the lawn-
mower problem.

8x4 8x6 8x8 8x10 8x12
Basic 0 0 0.01 0.42 1.47
Tag 0 0 0 0 0.01
Exec 0 0 0 0 0.10

In order to explore how performance scaled with problem
size we followed Koza in considering lawns of five sizes: 8x4,
8x6, 8x8, 8x10, and 8x12. It is not clear from Koza’s text
if or exactly how other parameters of the problem—such as
program size limits, execution step limits, turn and move
limits, ranges of constants, and the modulus used on the
results of vector addition—were scaled along with the lawn
size, but we thought it was reasonable to scale all limits in
proportion to the lawn size; see Table 2 for the specific val-
ues that we used, along with the other parameters for our
PushGP runs. We also scaled the ranges of constants and
the modulus use on the results of vector addition, ensur-
ing that all and only valid coordinates could arise (but we
retained the names v8a and Rv8 for historical consistency).

In our implementation the initial placement of the mower
does not cause the starting square to be mowed; the mower
must move to that square again in order to mow it.

We examined the results by looking at the number of suc-
cessful runs, the mean best fitness achieved, and the “com-
putational effort” of finding a solution in each condition.
Computational effort was computed as specified by Koza
[12, pp. 99–103], by first calculating P (M, i), the cumula-
tive probability of success by generation i with population
size M; this is the number of runs that succeeded on or be-
fore the ith generation, divided by the number of runs con-
ducted. I(M, i, z), the number of individuals that must be
processed to produce a solution by generation i with proba-
bility greater than z (here z =99%), is then calculated as:

I(M, i, z) = M ∗ (i + 1) ∗
⌈

log(1− z)

log(1− P (M, i))

⌉
The minimum of I(M, i, z) over all values of i is defined to

be the “computational effort” required to solve the problem.
Table 3 shows the percentage of runs that succeeded and

Table 4 shows the mean best fitnesses achieved in each con-
dition. Figure 1 shows a graph of computational effort for
each instruction set as the size of the problem increases.
We can see that the problem is generally quite easy but
that performance of the basic instruction set drops off sub-
stantially as the problems get bigger. This is qualitatively
similar to the results obtained by Koza [13, pp. 266–267],
although we would not expect the numbers to match exactly
since the Push representation and the standard tree repre-
sentation are not identical and several other parameters also
differ. Nonetheless it is clear that performance degrades
badly without access to modularity mechanisms, while both
of the modularity-facilitating instruction sets that we pro-
vided scaled much better. We hypothesized that the good
performance in the“exec”condition, but not in the“tag”con-
dition, relied on the extreme uniformity of the lawnmower
problem. To test this hypothesis we next experimented with
a somewhat more difficult and less uniform problem.

8x4 8x6 8x8 8x10 8x12
Problem Size
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Figure 1: Computational effort required to solve the
lawnmower problem at various sizes and with vari-
ous instruction sets.

Table 5: Push instructions available for use in
evolved programs for the dirt-sensing, obstacle-
avoiding problem (see text for instruction descrip-
tions).

Condition Instructions

Basic if-dirty, if-obstacle, left, mop, v8a, frog, Rv8

Tag if-dirty, if-obstacle, left, mop, v8a, frog, Rv8,
tag.exec.[1000], tagged.[1000]

Exec if-dirty, if-obstacle, left, mop, v8a, frog, Rv8,
exec.dup, exec.pop, exec.rot, exec.swap
exec.k, exec.s, exec.y

6. DIRT-SENSING, OBSTACLE-AVOIDING
ROBOT RESULTS

The “dirt-sensing, obstacle-avoiding robot problem” [24]
is a variant of the “obstacle-avoiding robot problem,” which
is itself a variant of the lawnmower problem. The obstacle-
avoiding robot problem [12] is the same as the lawnmower
problem except that the lawnmower metaphor is dropped
in favor of a floor-mopping robot metaphor (which has no
practical impact, although the mow function is replaced with
mop), there are obstacles through which the robot cannot
pass (and there is no dirt to mop in the squares with obsta-
cles3), and a new if-obstacle conditional branching oper-
ator is added to the function set; if-obstacle executes its
first argument if the robot is currently facing an obstacle, or
its second argument otherwise. In the dirt-sensing, obstacle-
avoiding robot problem we also add a new if-dirty condi-
tional branching operator that executes its first argument
if the robot is currently facing a dirty (un-mopped) square,
or its second argument otherwise. These new functions are
translated into Push instructions by taking the arguments
from the exec stack.

Table 5 shows the instructions used in each condition;
the other parameters were identical with those for the lawn-

3It is possible for there to be an obstacle in the starting
square; this causes no conflicts, as the existence of an obsta-
cle only prevents entry to a square. Attempts to mop or frog
to a square with an obstacle are no-ops (they do nothing).
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Table 6: Obstacle locations for the dirt-
sensing,obstacle-avoiding robot problem. Two
obstacle configurations were used for each problem
size.

Size Obstacle locations for each of two rooms.

8x4 {(2,2)(1,1)(3,1)(5,2)(6,2)}
{(3,2)(3,1)(3,0)(4,0)(0,3)}

8x6 {(0,0)(4,3)(7,4)(3,0)(5,0)(0,2)}
{(5,5)(4,3)(2,0)(7,4)(7,1)(0,4)}

8x8 {(4,3)(6,5)(7,6)(6,3)(4,1)(0,7)(3,6)(3,5)}
{(3,3)(6,5)(4,2)(3,0)(6,2)(4,0)(0,7)(2,7)}

8x10 {(0,0)(3,0)(5,0)(7,1)(0,7)(2,9)(2,8)(4,9)}
{(5,6)(0,1)(2,2)(2,0)(6,1)(3,6)(5,8)(6,8)}

8x12 {(6,5)(2,0)(5,0)(0,9)(0,8)(2,10)(5,9)(6,10)(4,7)}
{(6,6)(4,1)(4,0)(1,9)(0,7)(3,8)(6,11)(1,5)(4,6)}

Table 7: Number of runs that succeeded, out of 100,
in each combination of problem size (columns) and
instruction set (rows), on the dirt-sensing, obstacle-
avoiding robot problem.

8x4 8x6 8x8 8x10 8x12
Basic 61 35 1 0 0
Tag 86 74 17 4 2
Exec 55 44 4 0 1

Table 8: Mean best fitnesses (lower is better)
achieved in each combination of problem size
(columns) and instruction set (rows), on the dirt-
sensing, obstacle-avoiding robot problem.

8x4 8x6 8x8 8x10 8x12
Basic 1.04 3.97 9.83 11.39 25.15
Tag 0.15 0.42 2.4 3.71 5.16
Exec 2.04 2.97 9.78 17.77 33.35
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Figure 2: Computational effort required to solve the
dirt-sensing, obstacle-avoiding robot problem at var-
ious sizes and with various instruction sets. Missing
data points reflect conditions in which no successes
were achieved, in which case the computational ef-
fort is undefined.

mower problem runs (see Table 2). We tested each individ-
ual on two rooms with different configurations of obstacles,
summing the fitnesses of the two rooms. The number of ob-
stacles was calculated as the floor of the square root of the
room area: 8x4: 5, 8x6: 6, 8x8: 8, 8x10: 8, 8x12: 9. The
specific obstacle locations were initially generated randomly
but were then held constant through all experiments; they
are listed in Table 6.

Table 7 shows the percentage of runs that succeeded and
Table 8 shows the mean best fitnesses for each condition.
Figure 2 shows a graph of computational effort for each in-
struction set as the size of the problem increases. We can
see that this problem is quite a bit more difficult than the
lawnmower problem, and that the basic instruction set fails
completely for the larger problem instances. In fact, this
problem is difficult in all conditions, but the tag condition
is the clear winner overall, according to all three measures.

This data appears to lend credence to our hypothesis that
tags provide a more flexible modularization mechanism than
exec stack manipulation, and that tag-based modularity is
likely to prove more useful than exec-stack-based modularity
for complex, non-uniform problems.

7. TAGS IN OTHER FORMS OF GP
The core ideas of tag-based modularity are independent

of Push, and there are a variety of ways in which tags might
be incorporated into GP systems that use different repre-
sentations.

It is easiest to see how this could be done in systems that
already allow some form of dynamic function definition, in-
cluding systems in which new functions arise at run time
(e.g. through function definition calls) and also systems in
which new functions arise during the reproductive phase (as
with architecture altering operations [13]). In these cases
one could encode tags into function names just as we have
done here, and one could dispatch function calls on the basis
of tag similarity. Depending on the program representation
one might have to take steps to ensure that the function sig-
natures (numbers and types of function parameters) match
between definitions and calls; this might be done, for exam-
ple, by using only a single signature for all functions or by
dispatching to the closest matching function with the correct
signature. It is reasonable to expect that these techniques
would produce effects that are similar to those that we have
documented here, but clearly the dynamics of the underlying
function definition system will matter.

The concepts of tag-based modularity may have worth-
while applications even in tree-based systems without dy-
namic function definition. One simple idea is to support
calls to one-argument functions of the form tag-i which
act to tag the code in their arguments with the tags em-
bedded in their names (and presumably return either some
constant value or the results of evaluating their arguments).
One would have to alter the system’s code generation rou-
tines to produce these function calls, and also to produce
calls to zero-argument functions of the form tagged-i. Calls
to the tagged functions would branch to the code of the
tagged code with the closest matching tag (or presumably
return some constant value if no code had yet been tagged).
This would provide a form of dynamic function definition, in
which function reference occurs through inexact tag match-
ing, but it would only produce zero-argument functions. It
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could also produce unbounded recursion, so some form of
execution step limit would have to be imposed.

By use of similar substitutions, substituting tag-based def-
inition and reference for name-based definition and refer-
ence, one should be able to evolve tag-based modularity in
a wide range of GP systems.

8. CONCLUSIONS AND FUTURE WORK
We have introduced a new technique for evolving modular

programs, based on tags which may be matched inexactly.
We have shown that this technique, implemented in the
PushGP system, allows problem-solving effort to scale well
with problem size using the lawnmower problem, which was
introduced by Koza to demonstrate similar scaling proper-
ties for his ADF technique (which we argue is less general or,
when used in conjunction with architecture-altering opera-
tions, more complex than the new technique that we present
here). Our data also showed that execution stack manipu-
lation, which has long been available in PushGP, also scales
well on the lawnmower problem. We hypothesized that the
strong performance of exec stack manipulation on this prob-
lem, but not the strong performance of the new tag-based
technique, relied upon the extreme uniformity of the lawn-
mower problem. Additional runs on a more difficult, less
uniform problem (the dirt-sensing, obstacle-avoiding robot
problem) produced data consistent with this hypothesis.

One avenue for further investigation concerns the reasons
for the good performance of the tag-based modularity tech-
nique. Our reasons for expecting it to perform well were
related to the use of inexact matching, and our expectation
that this would allow uses of single modules to arise readily
because any reference will “find”a referent as long as a single
value has been tagged. We also expected this to allow addi-
tional modules to be added incrementally over evolutionary
time. But we have not yet done the analysis to discover
whether or not this is really the case. One interesting study
would examine programs and their uses of modules over evo-
lutionary time, to see if the expected incremental increases
are really happening. Another would compare the tag-based
mechanism to names that must match exactly.

Another area for future work concerns the application of
tag-based modularity to other forms of GP, as discussed
briefly above.

In the work we presented here we chose to build tags into
definition and reference instruction names, but another op-
tion in Push would be to reify tags as objects of their own
type, with their own stack, and use definition and reference
instructions that get tags from the tag stack. This would
make tag use less parsimonious but it might permit a wider
range of tag use strategies.

Finally, future work should compare the effectiveness of
tag-based modularity mechanisms to that of the many other
modularity mechanisms that have recently been presented in
the GP literature. This is a big job because there are many
such mechanisms and because many of them are tied more or
less directly to particular GP paradigms (such as cartesian
genetic programming or grammatical evolution). Still, it is
important that this be done, because the complex programs
that we would all like to evolve in the future must surely
take advantage of modularity, and it is important for the

field that we understand the best ways in which to evolve
modular programs.4
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