
The secondary substrate problem in

Co-Evolution and

Developmental-Evolution

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Michtom School of Computer Science

Jordan B. Pollack, Advisor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Shivakumar Viswanathan

May, 2007

This dissertation, directed and approved by Shivakumar Viswanathan’s committee, has

been accepted and approved by the Graduate Faculty of Brandeis University in partial

fulfillment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY

Adam B. Jaffe, Dean of Arts and Sciences

Dissertation Committee:

Jordan B. Pollack, Chair

Timothy J. Hickey

Pengyu Hong

Una-May O’Reilly

c©Copyright by

Shivakumar Viswanathan

2007

Acknowledgments

The vigorous intellectual climate and camaraderie provided by the members of the Dynam-

ical and Evolutionary Machine Organization (DEMO) lab formed the bedrock of this whole

endeavor. My interest in developmental computation was a direct outcome of the exem-

plary work of Pablo Funes, Hod Lipson, Gregory Hornby and John Rieffel on evolutionary

design. Sevan Ficici, Anthony Bucci, Edwin De Jong and Ari Bader-Natal educated me in

the ways of coevolution; and Richard Watson and Keki Burjorjee taught me about the im-

portance and subtleties of the representation problem in Evolutionary Computation. In an

atmosphere filled with evolution-speak, Simon Levy, Ofer Melnik and Paul Chiusano pro-

vided a valuable perspective on neural networks and cognition. My deepest gratitude goes

to these members of the DEMO lab. I am particularly indebted to Sevan Ficici, Ari Bader-

Natal, Keki Burjorjee, Anthony Bucci, Richard Watson and Paul Chiusano for their critical

and constructive feedback, extensive discussions, guidance and friendship.

This experience at the DEMO lab would have been impossible without Jordan Pollack.

The tenacity of his quest for a non-cognitive solution to the AI problem; and his deep

insights into the hard problems at the core of the AI, EC and ALife research programs,

often described humorously, have been a great inspiration and have significantly shaped my

research perspective. The technical formulation of developmental computation as a game

is attributable to a key insight suggested by Jordan about the relevance of the Bellman

equations to my attempts to formulate a computation model for developmental robustness.

A special thanks to Timothy Hickey, Pengyu Hong and Una-May O’Reilly for agreeing to

be on my committee and for their patience with the numerous fits and starts leading up to

iv

v

the defense. I would in particular like to thank Una-May for her detailed feedback and for

suggesting a lead that resulted in significant improvements to the mathematical formulation

of the developmental model described here.

I am indebted to Myrna Fox, Ashley Boudo, Ruth Brigham, Jeanne DeBaie, Scott Buchanan,

Saul Tejada and Julio Santana for their support and friendship; and Jacques Cohen and

Robert Sekuler for their mentorship. I would especially like to thank Myrna Fox for her

maternal concern, and for always saving the day in my numerous bureaucratic bumbles. I

am deeply grateful to Judit Jané-Valbuena, Antonella Di Lillo, Teresa Broering, Phil Durbin,

Radhika Subramanian, Chrisann Newransky and Aftab Pande for their irreplaceable friend-

ship.

This dissertation may never have reached completion if it werent for the love and en-

couragement unmeasurable from my parents; sisters Sandya and Soumya; brothers-in-law

Murali and Murari; my aunt Malathi Thiagarajan; and Peter and Doreen Mudry. And last

and far from being the least, it is difficult to fully express my thanks to Kartik Chandran,

Brenda Mudry and Amartya, for integrating me so thoroughly and completely into their

lives through the ups and downs of these years in graduate school.

Abstract
The secondary substrate problem in Co-Evolution and

Developmental-Evolution

A dissertation presented to the Faculty of

the Graduate School of Arts and Sciences of

Brandeis University, Waltham, Massachusetts

by Shivakumar Viswanathan

The performance of an Evolutionary Algorithm on a search problem is critically effected

by the substrate used to encode the candidate solutions of the problem. In addition to

the challenge of designing evolvable genetic substrates, two-population competitive coevolu-

tionary algorithms (coEAs) and developmental Evolutionary Algorithms (devo-EAs) present

another substrate-related design problem. Both involve an additional substrate with its

own mechanism of change. In coEAs, test-cases are encoded with an independent genetic

substrate having its own variation operators. In devo-EAs, phenotypes are composed of a

distinct substrate with associated generative mechanisms capable of changing an individ-

ual’s form and size during development. Though this “secondary” substrate is a distinctive

feature of both algorithms, the design problem it poses remains poorly understood.

This dissertation proposes novel formal models to characterize how the properties of

the secondary substrate influences the performance devo-EAs and coEAs respectively.

Firstly, we propose a computational model for devo-EAs which shows that the point in

time at which the development of a phenotype halts can introduce selection biases that can

cause an empirically measurable retardation in the performance of a devo-EA. Furthermore,

a Genotype-Phenotype map that is bias-free is formally equivalent to a Nash equilibrium in

a non-cooperative multi-player game, where each genotype is a player, the possible halting

points are strategies and the payoffs are related to the fitness function. We show that

algorithmic solutions to find this Nash map are expensive without a suitable secondary

substrate.

Secondly, we propose a novel search space model for Pareto coevolution that formally

vi

vii

defines the evolvability properties required of the secondary substrate for pathology-free

learning with a mutation-only coEA. With this model, we show that on boolean classification

problems (a) the variational properties of the secondary substrate are a property of the

problem class rather than tied to individual problems, and (b) the absence of coevolutionary

pathologies does not imply success in finding high-quality solutions. Rather than being

mysterious dynamical properties of coEAs, these findings are transparently explained using

Machine Learning first principles.

Contents

Abstract vi

1 Introduction 1

1.1 Background: The Evolutionary Algorithm 3

1.2 Coevolution and development . 6

1.3 Approach . 10

2 Ideal Delivery Problem 14

2.1 Introduction . 14

2.2 Model . 17

2.3 Developmental decision making . 25

2.4 Experiment . 34

2.5 Discussion . 42

3 Coevolution and the Ideal Teacher 45

3.1 Introduction . 45

3.2 Rationale . 50

3.3 The Delta landscape . 56

3.4 The Complete Learnable Test set . 59

3.5 Idealized coevolution . 61

3.6 Concept learning . 64

3.7 Learnability . 73

3.8 Conclusions . 77

3.9 Appendix . 78

4 Conclusions 81

4.1 Contributions . 81

4.2 Synthesis . 83

4.3 Conclusions . 85

viii

List of Tables

2.1 Genotype-Phenotype correspondences for different points in Θ 28

2.2 Example of phenotypic change over an ontogeny 36

3.1 Matrix representation of p . 51

3.2 Deceptive evaluation due to “forgetting” . 59

ix

List of Figures

1.1 Schematic of the algorithmic processes occurring between generations . . . 5

1.2 Schematic of the algorithmic processes occurring between generations . . . 7

1.3 Schematic of the developmental process . 9

2.1 A graph Γ with m = 23 = 8 vertices . 21

2.2 Subgraph of a graph Γ of size m = 23 obtained after initial input b0 = 000
(dark gray) to µ3 and the successors obtained (light gray). 23

2.3 Two ontogenies O1 and O2 with the distinct phenotypes shown as white cir-

cles, and the delivery points corresponding to τ = 5, 10, 15 and 20 units. . . 27

2.4 A sampling of points in the low dimensional projection of Θ corresponding

to the ontogenies O1 and O2 . 28

2.5 Differing outcomes of development for the same genotype and phenotype set 29

2.6 Fitness variation along ontogenies O and O′ 31

2.7 Target patterns (randomly generated) . 34

2.8 Fitness variation along ontogeny for a random genetic procedure on Pattern-1. 37

2.9 Loss of high fitness phenotypes due to selection bias over the entire popula-

tion (Pattern-1) . 38

2.10 Selection mismatches with ψθmax
on Pattern-1. The error bars indicate the

maximum and minimum values obtained over 10 runs. 39

2.11 Fitness of best delivered individuals for ψθmax
and ψθNash

on Pattern-1. The

error bars indicate the maximum and minimum values obtained over 10 runs. 40

2.12 Fitness of best evaluated individuals for ψθmax
and ψθNash

on Pattern-2. The

error bars indicate the maximum and minimum values obtained over 10 runs. 41

2.13 Non-selective mismatches with ψθNash
on Pattern-1. The error bars indicate

the maximum and minimum values obtained over 10 runs. 41

2.14 Average length of ontogenies (l(O)) for ψθmax
and ψθNash

on Pattern-1. The

error bars indicate the maximum and minimum values obtained over 10 runs. 42

3.1 Schematic of the classic algorithmic configuration of of a competitive coevo-

lutionary algorithm. 47

3.2 Effect of variation on the “difficulty” of learning to solve test t by a learner s 58

3.3 Subgraph of S corresponding to Ns ∪ {s} 60

3.4 Idealized (asynchronous) coevolution with CLT sets 62

3.5 The concept defined by [3, 6]× [3, 6]. 67

x

LIST OF FIGURES xi

3.6 The fitness function for target concept at (1,40) viewed from different per-

spectives. 68

3.7 The fitness function for target concept at (20,40) viewed from different per-

spectives. 69

3.8 The fitness function for target concept at (30,30). 70

3.9 Trace of algorithm behavior with h0 = [1, n, 1, n] where the colored rectangle

is the unknown target concept, with the corresponding false-positive and

false-negative error. 75

3.10 Trace of algorithm behavior with h0 = [7, 14, 7, 14] exhibiting a collapse to a

local optimum. 76

3.11 Trace of algorithm for target concept c∗ = [1, n, 1, n] 77

Chapter 1

Introduction

The genetic theory of evolution, as formulated by the Modern Synthesis, applies to evo-

lutionary adaptation occurring in all biological organisms. This generality has been an

important inspiration for the Evolutionary Algorithm (EA) where the genetic logic of evolu-

tion is interpreted as a computational mechanism to “evolve” solutions to search problems

irrespective of whether the entities represented by the “genomes” are computer programs,

robot designs, neural networks or any other kind of systematically representable object

[36, 26, 47, 7].

Despite the generality of EAs, a widely noted property of these algorithms is that their

performance on a particular search problem is critically linked to the specific genetic data-

structure used to represent the candidate solutions of the problem. The design problem

posed by choosing a suitable genetic representation that enables effective evolution has

been widely referred to as the representation problem [2, 75]. However, two popularly

used biologically-inspired variants of the standard EA bring a novel added dimension to

this classic representation problem in having an additional substrate as an integral part

of their operation. These two algorithms are (a) the “Host-parasite” based competitive co-

evolutionary algorithms (coEAs) [34, 61, 67, 16], and (b) developmental-EAs (devo-EAs)

[45, 33, 67]. The additional substrate in coEAs is the genetic data-structure used to en-

code the “parasites” or tests; and in devo-EAs, it is the data-structure used to encode the

1

CHAPTER 1. INTRODUCTION 2

“embryo”.

The novel dimension presented by this additional substrate is that it is subject to op-

erations of change that are independent of the variation operations acting on the genetic

representations of the candidate solutions. In coEAs, the genetic encoding of the “parasites”

is subject to independent mutation and crossover operations. The operations of change in

devo-EAs are of a different flavor. Biological development is a process of change par excel-

lence with the entity undergoing change being the “embryo” that goes from a single-celled

entity to one consisting of millions of differentiated cells. Though not of the same order

as biological development, this extensive change is a property of the artificial development

phase in devo-EAs as well, where the embryonic substrate is subject to extensive modifi-

cation during the developmental construction of the phenotype of each individual in every

generation of the evolutionary process. For clarity, we will refer to this additional substrate

in both coEAs and devo-EAs as the secondary substrate due to its auxiliary role with re-

spect to the genetic representation of the candidate solutions (henceforth referred to as the

primary substrate).

Given the integral role of this additional substrate in the problem-solving strategy of

both coEAs and devo-EAs, it raises a basic question - how do the properties of this secondary

substrate and its associated operations of change influence the performance of (a) coEAs and

(b) devo-EAs? Despite the large body of research on both coEAs and devo-EAs, this critical

concern remains poorly understood and has so far not been subject to focussed technical

investigations.

The principled characterization of this secondary substrate problem posed by coEAs and

devo-EAs is the subject of this dissertation. In this chapter, we provide a brief introduction

to coEAs and devo-EAs, and an overview of the strategy adopted to study their respective

secondary substrate problems.

CHAPTER 1. INTRODUCTION 3

1.1 Background: The Evolutionary Algorithm

The typical context for the application of an EA arises when we seek an object that has a

certain desired behavioral property, say Z, but where a computational method to conve-

niently and efficiently construct such an object directly based on the specification of Z is

unavailable. Search is a general framing of such a problem as one of identifying such an

object from a set of potential candidate solutions S.

In the context of the evolutionary metaphor, the “fitness” is a measure defined on S

that quantifies the extent to which a member of S has the property Z. In seeking to apply

an Evolutionary Algorithms (EA) to a problem the only requirement that is usually made

of such a fitness measure is that it is internally consistent. A convenient mathematical

representation of such an internally consistent measure of relative suitability is as a function

f : S → R, where f , known as the fitness function, assigns a numerical value to every

element of S expressing the magnitude of the element’s suitability. The goal in using an EA

is to find an object in S that maximizes this value given a particular fitness function.

The canonical form of the Darwinian Evolutionary Algorithm applied to such a search

problem can be described as follows:

1. Draw an initial “population” of candidate solutions from S

2. FITNESS EVALUATION: Evaluate all the individuals in the population using f

• DEVELOPMENT: This stage is specific to methods where the data-structure encod-

ing the candidate solutions is different from that which can be evaluated by f .

This consequently involves an additional phase where the ”evaluatable” versions

of the entities are produced. This is akin to the genome/phenome distinction in

biology, where genomes (encoded in DNA) are transmitted from the parents as

part of a single-celled proto-offspring and the production of the adult phenome

of the offspring involves a developmental phase.

3. STOPPING CONDITION: If some pre-chosen stopping condition is met then return the

CHAPTER 1. INTRODUCTION 4

highest fitness individual in the population and halt, else continue.

4. GENERATE A NEW POPULATION

(a) SELECTION: Probabilistically pick individuals from the population to be “parents”

(with replacement). In keeping with the Darwinian heuristic of “survival of the

fittest”, the probability of an individual A in the population being selected is

greater than that of individual B iff f(A) > f(B).

(b) REPLICATION AND VARIATION: Generate “offspring” by making copies of the rep-

resentations of the “parents” and apply uninformed variation operators to these

copies. The variation is uninformed in the sense that the fitness or specific behav-

ioral properties of the parents does not influence the specific manner in which

variation operators are applied to the parents’ representations. This is similar to

the notion of random genetic mutations and crossover that occurs in biological

evolution.

(c) REPLACEMENT: Replace all/some of the individuals in the current population

with these “offspring” to obtain the new population.

5. Goto step (2)

A schematic of the typical organization of these algorithmic processes occurring between

two consecutive generations is shown in Figure 1.1. As shown in this figure, the genotypes

are transmitted from one generation to another while the phenotypes are constructed re-

peatedly in every generation. In many cases the data-structure representing the phenotype

and genotype are identical and the genotype/phenotype distinction serves as a way to dis-

tinguish between the two distinct process that the entities in the population are part of,

namely (a) fitness evaluation operations (on the phenotype) and (b) selective replication

and variation (on the genotype). The fitness of phenotypes is evaluated in every generation

and no explicit fitness information is transmitted between generations.

While this extreme generality of EAs has led to their application to a wide variety of

problems, a major challenge in applying EAs to specific real-world problems is dependent on

CHAPTER 1. INTRODUCTION 5

 f

...
...

Figure 1.1: Schematic of the algorithmic processes occurring between generations

the ability of the engineer to (a) operationalize the evaluation of the desired property Z as

a principled yet computationally practical fitness function, and (b) to pick a representation

appropriate for the problem domain. Depending on the behavioral property of interest

and the problem domain, these design issues can present non-trivial difficulties requiring

significant domain knowledge, judgment and ingenuity on the part of the engineer.

A question both of theoretical and practical interest is whether the Evolutionary Com-

putation framework could be extended in some way to mitigate these domain-specific dif-

ficulties while retaining (to the extent possible) the spirit of generality of the EA. Two

innovative biologically inspired extensions that have been proposed to this end have been

competitive coevolution [34, 67, 16, 62] to address issue (a) above, and developmental rep-

resentations[45, 33, 67, 37, 11] to address issue (b). The innovation in both cases has

been to frame fitness evaluation and the structuring of the representation as computational

“problems” that could be addressed by mechanisms naturally associated with biological

evolution.

CHAPTER 1. INTRODUCTION 6

1.2 Coevolution and development

Both competitive coevolution and development are independent areas of active research and

each has come to be associated with a large and diverse family of techniques. Unlike the

canonical EA, however, a precise definition of the structure of these algorithms is a slippery

issue in both cases. This concern will feature prominently in our subsequent analysis so, for

the time being, the classic form of these algorithms is described below.

1.2.1 Competitive coevolution

Two-population competitive coevolution [34, 67, 16, 62] is an evolutionary problem-solving

approach distinguished by the feature that the fitness evaluation algorithm is itself another

Evolutionary Algorithm. This fitness evaluation strategy has found a natural application to

the automated generation of programs for complex tasks [34, 48, 67, 22, 69] where the

behavior of the desired solution is defined in terms of its behavior over a number of discrete

“tests”. This includes game learning [62, 53], classification [56, 39, 42, 24], and the design

of robotic controllers [25, 67].

In these test-based problems the number of such tests can be large, often of the order of

the size of the candidate solution space itself. The sheer number of tests makes the naive

strategy of exhaustively evaluating each candidate solution in the population against all the

tests highly impractical. Typically, addressing this situation can require significant domain

knowledge to identify a suitable subset of tests to be used as a training set. To address this

difficulties, in a coevolutionary approach the problem of picking a parsimonious subset of

suitable tests is posed as a search problem. The mechanism of choice to address this search

problem is an EA. Rather than being a search problem that is addressed offline independent

of the main evolutionary algorithm, this second EA operates over the space of test-cases with

the goal being to adaptively find subsets of tests to evaluate the main evolving population

of candidate solutions at run time.

The qualifier “competitive” comes from the natural phenomenon inspiring this approach,

CHAPTER 1. INTRODUCTION 7

Figure 1.2: Schematic of the algorithmic processes occurring between generations

namely, the “arms races” that are known to occur between reciprocally evolving (i.e. coe-

volving) biological species that occupy the same ecological niche and have an adversarial

or “competitive” relationship with each other [18, 71]. An example is the evolutionary rela-

tionship between a virulent species of parasite and its host species. The parasites are under

constant selection pressure to adapt to beat the host’s immune system, and the hosts are

concurrently under selection pressure to develop defenses to ward off the parasites.

In the canonical algorithmic interpretation of such a competitive coevolutionary rela-

tionship, the protocol and associated logic of assigning fitness to the individuals in each

population is explicitly designed to induce such a reciprocal competition where an indi-

vidual in each population receives a fitness proportional to its ability to “beat” the current

individuals in the other population. For brevity, we will refer to this pair of concurrently

operating EAs as being a coEA. A schematic of the general dynamic of a canonical coEA is

shown in Figure 1.2.

A variant of this scheme is single-population coevolution [6, 58, 15, 3] where there is

no independent test population. Instead each individual is evaluated by using all the other

CHAPTER 1. INTRODUCTION 8

individuals in the same population as tests. This is applicable only in a limited number of

domains such as games where every player can directly interact with another player. This

can be considered to be an evolutionary interpretation of learning by self-play [64, 70, 79].

In more biological terms, this is also known as frequency dependent selection and formed

the basis for the seminal work of Maynard Smith on Evolutionary Game Theory[52]. An

alternate coevolutionary paradigm where this reciprocal relationship is interpreted in ex-

plicitly non-adversarial terms is “cooperative” coevolution [59]. While these are important

alternatives among others, our focus will be restricted to the two-population competitive

case.

1.2.2 Development

A challenging search problem in automated design is the scenario where it is expected that

suitable solutions would likely be composed of a large number of elements in complicated

configurations but where the general form of these solutions is not known a priori. One dif-

ficulty is posed by how a large and diverse class of interesting candidate solutions could be

conveniently represented. Another closely related difficulty is determining the appropriate

search algorithm that could effectively address such a search problem as (a) the size of the

search space is very large and (b) the amount of principled domain knowledge available to

carefully engineer the algorithm is limited. Evolutionary Algorithms (EAs) using generative

representations of the candidate solutions have emerged as promising algorithms suited to

address such problems [45, 33, 67, 37].

Rather than being a “representation” in the sense of a specific data-structure such as

a bit-string as in Genetic Algorithms [30], or S-expressions as in Genetic Programming

[47] or real-valued vectors as in Evolutionary Strategies [7], a generative representation

typically refers to the case where the genetic data-structure is interpreted as a procedure

(or a set of rules) that is recursively applied to generate the evaluatable candidate solution.

In the context of EAs, these representations are “developmental” by analogy to the biological

process of development associated with the reproduction of multicellular organisms from

CHAPTER 1. INTRODUCTION 9

... ...

Figure 1.3: Schematic of the developmental process

single cells in each generation. The genetic representation in this case is equivalent to a

“developmental program” and the evaluatable data-structure is the “phenotype”. Figure 1.3

is a cartoon of the internals of this stage previously represented as a box in Figure 1.1.

For the sake of brevity, we will refer to the combination of an EA and such a develop-

mental representation as a Developmental EA or a devo-EA.

In the theoretical models of Evolutionary Computation (EC), the formalism used to de-

scribe this relation between the two entities is the Genotype-Phenotype map ψ : G → P,

where G is the set of genotypes and P is the set of phenotypes. Due to the extreme general-

ity of this formalism and its inability to distinguish developmental representations from any

other, finding a suitable nomenclature has been a research theme and a variety of taxonomic

classifications have been proposed based on differing criteria. Angeline [4] distinguishes

between translative, generative and adaptive encodings; Kumar and Bentley [49] differen-

tiate between explicit and implicit generative encodings. Hornby and Pollack [37] propose

the use of constructs from high level programming language such as iteration and proce-

CHAPTER 1. INTRODUCTION 10

dure calls for categorization. Stanley and Miikulainen [68] suggest a list of biologically

inspired behavioral capabilities as a unified way to compare developmental representations

independent of whether they are cellular based or grammar based.

Though we will introduce a specific mathematical notion of development in later chap-

ters, for the purposes of this general introduction the notion of a developmental represen-

tation used here is one where:

1. the genome is interpreted as a set of rules,

2. the genome and phenome are both logically and physically distinct and are encoded

with different substrates, and

3. the process of generating the phenome can be described as “(a) a process of (b) more

or less gradual (c) change, (d) resulting in [...] one or more qualitatively different

stages for which (e) the prior stages are necessary conditions” [73].

1.3 Approach

1.3.1 Theories of fitness evaluation

We posit that both coEAs and devo-EAs modify the conceptual structure of the problem of

evolutionary search by actively involving a theory of fitness evaluation, explicitly in the case

of coEAs and more implicitly in devo-EAs.

In the canonical formulation of an evolutionary search problem, the computation as-

sociated with fitness evaluation is usually characterized in functional terms as the fitness

function, f : P → R, where P is the set of evaluatable candidate solutions or phenotypes.

Similarly, the computation associated with representation rewriting, developmental or oth-

erwise, is characterized as the Genotype-Phenotype map, ψ : G → P, where G is the set of

genotypes and P is the set of phenotypes.

As the structure of the primary problem-relevant search space is determined by the

genetic representation and its variation operators, the theoretical concepts of evolutionary

CHAPTER 1. INTRODUCTION 11

computation have traditionally been indifferent to the details of the specific algorithms used

to realize the fitness function and the Genotype-Phenotype map. This is to the extent that

f and ψ are effectively treated in their composed form:

(f ◦ ψ) = f : G → R (1.3.1)

We will refer to f as the compound fitness function to distinguish it from the basic fitness

function f . This lack of a theoretical commitment to a specific algorithmic conception of

how the fitness function and the Genotype-Phenotype map are realized has made EAs a very

general class of search algorithms suited for black-box optimization. However, both coEAs

and devo-EAs deviate from this generality by explicitly adopting additional theoretical com-

mitments about these algorithmic processes and their relevant domains. These additional

commitments can be broadly summarized as follows.

Competitive fitness evaluation is premised on the explicit knowledge that the overall

fitness of a candidate solution is a property of its behavior on a set of discrete “tests”; and

the premises that:

[C-1] “Intelligently” drawn samples from this test set are sufficient to evaluate and

evolve suitable candidate solutions for the search task.

[C-2] A competition based rationale is a suitable basis to perform the required “intel-

ligent” sampling over the entire evolutionary search process.

[C-3] This “intelligent” sampling can be suitably realized with an EA.

The developmental protocol is premised on the explicit knowledge that the phenotypes

have a component based internal structure and the general premises that:

[D-1] A suitable space of problem-relevant phenotypes can be algorithmically gener-

ated by the developmental system.

[D-2] The evaluation of the phenotypes obtained from the developmental process is

a suitable basis to attribute fitness to the corresponding genotypes to search the

CHAPTER 1. INTRODUCTION 12

space defined by G using an EA.

In this broad sense both coEAs and devo-EAs share a basic similarity in involving a spe-

cific theory about the algorithmic properties of f . Coevolutionary Algorithms are based on

a theory about the algorithmic realization of the actual fitness function f . Developmental-

EAs are explicitly based on a theory about the algorithmic realization of the Genotype-

Phenotype map ψ and in conjunction with [D-2] above involve an additional theoretical

commitment to the nature of the relationship between this Genotype-Phenotype map and

the actual fitness function f .

The popularity and widespread use of coEAs and devo-EAs would suggest that these

premises are indeed satisfied. However, here we examine how faithfully and robustly they

can in fact be realized in terms of the properties of the secondary substrate and its relation-

ship to the problem structure.

1.3.2 Overview

In a standard EA, the progress of adaptation is determined by the likelihood of favorable (or

adaptive) phenotypic variation arising in the population. The origin of such adaptive phe-

notypic variation depends on whether and how the variability of the phenotypes is related

to the problem structure [75]. As genetic variation is the only source of heritable pheno-

typic variation in the canonical EA, adaptive phenotypic variability is effectively determined

by the properties of the genomic data-structure or substrate [2, 75, 78, 60]. In general, a

genetic representation that enables effective adaptation on a problem under the selection

and variation operations of the EA is said to be evolvable [2, 75].

Broadly, to address the question of what makes a genome evolvable requires a precise

notion of the problem and its “structure”, and a way of establishing the correspondence of

this structure to the properties of the genome and its associated variation operators on one

hand, and the algorithmic dynamics of the evolving population on the other. Our approach

is to apply a similar rationale to analyze the secondary substrate in coEAs and devo-EAs.

In the case of devo-EAs, we focus on the soundness of the premise [D-2] by consider-

CHAPTER 1. INTRODUCTION 13

ing it to be a hypothesis that requires empirical and theoretical validation. In devo-EAs,

researchers often describe development as an “unfolding” of form as a result of genetic and

environmental interactions. This non-quantitative description however provides no sense

for how “hard” or “easy” it is for development to be effectively possible for all the genotypes,

and the suitability of the secondary substrate for this purpose. In Chapter 2, we propose a

computational model of development that allows the posing of quantitative questions about

the controllability of development and its relation to overall performance. Specifically, we

consider the question of how the choice of time at which development halts can impact the

performance of the EA. This question is posed as the IDEAL DELIVERY problem, i.e. what the

ideal time for development to halt and “deliver” the phenotype into the evolving population.

In the case of coEAs, we focus on whether premise [C-3] can be satisfied in such a way

that the EA operating on the test-space can actually exhibit performance better than ran-

dom search. For this to be possible, as in standard EAs as well, it requires the existence

of some correlation between the properties of the genetic substrate and the structure of

the problem. The obstacle here is the absence of a precise specification of the problem

that the evolution of the “parasites” is expected to solve that is concrete enough to be able

to deduce the properties of a suitable genetic representation. Using Juillé’s [41] IDEAL

TRAINER/TEACHER model as the basis, in Chapter 3, we deduce the the variational prop-

erties required of a secondary substrate to enable two coevolving populations to remain

continuously engaged and exhibit pathology-free learning with a Pareto-coEA [24, 53]. Us-

ing this model, we theoretically and empirically study the application of coEAs to boolean

classification problems.

Chapter 4 provides a synthesis of the findings from these analyses.

Due to the very different terminology and machinery associated with coEAs and de-

voEAs, each of these chapters is written to be as self-contained as possible.

Chapter 2

Developmental-EAs and the Ideal

Delivery problem

“A hen is only an egg’s way of making another egg.”

- Samuel Butler (1877)

2.1 Introduction

2.1.1 Motivation

A common practice in using generative (or developmental) representations [45, 33, 67, 37]

with Evolutionary Algorithms (EAs) has been to run the generative process associated with

a genotype till no further change occurs to the “embryo”, or till a pre-defined maximum

time limit or size is reached. At this point the resultant phenotype is then “delivered” into

the evolving population where it is subject to the evolutionary methods of fitness evaluation

and selection based on its relative fitness with respect to other members of the population.

So far there has been no theoretical justification proposed as to why this “delivery” protocol

is a principled way to use developmental representations with an EA. Indeed, when devel-

opment is considered as being no more than a process of mapping a genetic data-structure

to a phenotypic one, this would seem to be the most obvious way to do things. For instance,

14

CHAPTER 2. IDEAL DELIVERY PROBLEM 15

this would be an odd issue to raise with respect to the arithmetic operation of mapping

the binary representation of a number to its decimal form. However, the operation relating

genotypes to phenotypes in generative representations is significantly unlike such an arith-

metic operation even if both can be abstractly described as realizing a Genotype-Phenotype

map.

Two such distinctive properties of generative representations are (a) an indirect proce-

dural relationship between the elements of the genome and phenome and the associated

need for (b) an iterative generative process to obtain the phenotypes. The hypothesis that

we present here is that the impact of the secondary substrate on evolutionary performance

arises due to this latter property involving the iterative generative process, and this impact

exerts itself via the choice of “delivery” time. In this chapter, we present a mathematical

formulation of this hypothesis for the basic type of devo-EAs and an empirical assessment of

its immediate consequences for evolutionary performance. This formulation takes the form

of the IDEAL DELIVERY problem. The problem simply put is - What is the “ideal” time to halt

development and deliver the phenotype into the population?

2.1.2 Approach

To precisely formulate the IDEAL DELIVERY problem we adopt the analytical stance that

there may be value, in terms of evolutionary search performance, in being able to actively

pre-empt the delivery of the developing phenotype at a point prior to the inevitable termi-

nation of the process. Since the embryonic individual undergoes change over the develop-

mental process, a mechanism that can terminate development at any point in time could

also vary the phenotype that is delivered into the population. So, the narrow problem to

be solved here is to (a) characterize how the choice of delivery point impacts evolutionary

performance; (b) determine which of the many possible delivery points over the develop-

mental process has the most desirable impact on performance, i.e. is “ideal”; (c) ascertain

whether this “ideal” delivery point corresponds to the default protocol; and (d) identify the

consequences of not being able to realize this “ideal” delivery.

CHAPTER 2. IDEAL DELIVERY PROBLEM 16

The very possibility of being able to consider alternate “delivery” protocols is tied to the

unique properties associated with having an explicit generative or developmental phase.

This is obscured in treating generative representations strictly in terms of the Genotype-

Phenotype map formalism. So the first step is reconceptualizing the relation between de-

velopment and evolution at this basic formal level. This is the subject of section 2.2 where

we propose a simple alternative developmental model that is compatible with the notion of

the Genotype-Phenotype map but provides a mechanistically richer notion of development.

Using this model, in section 2.3 we show that when developmental control is parame-

terized by time it results in a space of possible Genotype-Phenotype maps and we pose the

IDEAL DELIVERY problem as one of identifying the “ideal” map in this space. The notion of

“ideal” is with respect to evolutionary performance under the constraint that no additional

knowledge about the properties of the problem and the variation operators is available

beyond that already available to the EA. This leads to our main finding.

We analytically show that the impact of the choice of delivery point can impact the

selection probability of the associated genotypes by introducing a bias in selection. The par-

ticular Genotype-Phenotype map in the space of maps that guarantees that selection is not

negatively biased by the choice of delivery time is equivalent to the Nash Equilibrium for a

multi-player game. In this game every genotype is a player and each possible delivery point

is a strategy. This Nash map is dependent on the fitness function and unless the variability

of the secondary substrate under development is correlated with the fitness function, it is

not guaranteed to correspond to the default delivery protocol.

In section 2.4 these analytical predictions are empirically tested on a grammar based

generative representation. The experiments unambiguously reveal the occurrence of a se-

lection bias with the default protocol and furthermore shows the positive impact on perfor-

mance when using a Nash delivery point (explicitly computed in this case) even on a genetic

representation that Hornby [37] has shown to have poor evolvability characteristics.

These findings establish that for developmental-EAs, evolvability in its broadest sense

encompasses not just genetic variability but also the correlation of developmental variability

CHAPTER 2. IDEAL DELIVERY PROBLEM 17

with problem structure, i.e. the properties of developmental change can influence evolu-

tionary performance.

2.2 Model

This section describes the developmental model that forms the basis for our investigation.

The main novelty of this model is to provide an alternative to the extreme generality of

the concept of the Genotype-Phenotype map with a more specific computational notion

explicitly tuned to development. This formally involves a mapping from the genotype to the

actions of a collection of developmental control mechanisms, where the actual phenotype

arises from the controlled dynamical interactions of these mechanisms. The explicit focus

is on modeling computational developmental systems and no claims are made with regard

to biological correctness.

2.2.1 Evolutionary model

In an early paper describing the possible avenues for research on developmental-EAs, An-

geline [4] describes a simple formulation to express the concept of an indirect genetic en-

coding which can be summarized as follows.

Let P be the set of objects of interest. The objective is to find an object in P that has

certain desired properties expressed as a fitness function f : P → R that provides a measure

of the relative suitability of each object to this desired end. So the general search problem

is to find a phenotype φ ∈ P that has a fitness value at or “sufficiently near” a desired

maximum in the range of f using an Evolutionary Algorithm.

Suppose P is a vector representing a (multiset) collection of entities from P i.e. the pop-

ulation, and, for convenience, let f be such that f(P) produces a vector of real-numbered

values corresponding to the evaluation of each of the members of P . A general evolutionary

computation can be defined as an iteration of the equation:

P ′ = ρ(P, f(P)) (2.2.1)

CHAPTER 2. IDEAL DELIVERY PROBLEM 18

The function ρ is called the reproduction function as it generates a new collection of

entities from P from the previous collection P (for a given random seed). This reproduction

function performs both selection and variation operations. So evolution is in effect the

iterative application of this function till some external stopping criterion is reached. Here,

the objects in P are referred to as the evaluated entities and as they are also the evolved

entities as they are directly manipulated by ρ.

Morphogenic Evolutionary Computation (as Angeline referred to it) is contrasted with

this basic form by the introduction of an abstraction that separates the evaluated entities

from the evolved entities. The reproduction function for a morphogenic evolutionary com-

putation is defined as

G′ = ρ′(G, f(ψ(G))) (2.2.2)

The function ψ : G → P is called the development function. In keeping with common

usage, this will alternatively be referred to the Genotype-Phenotype map. G is a vector

representing a (multi-set) collection of entities from G, and ψ(G) is considered to produce

a vector P by the application of ψ to each of the elements of G.

To go beyond this typical formalization of development as a Genotype-Phenotype map,

we next introduce a more detailed model of computational development. The intent of this

model is to serve as a reductionist framework to scrutinize the aspects of development that

are of immediate relevance to evolutionary performance while screening off to the extent

possible the details of lower-level operations.

2.2.2 Developmental model

The internal workings of the Genotype-Phenotype map are considered here to consist of an

interactive protocol involving three key functions that are described below. For simplicity,

only the deterministic version is considered here.

Let E be the set of ontogenetic intermediates possible for a given generative system.

Let the set E0 ⊂ E consist of special start states which we assume has exactly one member

CHAPTER 2. IDEAL DELIVERY PROBLEM 19

E0 = {e0}. In the case of “embryonic” development, the embryonic members of E may not

by themselves be valid phenotypes in P. The fitness function is considered to be undefined

on the entire set E and treated as being well defined only on the set of “adult” phenotypes

P. Let E be the environment.

Let γ be a generative function which has a behavior that is parameterized by the geno-

types in G and the environment

γ : G × E→ (E → E) (2.2.3)

The operation of this function is considered to occur in an iterative fashion where et+1 =

γ(et). Each iteration is controlled by two additional functions, a decision function δ and a

delivery function β.

The function δ represents a decision mechanism that provides the basis for when em-

bryogenesis terminates and “delivery” occurs. For simplicity, this is treated here as being a

Boolean function

δ : G × E→ (E → {0, 1}) (2.2.4)

where for an e ∈ E , δ(e) = 1 if the decision criterion is satisfied and 0 if not. We assume

that it is guaranteed to return a 1 at some point.

As elements of E are not considered to be valid phenotypes in themselves, an additional

mechanism is required that can return a valid phenotype from this process at some point,

i.e. serving as the equivalent of “delivery”. This is achieved with the delivery function β that

we assume is invoked only if δ(e) = 1. It is defined to be

β : E → P ∪D (2.2.5)

where D denotes the set of “premature” or “incomplete” states in the sense that β(e) ∈ D

if e ∈ E is still “incomplete” even when δ(e) = 1. The value of the fitness function on D is

treated as being f(d) = c where d ∈ D and c is a constant such that c < f(φ) for all φ ∈ P.

Based on this algorithmic notion of development, the ontogeny (or developmental his-

CHAPTER 2. IDEAL DELIVERY PROBLEM 20

tory) of an individual is defined to be an ordered sequence

O = 〈(e0, δ(e0)), (e1, δ(e1)), ..., (et, δ(et))〉 (2.2.6)

where ei ∈ E and i (0 ≤ i ≤ t) is an index indicating the time-step at which ei occurs

in O. This is a multi-set in the sense that ei can be identical to ej when i 6= j as the

developing embryo may not always be distinguishable from time-step to time-step. Since

delivery occurs when δ(e) = 1, the value of δ(ei) is equal to 0 for all i < t and 1 for i = t.

The duration of an ontogeny is given by u(O) = |O|. The set of all ontogenies is denoted by

O.

For the sake of analysis, the functions described above can be redefined as follows

γδ : G × E→ O (2.2.7)

and

β : O → P ∪D (2.2.8)

where β only operates on the last element of the ontogeny. In this way, the Genotype-

Phenotype map can be seen as a composition

ψ = β ◦ γδ : G × E→ P (2.2.9)

The new pieces of information in this formulation and absent from the Genotype-

Phenotype formalism (as described in Section 2.2.1) are:

1. The developmental history of the phenotype over the process of development, and

2. The attribution of the phenotype’s characteristics to these systems level computational

mechanisms rather than the genotype alone.

The issue we will address next is whether this additional information can be used in

some way to make predictions about problem difficulty and evolutionary performance that

would be difficult to make otherwise. Specifically, whether differences in how develop-

CHAPTER 2. IDEAL DELIVERY PROBLEM 21

000

100 010 001

110 101 011

111

Figure 2.1: A graph Γ with m = 23 = 8 vertices

mental control mechanisms use this ontogenetic information translates into differences in

evolutionary performance. As a prelude to this analysis, we now provide a detailed exam-

ple to clarify the concepts introduced above and to provide an intuition for the analysis to

follow.

2.2.3 Example

Here we provide an example with a strong theoretical computer science flavor, loosely based

on Balcazar’s succinct representation model [8]. The deliberate simplicity of the example is

to provide a sense for the properties of generative representations that are often obscured

in the more “biologically inspired” representations used in practice.

Consider a undirected connected graph Γ(V,E) where V is the set of vertices and E is

the set of edges. Let m be the total number of vertices in V . The graph is such that m = 2n

(n > 0) and each vertex has exactly n neighbors. An example is shown in Figure 2.1.

An explicit representation of this graph is an adjacency matrix of sizem2. Let this explicit

representation be denoted by Γx. An instance of such a graph can be represented in an

implicit form Γi with a deterministic procedure µn. This procedure is such that it takes as

input a bit string b of length n and returns all the binary strings of length n that differ in

1-bit from b. When the size of the implementation of µn is proportional to n, it can be

CHAPTER 2. IDEAL DELIVERY PROBLEM 22

considered to be a succinct representation of Γx as the adjacency matrix of size 22n is now

represented with a procedure of size n.

The explicit representation Γx can be obtained from the implicit Γi using an iterative

generative process.

1. Start with an empty matrix Γ0 of size m×m.

2. Pick a bit string b0 in {0, 1}n and add it to the list B.

3. Pop the first element from B and feed it as input to µn and obtain all the outputs and

add them to the list B′.

4. For each string bi ∈ B
′ enter 1 in the adjacency matrix in locations (b, bi) and (bi, b),

where b is the decimal representation of the bit vector b.

5. Add B′ to the end of list B excluding any strings already present in B.

6. IF every row in the adjacency matrix has n non-zero entries then exit and return the

adjacency matrix Γe ELSE goto step 3.

A snapshot of this process of generating the explicit representation of a graph having

m = 23 vertices is shown in Figure 2.2.

This procedure µn is an example of an implicit representation Γi of the graph Γ as the

entire description of the graph (as with the adjacency matrix) is not explicitly stored. This

“implicitness” of this representation is achieved by the re-labeling the vertices of Γ to make

them correspond to the labels of a binary hypercube of size n that is isomorphic to Γ. Due to

this relabeling, the procedure can take as input the binary label of a vertex and generate all

its neighbors. Since it is a connected graph, every vertex and edge is eventually produced

by iteratively using µn.

To provide a more “biological” notion of this process, consider the first vertex 000 to be

akin to a cell containing µn as its genome. At each time step, rather than returning bit-string

outputs, the cell duplicates to produce the cells 001, 010 and 100 with each having its own

replica of µn. In subsequent steps, each of these cells again duplicates in parallel with any

CHAPTER 2. IDEAL DELIVERY PROBLEM 23

000

100 010 001

110 101 011

111

Figure 2.2: Subgraph of a graph Γ of size m = 23 obtained after initial input b0 = 000 (dark

gray) to µ3 and the successors obtained (light gray).

competitive overlap being resolved randomly. In this fashion the entire graph Γ is obtained

within n steps.

The terms of our developmental model can be mapped on to this process as follows:

• The graph described above is one phenotype φ ∈ P and the phenotype space P is the

set of such regular graphs with different numbers of vertices.

• The state of the adjacency matrix is equal to e ∈ E and the set of all possible states

of the adjacency matrix is E . The starting state of the explicit representation Γ0 is the

equivalent of e0.

• The generative function γ(e) is an abstraction of the processes of feeding inputs to µn,

reading the outputs, adding and deleting items from the list, performing locate and

write operations on the adjacency matrix. One entire iteration results in up to 3 new

entries in the adjacency matrix and a minimum of 0. It is parameterized by µn which

is the equivalent of a genotype.

• The decision function δ(e) is the procedure checking whether the condition that all

rows of the adjacency matrix have n non-zero entries or alternatively to checking if

the list B is empty. If these conditions are not satisfied δ(e) = 0 else δ(e) = 1

CHAPTER 2. IDEAL DELIVERY PROBLEM 24

• If δ(e) = 1 then the delivery function β(e) returns Γx as a result.

While the genotype performs the key operations, we can see that the ability to generate

the explicit representation requires a lot of extra machinery, well-defined initial conditions,

a protocol for these operations to occur together, and a mechanism to halt the process. The

generative, decision and delivery functions are abstractions of these processes focusing only

on the effects perceptible in terms of changes in the explicit representation, which in the

above example was the adjacency matrix. The reason for this abstraction is to exclusively

focus on the entities on which evolutionarily relevant functionality is defined even though it

is determined by lower level mechanisms. As may be evident what these abstractions hide

may be intensely complicated.

A key point in the above example is that E is not identical to P as the graphs correspond-

ing to intermediate states of the adjacency graph may not qualify as being regular graphs

as defined earlier, i.e. where the number of vertices m = 2n (n > 0) and each vertex has

exactly n neighbors. Figure 2.2 is an example of a graph that appears as an intermediate

stage but does not meet these criteria. In this regard, the role played by δ is critical as it is

the recognition mechanism that determines when the development process is complete and

delivery is to occur, even if in this case it was the equivalent of a simple conditional.

A different situation presents itself when the constraints on the properties of the phe-

notypes are a lot weaker. For example, if the phenotype set were the set of all connected

graphs rather than only regular graphs then each intermediate is a valid phenotype. This

is often the case for the “open-ended” generative systems used in an Evolutionary Compu-

tation settings. In such a setting the basis for the decision function becomes particularly

interesting as it can now be interpreted in terms of its implications on the overall search

problem and the performance of the EA being used. In this context we can now assess the

broader adaptive significance of these developmental decisions over and above their imme-

diate consequences for the construction of form. In the next section, we show that some

decisions are “better” than others.

CHAPTER 2. IDEAL DELIVERY PROBLEM 25

2.3 Developmental decision making

2.3.1 Assumptions

To differentiate the case where the embryonic intermediates are themselves valid pheno-

types from the general model defined in the previous section, the same notation is retained

but the bar on top of the symbols is dropped and some of their behaviors are simplified as

described below.

Here the set of ontogenetic intermediates E is given by E = E0∪P. The set D is assumed

to be the empty set and the delivery function β is treated as being the identity function. An

ontogeny O ∈ O takes the form

O = 〈(e0, δ(e0)), (φ1, δ(φ1)), ..., (φt, δ(φt))〉 (2.3.1)

Let τmax = arg max
O∈O

u(O). This value τmax (τmax > 0) is the maximum of all the durations

of the ontogenies in O. This value will serve as our reference point. So, O is effectively the

set of all ontogenies where 0 < u(O) ≤ τmax. For notational simplicity, a phenotype φi will

be considered to be an element of an ontogeny O if (φi, ∗) is an element of O where ∗ could

either be 0 or 1.

The action of the decision function δ was defined earlier was treated as being co-

determined by the genotype and the environment. However, as the ontogenetic states in

O are valid phenotypes, δ(φi) can in principle take a value of 1 at any point in the on-

togeny for i > 0. To emphasize this freedom, here we treat δ as being able to take actions

based purely on external information. Furthermore, we introduce a behavioral separation

between the generative function and the decision function. We consider γ∗(g) to be the on-

togeny generated by the generative function γ with a genotype g when the decision function

is passive, i.e. when development ends if the embryo does not exhibit any further change

or the maximum time limit is reached rather than being actively terminated by the decision

function.

In informal terms, the problem to be solved here is finding a principled and general

CHAPTER 2. IDEAL DELIVERY PROBLEM 26

basis by which δ can make an active decision about the time of delivery for the ontogenies

corresponding to every genotype in G, for a given generative function γ and an unknown

fitness function.

By “unknown” fitness function we mean the following. Let F = {f1, f2, ..., fq} be a

finite class of fitness functions where q ≥ 1 and each fitness function in F is of the form

fi : P → R. When q = 1, this class corresponds to the regular situation where the focus is on

a specific fitness function. Our interest is on the case where q > 1 and where the algorithm

designer knows F but does not know which fitness function is being used for evaluation.

This class F could, in principle, be fitness functions that are closed under permutation as

in the “sharpened” No Free Lunch scenario [78, 66]. The objective is to design the overall

algorithm and representation to be able to provide the desired level of performance on any

of the fitness functions in this class. Our focus will exclusively be on the role of δ in this

task.

All future references to fitness functions will be in this sense unless stated otherwise.

This is not an unrealistic scenario as developmental representations have been of particular

interest in situations where the desired form of the solution is not known a priori [67, 68].

This is a closely related equivalent to not having a priori knowledge about the properties of

the fitness function.

Based on these general assumptions, we now take a step toward a more precise defini-

tion of the design problem for δ by defining the space of options available to such a decision

function.

2.3.2 Decision space

The combined space of options for the decision function associated with ontogenies of each

genotype can be described as a |G|-dimensional space

Θ = {1, 2, 3..., τmax}
|G| (2.3.2)

CHAPTER 2. IDEAL DELIVERY PROBLEM 27

0 5 10 15

O1

O2

φ0

Time

φ1 φ2 φ3

φ0 φ1 φ2 φ3

Figure 2.3: Two ontogenies O1 and O2 with the distinct phenotypes shown as white circles,

and the delivery points corresponding to τ = 5, 10, 15 and 20 units.

Each point θ = (τ1, τ2, ..., τ|G|) in Θ represents one setting of the decision function for all the

genotypes taken together where τi (0 < τi ≤ τmax) is a time at which the decision function

can take a value 1 during the generative process with genotype gi ∈ G. The reference point

when all the values in θ ∈ Θ are equal to τmax is denoted as θmax. This corresponds to

the usual practice of running the developmental process till no further changes occur in the

developing phenotype or till it reaches the maximum time limit τmax.

Framed in this manner, every point θ ∈ Θ now defines a possible Genotype-Phenotype map.

To see how and why, consider the following example.

Example Consider the ontogenies shown in Figure 2.3 where O = γ∗(g) and O′ = γ∗(g
′)

for two genotypes g, g′ ∈ G, and τmax = 20. Only the distinct phenotypes are shown in

this figure. Figure 2.4 shows the low-dimensional projection of the space Θ corresponding

to the two dimensions associated with genotypes g and g′ and a sampling of points in this

space. Each point in Θ represents the time at which the decision function returns 1 for

the ontogeny associated with each genotype. Since each time instant in an ontogeny is

associated with a phenotype, this implicitly specifies the phenotype that is to be “delivered”

into the population. The corresponding Genotype-Phenotype correspondences are listed in

Table 2.1 where ψθ denotes the map at θ.

In general, the size of Θ is exponential in the size of the genetic search space as |Θ| =

(τmax)|G|. However, this overcounts the number of maps as each point θ ∈ Θ does not

necessarily correspond to a unique Genotype-Phenotype map as the embryo may not always

CHAPTER 2. IDEAL DELIVERY PROBLEM 28

0 5 10 15 20 25
0

5

10

15

20

25

τ
1

τ 2

(5,5)

(10,10)

(15,15)

(20,20)

τ
max

τ
max

Figure 2.4: A sampling of points in the low dimensional projection of Θ corresponding to

the ontogenies O1 and O2

change at every time step, as also in the above example. If l(O) is the number of distinct

phenotypes in the ontogeny O, then the number of distinct maps is given by
∏

gi∈G

l(γ∗(gi)) ≤

(τmax)|G|.

θ ψθ(g) ψθ(g
′)

(5,5) φ1 φ1

(10,10) φ1 φ3

(15,15) φ2 φ3

(20,20) φ3 φ3

Table 2.1: Genotype-Phenotype correspondences for different points in Θ

With this abstraction, the IDEAL DELIVERY problem can be narrowed down to one of

picking the “ideal” Genotype-Phenotype map from among the points in Θ. This is a critical

choice as it would in turn define the evolutionary search problem for an unknown fitness

function belonging to F . The next task is to define a suitable solution concept to make this

choice based on a principled notion of what kind of effect on performance we expect and

would want a suitable decision to have (or not have); and one which could be practically

CHAPTER 2. IDEAL DELIVERY PROBLEM 29

observed.

2.3.3 Solution concept

As with any representation, the specific Genotype-Phenotype mapping has a strong impact

on the performance of an Evolutionary Algorithm. For a particular fitness function and

set of genetic variation operators, different maps can make a search problem more or less

“difficult”. For example, the two different maps shown in Figure 2.5 corresponding to

different points in Θ can be very different in terms of problem difficulty.

ψRange of
b

Genotype space Phenotype set

g
φ

φ'

φ

1

g
2

g
3

''

Genotype space Phenotype set

g
φ

φ'

φ

1

g
2

g
3

''

R R

(a) (b)

v

v'

v''

v

v'

v''

ψRange of
a

Fitness
values

Fitness
values

Figure 2.5: Differing outcomes of development for the same genotype and phenotype set

Given the existence of this parameterized space of possible maps, one idealized solution

concept for this decision problem would be to choose a point θeasy in Θ that maximally

reduces the problem difficulty for the particular EA being used. However, this itself presents

several practical difficulties. Firstly, finding such a point θeasy corresponds to a meta-search

problem on the space defined by Θ which has a size that is exponential in the size of the

genetic search space as noted earlier. Secondly, since the fitness functions are drawn from a

class of fitness functions F , this meta-search problem would need to be addressed over this

entire class. These are issues over and above the more elemental difficulty of being able to

accurately define a quantitative measure of problem difficulty so that two points in Θ (i.e.

their corresponding Genotype-Phenotype maps) can be compared.

CHAPTER 2. IDEAL DELIVERY PROBLEM 30

Apart from this global effect on problem difficulty, the dynamics of development exert

another kind of influence on evolutionary performance. The timing of delivery can im-

pact performance by introducing biases in the “greedy” rationality of Darwinian selection

independent of the properties of the genetic search space.

Since each time step in an ontogeny O ∈ O is associated with a phenotype, fitness

values can vary along the ontogeny in different ways depending on the fitness function. To

provide a concrete example, consider the scenario in Figure 2.6 that shows the variation in

fitness for a fitness function f along two ontogenies O and O′ corresponding to genotypes

g and g′ respectively over the time window defined by τmax = 8. For two such genotypes,

it can be the case that f(ψθ(g)) > f(ψθ(g
′)) at θ and f(ψθ′(g)) < f(ψθ′(g

′)) at θ′ for some

θ, θ′ in Θ. In words, the genotype g can be associated with a higher fitness than genotype g′

with Genotype-Phenotype map ψθ. However with the map ψθ′ the converse in that g′ can be

associated with have a higher fitness than genotype g. In Figure 2.6, when θ = θmax we see

that genotype g′ is associated with a higher fitness than g. However, we can also see that

the ontogeny O has a phenotype at τ = 6 that has a fitness value greater than that of all the

phenotypes in ontogeny O′. Given that the goal of the search problem is to find high fitness

phenotypes in P, at θmax the Genotype-Phenotype map produces a selection bias that does

not correspond with these objectives.

Since search using evolutionary algorithms is directed by selection acting on fitness

differences in the members of the population, we see that the choice of θ is a source of

biases that can impact evolutionary dynamics negatively. It can conceivably retard the

overall rate of improvement in fitness as genotypes that generate high fitness phenotypes at

points in the ontogeny that do not correspond to the delivery point can be under-evaluated

and possibly even prematurely lost from the evolving population. In the extreme case these

high fitness phenotypes could even correspond to the global optima for the search problem.

This bias is noticeable only when we consider the additional information that ontogenies

bring to the analysis of a problem as it is an implicit effect that occurs within the Genotype-

Phenotype map. So, the solution concept we focus on here is the “ideal” point in Θ that

CHAPTER 2. IDEAL DELIVERY PROBLEM 31

guarantees that such a bias is absent.

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

Time

Fi
tn

es
s

O’

O

Figure 2.6: Fitness variation along ontogenies O and O′

2.3.4 The developmental Nash Equilibrium

The scenario presented by selection bias corresponds to a “game” in the formal game the-

oretic sense where there are multiple players each seeking to pick a strategy that would

maximize their individual payoffs.

The space Θ in conjunction with a fitness function f ∈ F defines a multi-player non-

cooperative game where every genotype gi in G is a player and the set of strategies available

to it are defined by the range of the ith dimension of the space Θ, namely, {1, 2, 3, ..., τmax}.

So each point θ ∈ Θ is a strategy profile describing a configuration of strategy choices made

by each of the players.

The “game” corresponding to the scenario shown in Figure 2.6 is represented below in

the strategic form where the row-player is genotype g and the column-player is genotype

g′. When using fitness proportionate selection, the “payoff” to the row-player is given by

f(φi) − f(φ′j), where φi is the phenotype occurring at the ith time step on the ontogeny

O and φ′j is the phenotype at the jth time step on the ontogeny O′. To provide a better

CHAPTER 2. IDEAL DELIVERY PROBLEM 32

intuition for this game, this payoff structure is presented in a simplified form where g gets

a payoff of +1 if f(φi) ≥ f(φ′j) and −1 otherwise. Only the payoffs of the row player are

shown below.

These payoffs serve as a measure of the selection bias associated with g and g′ for

different values of θ as we can see that they can be associated with a higher or lower

relative fitness depending on the choice of θ.

Game =

(g, g′) 1 2 3 4 5 6 7 8

1 +1 +1 +1 +1 +1 +1 −1 −1

2 −1 −1 −1 +1 +1 +1 −1 −1

3 −1 −1 −1 −1 −1 −1 −1 −1

4 −1 −1 −1 −1 +1 −1 −1 −1

5 +1 +1 +1 +1 +1 +1 −1 −1

6 +1 +1 +1 +1 +1 +1 +1 +1

7 +1 +1 +1 +1 +1 +1 +1 +1

8 −1 −1 −1 +1 +1 +1 −1 −1

.

Let F(θ) = (f(ψθ(g1)), f(ψθ(g2)), ..., f(ψθ(g|G|))) be the fitness profile for θ ∈ Θ for the

fitness function f ∈ F . Let Fi(θ) be the fitness of the ith player (i.e. genotype gi). We can

see that the concept of a Nash Equilibrium θNash where

Fi(θNash) ≥ Fi(θ), for all i (1 ≤ i ≤ |G|) and for all θ ∈ Θ (2.3.3)

corresponds to the map for which fitness evaluation is guaranteed to be unbiased for every

genotype. At any other point θ 6= θNash (θ, θNash ∈ Θ), some genotype in G is associated

with a fitness that is lower than the maximum fitness that it could be associated with.

We propose this as a solution concept to the IDEAL DELIVERY problem.

Solution concept: A Genotype-Phenotype map θ in Θ results in unbiased selec-

tion for the space of possible maps defined by Θ and the fitness function f ∈ F

if and only if it is a Nash Equilibrium.

CHAPTER 2. IDEAL DELIVERY PROBLEM 33

2.3.5 Summary

This solution concept now provides us with a simple and direct answer to the question posed

earlier - what is the ideal time to terminate development and deliver the phenotype. As the

payoffs are dependent on the totally ordered fitness function f : P → R, a Nash Equilibrium

for Θ and a fitness function f in F is equivalent to δ picking φτ for which f(φτ) ≥ f(φi)

for all φi ∈ O and for all ontogenies O ∈ O, i.e. it corresponds to a Genotype-Phenotype

map where the phenotypes delivered into the population are the ones having the maximum

fitness as compared to the other phenotypes in their corresponding ontogenies.

This leads to the following observations:

1. The Nash map is a property of the entire Genotype-Phenotype map, not a property of

any one genotype.

2. The Nash can differ from one fitness function to another, so using the same Genotype-

Phenotype map across multiple fitness functions is bound to result in biased selection.

3. Prediction: If the Genotype-Phenotype map is not a Nash map, then we can expect

to see high fitness phenotypes being generated but lost from the population.

In the next section we explore the characteristics of evolution with the maps ψθmax
and

ψθNash
using a strategy similar to the comparative studies described in [46, 37, 49]. The

strategy in these studies was to keep the fitness function, selection and population size fixed

over the evolutionary run for the encodings being compared. So the observed differences in

the fitness increase and absolute fitness over a fixed number of fitness evaluations with these

differing encodings were attributed to differences in the evolvability of the genetic encoding

(and their associated variation operators). In this case as well the fitness function, selection

and population size as well as the genetic encodings and variation operators are identical

for both ψθmax
and ψθNash

with the only difference being the basis used for the ontogenetic

decision making.

CHAPTER 2. IDEAL DELIVERY PROBLEM 34

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

Pattern − 1 Pattern − 2

Figure 2.7: Target patterns (randomly generated)

2.4 Experiment

2.4.1 Problem

The toy-problem chosen here is one of pattern construction, similar to that used in [49]. A

target pattern consists of a bit-pattern on a 10×10 grid (Figure 2.7). The general objective is

to evolve a pattern that corresponds to this target pattern. Here, the phenotype space P of

interest is the set of connected patterns on this 10× 10 grid, even though the target patterns

are not connected. This is irrelevant as the goal is to study the evolutionary dynamics rather

than the properties of the solutions obtained.

The fitness function f is defined as follows: Given a phenotype φ ∈ P, and the target

pattern A, a value x is assigned to each cell of φ that matches the target pattern, and a value

y is assigned to each cell that does not match this target. The overall fitness is the sum of

the x and y values of each cell of φ. Here x = +10 and y = −10. If the phenotype has only

one cell, it is assigned a fitness of −500.

2.4.2 Developmental system

The generative function

The developmental system used is based on the the well known mathematical animal - the

LOGO turtle. The turtle’s movements are controlled by the execution of a procedure based

on heading and orientation commands. The trace of the turtle’s movements in space forms

CHAPTER 2. IDEAL DELIVERY PROBLEM 35

the basis for the construction of geometric objects (for details see [1]).

To focus on the canonical properties of evolution with a developmental phase, here we

consider a simplified version of this turtle. The turtle moves on the 10 × 10 grid defined

by the problem. The basic commands accepted by the turtle are: forward, back, left,

right. The commands forward and back change the turtle’s position, while the commands

left and right change both the turtle’s heading and position.

The turtle always moves in unit steps. The default input for the right command is 90◦

with respect to the current heading, and −90◦ for the command left with respect to the

current heading, with a single unit step taken in the new orientation for both commands.

So the turtle always moves with the direction of its heading being parallel to one of the

(globally defined) principal axes.

All the cells on the grid are assumed to have an initial state 0, and each time the turtle

visits such a cell, the state changes to 1. Once the state changes from 0 to 1, it remains

unchanged. As a result, the turtle’s movements on executing a series of commands result in

a connected pattern defined by the cells having the state 1. The start position for the turtle

is always at (5, 5) on the grid pointing upward, i.e. in the Y− direction.

The procedure executed by the turtle takes the form of a list of these commands that

are executed in sequential order. The set of all such procedures (with a minimum length =

5 and maximum length = 200) is taken to be the set of genotypes G. Every connected trace

produced by the turtle is a valid phenotype φ ∈ P. The ordered sequence of phenotypes

produced during the execution of a particular genotype g starting from the first command

(as shown in Table 2.2) is considered to be an ontogeny.

Decision function

The phenotype obtained when all the commands in g have been executed is the phenotype

ψθmax
(g).

To simulate the effect of the Nash map ψθNash
, the phenotype having the maximum

fitness is determined by exhaustively evaluating the fitness of every phenotype in the onto-

CHAPTER 2. IDEAL DELIVERY PROBLEM 36

Table 2.2: Example of phenotypic change over an ontogeny

Stage :1 Stage :2 Stage :3 Stage :4

Stage :5 Stage :6 Stage :7 Stage :8

genies and this fitness value is used as the basis for selection.

Variation and selection operators

The variational operators include both mutation and crossover. Three mutational opera-

tors were used. Mutational operator M1 randomly replaces a randomly selected command

(with uniform probability) on the given procedure by one of the other three commands.

The operators M2 and M3 were specifically designed noting that the procedures are exe-

cuted sequentially. Mutational operator M2 reduces the length of the given procedure by

removing a segment of randomly chosen length (with a maximum of 5 commands) from the

end of the procedure up to the minimum permissible procedure length. M3 adds a list of

randomly generated commands (with a maximum of 5 commands) to the given procedure

up to the maximum permissible procedure length. M1 was applied with a probability 0.5,

and M2 and M3 with probability 0.25 each. Crossover is at a single common locus that is

randomly chosen on the shorter procedure with uniform probability over its entire length.

Selection is fitness proportionate. The initial population consists of randomly gener-

ated procedures of lengths ranging from 5 to 60. This population is evolved with a fixed-

population size, generational EA with an elitism of 3. 20% of the remaining slots (rounded

to the nearest even number) of every successive generation are reserved for genotypes ob-

CHAPTER 2. IDEAL DELIVERY PROBLEM 37

2 4 6 8 10 12 14 16 18 20 22

−30

−20

−10

0

10

20

30

40

50

Position on trajectory

F
itn

es
s

va
lu

e

Figure 2.8: Fitness variation along ontogeny for a random genetic procedure on Pattern-1.

tained by crossover, while the remaining slots are filled by mutational variants.

2.4.3 Results

The developmental variability of this Turtle-based generative function is uncorrelated with

these pattern-based fitness functions. Figure 2.8 shows the fitness variation for the distinct

phenotype on the ontogeny for a randomly generated genetic program LRBFLLRLFRLFFLFFR

RFFLBFLBFBFBLLLLBFBFFLRFRLFL (where L = left, R = right, B = back, F = forward)

for the fitness function corresponding to Pattern-1.

The results described below were obtained from running an EA with a population of

50 individuals over 150 generations (over 10 runs) for the randomly generated patterns in

Figure 2.7 with the maps ψθmax
and ψθNash

. Due to the similarity of the results obtained

with both patterns as well as several other randomly generated patterns, our discussion will

mainly focus on the representative results obtained with Pattern-1.

As predicted by our analytical model, Figure 2.9 shows an example of the loss of high

fitness phenotypes due to selection bias on a single evolutionary run with ψθmax
with the

fitness function being Pattern-1. The plot shows the gap between the maximum fitness of

CHAPTER 2. IDEAL DELIVERY PROBLEM 38

0 50 100 150
0

50

100

150

200

250

Generations	

F
itn

es
s

Max fitness of all
generated phenotypes

Max fitness of
delivered phenotypes

Figure 2.9: Loss of high fitness phenotypes due to selection bias over the entire population

(Pattern-1)

all the generated phenotypes in a particular generation and the maximum fitness of the

phenotypes that were actually delivered into the population in each generation. There is

a distinct time lag between when a high fitness phenotype is first generated at some point

on the ontogeny and when a phenotype having a comparable fitness arises in the terminal

position of the ontogeny to be delivered into the population.

This is a fundamentally different phenomenon from the Baldwin expediting effect[35]

where “development” is used synonymously with life-time learning. In the Baldwinian

learning scenario, high fitness phenotypes are discovered by explicit local search in the

phenotype space but there is a time lag before this phenotype can be produced directly by

a genotype independent of this learning process, i.e. be canalized [74]. In the case of mor-

phological development which has been the subject of our discussion, there is no learning

process and the occurrence of these high fitness ontogenetic intermediates is hidden from

selection due to the nature of the delivery mechanisms. Rather than expediting adapta-

tion, here the ontogenetic structure seems to inadvertently retard the rate of adaptation in

preventing these high fitness phenotype from being discovered and exploited by evolution.

Figure 2.10 shows the frequency of selection “mismatches” when genetic players are

CHAPTER 2. IDEAL DELIVERY PROBLEM 39

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Generations

P
ai

rw
is

e
se

le
ct

io
n

m
is

m
at

ch
es

 (
%

ag
e)

Figure 2.10: Selection mismatches with ψθmax
on Pattern-1. The error bars indicate the

maximum and minimum values obtained over 10 runs.

considered pairwise as described in Section 2.3.4. A “mismatch” is deemed to occur if

f(ψθmax
(g)) > f(ψθmax

(g′)) and f(ψθNash
(g)) < f(ψθNash

(g′)) for two genotypes g and

g′ in the population. This is expressed as a percentage of the total number of pair-wise

comparisons of genotypes in the population. With a population of 50, the total number pair-

wise comparisons is equal to 1225. The plot in Figure 2.10 shows the frequency (averaged

over 10 runs) with which these selection mismatches occur in the population with ψθmax
.

Here the average number of such mismatches is approximately 17% (approximately 220

mismatched pairs) in the initial random population which then shows a decreasing trend,

remaining at the order of 3% (approx. 60 mismatches) without entirely stabilizing to zero

over the 150 generations.

In general, we would expect that the number of such selection mismatches decreases as

the fitness of the delivered phenotypes in the population approaches the global optimum.

However, this downward trend in the number of mismatches shown in Figure 2.10 is not

reflective of such a scenario as the fitness of the delivered phenotypes is well below the high

fitness regimes of these fitness functions.

These result establish the occurrence of the predicted selection bias. So, it now presents

CHAPTER 2. IDEAL DELIVERY PROBLEM 40

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300
Nash map (ψ

θ
Nash

)

Default map (ψ
θ
max

)

 Generations

Fi
tn

es
s

Figure 2.11: Fitness of best delivered individuals for ψθmax
and ψθNash

on Pattern-1. The

error bars indicate the maximum and minimum values obtained over 10 runs.

the question of the effect on evolutionary performance of having unbiased selection. Figure

2.11 and Figure 2.12 reveal that this difference is significant. Figure 2.11 is a comparison

of the change in fitness values of the best evaluated phenotypes with ψθmax
and ψθNash

for

Pattern-1, and Figure 2.12 shows the same comparison for Pattern-2. In both cases, it can

be unequivocally seen that the rate of fitness increase as well as the absolute fitness of the

best individual after 150 generations with ψθmax
is considerably lower than that obtained

using ψθNash
.

To provide a further contrast, consider the equivalent of the selection mismatches that

occur in the population with ψθNash
as shown in Figure 2.13. With ψθNash

, these mismatches

do not have any consequences for selection as the maximum fitness phenotype in each

ontogeny is delivered into the population. Even so, this plot is instructive as it shows that

the number of such mismatches consistently remains at a high level (at about 10% or 122

mismatches).

This suggests that the search strategy in each case is very different specific to the char-

acteristics of the genetic representation and variation operators used here. This is also

noticeable in the significant difference in the rate of increase in the number of distinct phe-

CHAPTER 2. IDEAL DELIVERY PROBLEM 41

0 20 40 60 80 100 120 140 160
0

50

100

150

200

250

300
Nash map (ψ

θ
Nash

)

Default map (ψ
θ
max

)

 Generations

F
itn

es
s

Figure 2.12: Fitness of best evaluated individuals for ψθmax
and ψθNash

on Pattern-2. The

error bars indicate the maximum and minimum values obtained over 10 runs.

0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

Generations

P
ai

rw
is

e
se

le
ct

io
n

m
is

m
at

ch
es

 (
%

ag
e)

Figure 2.13: Non-selective mismatches with ψθNash
on Pattern-1. The error bars indicate

the maximum and minimum values obtained over 10 runs.

CHAPTER 2. IDEAL DELIVERY PROBLEM 42

0 20 40 60 80 100 120 140 160
10

15

20

25

30

35

40

45

50

55

Generations	

Le
ng

th
 o

f o
nt

og
en

ie
s

Nash map (ψ
θ
Nash

)

Default map (ψ
θ
max

)

Figure 2.14: Average length of ontogenies (l(O)) for ψθmax
and ψθNash

on Pattern-1. The

error bars indicate the maximum and minimum values obtained over 10 runs.

notypes in the ontogenies (i.e. l(O) where O ∈ O) over evolutionary time as shown in

Figure 2.14. The difference suggests that a reason for the low number of selection mis-

matches with ψθmax
may be reflective of a population that has low diversity, which reduces

the possibility of a mismatch.

2.5 Discussion

One of the main motivations for using indirect genetic encodings in evolutionary problem

solving has been the possibility of improving the evolvability of the genetic representations

by design [4, 75]. From this evolvability perspective, the genetic representation is a rate-

limiting factor [77] in that different representations of a given problem can be seen as

effecting differences in the rate at which high fitness variants are produced under variation

and selection.

To this end, development has largely been treated as a vehicle for an indirect genetic

encoding of the search problem. However, in this chapter, we have demonstrated that

evolution with an explicit developmental phase can bring some novel issues to bear on

CHAPTER 2. IDEAL DELIVERY PROBLEM 43

evolutionary search different from the genetic issues. By explicitly considering the structure

latent in developmental processes, we have shown that this additional structure can have

the net effect of retarding rather than promoting evolution. Where phenotypic plasticity

aided by life-time learning by interaction with the environment leads to an expediting effect

on evolution, here the plastic phenotypic transformations occurring under the control of the

genotype has the contrary effect of retarding evolution. Analogous to the Baldwin expediting

effect [35], we can refer to this contrary phenomenon as the Haeckel retarding effect based

on the classic recapitulationist conflation of the awe-inspiring process of morphogenesis

with evolutionary progress [32].

Looking forward, the key conceptual issue that this phenomenon raises is that the geno-

type needs to be viewed as more than just a recipe for how a phenotype is to be constructed

but also as a strategy for the evaluation of the products of development. While the strategy of

evaluating every phenotype generated was presented as a basic resolution of the problem

posed by evaluating only the final phenotype, it is far from being a satisfactory natural res-

olution. As described earlier, by completely ignoring the inherent structure in the ontogeny,

it takes a hammer to the problem by converting it into one of local search. However, this

involves the caveats of having to cache the entire trajectory rather than providing a solution

that is integrated into the generative character of the development process. Finding a more

sound solution is an open question that needs to be resolved.

There are also several empirical issues associated with addressing this problem. The

analysis and the demonstration presented here is clearly simplistic and, among other things,

does not (a) adequately address the properties of several existing developmental approaches,

and (b) says little about the prevalence or the importance of this effect in real-world prob-

lems. Furthermore, the critical issue of whether the cost of resolving this issue is commen-

surate with the gains obtained has remained largely unaddressed here.

Evolution with indirect encodings have already produced numerous successes even

without the recognition of this underlying issue. The recognition of this retarding effect

therefore suggests an opportunity, rather than a shortcoming, to tap the structure provided

CHAPTER 2. IDEAL DELIVERY PROBLEM 44

by the development processes to further enhance the evolutionary capabilities with such

encodings.

Chapter 3

Coevolution and the Ideal Teacher

3.1 Introduction

3.1.1 Background

A Test-Based Problem is a search problem where the suitability of a candidate solution

is defined with respect to its behavior on a set of test cases [62, 19]. To illustrate the

difficulty that they pose, let us compare the canonical combinatorial search problem posed

by the TRAVELING SALESMAN PROBLEM (TSP), i.e. a non test-based problem, and the search

problem posed by game learning.

An instance of a TSP problem can involve a large and complicated search space but

the evaluation of the cost of a tour is efficiently computable. In contrast, even on the

simple game of NIM where the problem is to find a first-player strategy that defeats any

possible opponent by a domain-knowledge independent process of search, the difficulty

posed by evaluating the fitness of a strategy is much of an issue as the size and complexity

of the search space. For example, In Rosin’s [62] implementation of the game of NIM, for

the instance having 4 piles of 3, 4, 5, 4 stones a strategy was represented using a binary

string of length = 599. The number of opponents for a given strategy excluding itself is

2599 − 1 ≈ 2.07 × 10180. Here, the computational complexity of using naive exhaustive

evaluation grows proportional to the size of the search space rather than the size of the

45

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 46

candidate solution as in the TSP (i.e. the number of cities). This makes the accurate and

efficient evaluation of a candidate solution a major practical challenge.

Though such an extreme scaling property may be specific to games [62, 53], this chal-

lenge posed by fitness evaluation is characteristic of an important class of problems that

includes classification [56, 39, 42, 24], the design of robotic controllers [25, 67] and, in

general, the automated generation of programs for complex tasks [34, 48, 67, 22, 69]. The

property they share in common is that the quality of a candidate solution is defined in terms

of its behavior over a typically large number of discrete test cases (alternatively examples,

instances or inputs).

Typically, addressing this situation can require significant domain knowledge to identify

a suitable subset of tests to be used as a training set. Two-population competitive coevolution

[34, 67, 16, 62] is a biologically inspired strategy to address this problem of picking ap-

propriate tests to drive the evolution of candidate solutions. A competitive coevolutionary

algorithm (coEA) is an evolutionary problem-solving approach distinguished by the feature

that fitness evaluation itself involves another Evolutionary Algorithm. Rather than being

an algorithm that is used offline to find suitable tests independent of the main evolution-

ary algorithm, this second EA operates over the space of test-cases with the intent being to

adaptively find subsets of tests that can be used to evaluate the main evolving population

of candidate solutions at run time. A schematic of the canonical setup of a coEA is shown

in Figure 3.1.

This particular commitment of coEAs requires that the members of the test set be en-

coded with an evolvable representation as well. In requiring tests to have a searchable rep-

resentation on such problems, coevolution differs from other machine learning approaches

that use adaptive testing such as Dynamic Subset Selection used in Genetic Programming

[29, 50], boosting [65, 27, 28] and active learning methods [5, 31, 17].

In general, the success of an Evolutionary Algorithm (EA) on a problem is critically

linked to how the candidate solutions are represented as genetic data-structures [2, 75].

This raises the question of how the evolvability of the genetic representation plays into the

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 47

Figure 3.1: Schematic of the classic algorithmic configuration of of a competitive coevolu-

tionary algorithm.

performance of coEAs given that they involve two distinct genetic substrates, one encoding

the set of candidate solutions for the problem to be solved (i.e. the primary substrate) and

the other encoding the set of tests (i.e. the secondary substrate), and hence two indepen-

dent sources of variation.

As with standard EAs, the performance of a coEA is ultimately determined by whether

the quality of the candidate solutions improves over the coevolutionary process. If the

associated rate of improvement is to be any better than random search then the correlation

between the variability of the primary substrate and the structure of the problem would

need to hold here as well [78, 60]. For example, let S be the set of first player strategies for

the game of NIM and T be the set of second player strategies, with the goal being to find

a first-player strategy s∗ in S that beats the most number of second player strategies in T .

Independent of other algorithmic concerns, achieving suitable performance on this problem

requires a genetic representation of S that has variability properties that are related to the

rules of the game as well as the composition of T .

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 48

The problem structure posed by such a scenario has been described as having a “multi-

objective” structure to it with each member of T being an “objective” to be improved on

[41]. This multi-objective perspective has come to serve as an important explanatory con-

cept in the design and analysis of coEAs [76]. In fact, the existence of explicit and for-

malizable “underlying objectives” to a test-based problem is a central theoretical premise of

Pareto coevolutionary algorithms [23, 53, 13, 19].

In contrast, the corresponding problem structure governing the evolvability of the sec-

ondary representation presents a conundrum. Unlike the well-defined objective function

specified on S, the EA operating on the test space T has the dedicated task of “driving”

the improvement of the evolving candidate solutions. Ficici [23] notes that this secondary

search problem and the associated ambiguity with how this “driving” task is to be techni-

cally interpreted is an underappreciated element of coEA design and possibly the source of

many of the performance inadequacies of coEAs observed in practice.

As a result of these ambiguities about the relevant problem structure for the EA operat-

ing on the test space, little exists in terms of formal models of how the secondary substrate

influences the performance of a coEA and the extent of this influence. The goal of this

chapter is to take a step towards explicitly addressing this issue.

3.1.2 Approach

An analogy often used to describe the intuition for the operation of a coEA is that of an

arms-race between adversaries. This analogy of an arms-race also provides a useful intu-

ition for the relationship between the two substrates. For an arms-race to be possible and

sustainable, it requires adversaries that are matched in their capabilities. Only when they

are matched can each be repeatedly capable of making a suitable response to the other’s

challenge and hence remain reciprocally engaged. Going beyond this intuition, it has been

widely noted that in actual coEAs as well a pre-condition for successful learning is that

the two evolving populations remain continually engaged in a coevolutionary arms-race

[14, 23, 69]. In this population evolution case, the lowest level determinants of each popu-

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 49

lation’s capability to remain engaged by make “matching moves” are their respective genetic

representations and corresponding variation operators.

The strategy adopted here is to convert this intuition about “matching moves” into a

concrete formal model by posing the question: given a description of the capabilities of one

adversary, can we deduce the capabilities required of the other adversary for a sustainable

arms-race to be possible between the two adversaries? When this capability is defined by the

variational properties of each substrate as in a coEA, it translates into the following ques-

tion: given (a) the objective function defined on the candidate solutions, (b) a description

of the substrate encoding the candidate solutions and its associated variation operators, (c)

the algorithm used to compute the fitness values of the individuals in the candidate solu-

tion population using the members of the test population and (d) the associated selection

algorithm, can we deduce the variational properties of substrate encoding the tests as well

as the corresponding evaluation and selection algorithms required to evolve the test popu-

lation so that the two populations would be perfectly “matched” and remain engaged over

the duration of the coevolutionary run to result in learning?

We propose a formal solution to the above question when the algorithm operating on

the candidate solutions is a mutation-only hillclimber on test-based problems where the

outcome of the interaction of a candidate solution and test is binary, i.e. “win” (“correct”)

or “lose” (“wrong”). The objective function is simply to find the candidate solution that

has the most number of “wins” (or “corrects”). The specific focus is on the case where all

the candidate solutions are evaluated on all the tests in the test population (i.e. all vs all),

and the selection algorithm on the candidate population is based on the Pareto dominance

relation.

The basis for the proposed solution is Juillé’s Ideal Trainer model [41]. Using this model,

Juillé originally provided a detailed yet informal description of the ideal behavior of the EA

operating on the test space (this is described in Section 3.2). Here, we convert this behav-

ioral model into a formal geometric model loosely based on the fitness landscape concept

that is explicitly tuned to the peculiarities of coevolution. This is termed the ∆ (“Delta”)

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 50

landscape and integrates the ideal behavior of the testing EA with the variational structure

of the candidate solution space (Section 3.3). When a hillclimber is assumed to operate on

this ∆ landscape, the model describes the exact set of tests required in every generation

for a perfect matching to exist (Section 3.4). So, this provides a concrete description of

the required variational properties of the substrate used to encode the test set and the EA

operating on this space such that the two populations would always be matched and exhibit

learning that is free from the menagerie of pathological dynamics that are know to plague

coEAs [23, 76].

Using this model, we pose the question - is pathology-free engagement a predictor of the

ability of a Pareto-coEA to find high quality solutions to the problem? Using the problem

posed by designing a coEA to effectively solve a class of fitness functions, in Section 3.6, we

formally show that on concept learning problems, when the two populations are perfectly

matched the test population does not actively “drive” the candidate solution population

to regions of the state space having high quality solutions. We empirically demonstrate a

consequence of this result, namely, that the ability of two coevolving populations to remain

engaged without any pathologies in evaluation and selection can still result in poor overall

performance. Furthermore, this suggests that the amount of “knowledge” required to design

both substrates to enable perfect matching is insufficient to solve the problem itself, and

hence an aspect worth taking seriously for coEAs to be practically useful.

3.2 Rationale

In his dissertation, Juillé [41] proposed an informal yet comprehensive articulation of the

ideal behavior of the testing EA. This was framed in terms of the coevolving populations

playing the role of a Learner and a Teacher/Trainer respectively [58, 41, 23, 12, 19], where

the teacher poses different tests for the learner (i.e. creates gradient) and the learner

attempts to acquire the capability to solve these tests by repeated interactions with them

(i.e. follows gradient). Drawing on Epstein’s work [21], Juillé described this idealization

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 51

using the notion of an Ideal Trainer.

This is a rare idealization in the coevolutionary literature as it explicitly provides a role

for evolvability (referred to as “adaptability”) making for a valuable starting point for our

discussion. In this section, we provide a brief description of this model and its subsequent

modifications that form the main underpinnings of our model.

3.2.1 Assumptions

Before proceeding to Juillé’s model, the assumptions that we will adhere to for the rest of

this chapter are described below.

Let S be the finite set of candidate solutions and T be the finite set of tests. The inter-

action between the solutions and the tests is defined by the function p : S × T → R, where

R is the set of ordered outcomes. We restrict our focus to the binary outcome case where

R = {0 < 1}. The outcomes 0 and 1 correspond to “not solved”(lose) and “solved”(win)

respectively. This function p can be represented as shown in Table 3.1. The value in position

(i, j) is the outcome of the interaction p(si, tj) between si ∈ S and tj ∈ T , where |S| = N

and |T | = M .

The interaction function p is assumed to be noiseless. Furthermore we assume that no

two individuals in S have the identical behavior over all the tests, i.e. no two rows are

identical. Similarity we assume that no two tests are identical in their behavior over all

solutions, i.e. no two columns are identical. The entire row describing the behavior of an

individual si against all the tests will also be referred to as the interaction profile of si.

t1 t2 t3 t4 · · · tM
s1 1 1 0 1 · · · 1

s2 0 0 0 1 · · · 1

s3 0 1 0 1 · · · 0

· ·
sN 0 0 1 1 · · · 1

Table 3.1: Matrix representation of p

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 52

The objective function of interest here is defined as

fT (s) =
∑

ti∈T

p(s, ti) (3.2.1)

for each s in S. So, the objective fitness fT (s) of an element s in S is equal to the total

number of “corrects” or 1s in its interaction profile.

3.2.2 The Ideal Trainer [Teacher] model

Juillé[41] proposed a model of coevolution based on a theory of state-space search. The mo-

tivating observation for this model is that continuous progress in search is frequently a result

of the search algorithm identifying domains of the state space which correlate better with

the operators embedded in the search algorithm, which he broadly termed as adaptability.

Based on these premises, Juillé proposed that coevolution could be viewed as a strategy

that introduces a selection pressure such that individuals that are located in portions of the

search space having higher adaptability have a greater evolutionary advantage, i.e. where

fewer transformations of the individuals by the search operators are needed to improve

their performance. When this occurs, it would imply that the variability characteristics of

such individuals have captured some intrinsic properties of the training environment that

enables them to react effectively to it.

He then argued that since this adaptive transformation is dependent on the properties

of the training environment, adaptability by itself is not enough and what was needed

for problem-solving was the right kind of adaptability, i.e. the kind that corresponds to

increasing competence against tests of “greater difficulty”. To this end, he identified two

key desirable requirements for an ideal coevolutionary setup:

1. The need to maintain useful feedback from the training environment. This is to enable

the differences in the adaptability of individuals to become evident during fitness

evaluation and selection.

2. The need for a meta-level strategy to ensure progress in the long-term. This is to prevent

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 53

adaptation that manifests itself as cycling and fixed patterns of exchange, and instead

directs coevolution toward increasing progress on the problem.

To address these two requirements, he proposed the following heuristic principle which

we will refer to as the “pedagogical principle” (based on the articulation of a similar idea

by Rosin and Belew [63], and Pollack and Blair [58]):

Pedagogical principle: The best way for adaptive agents to learn is to be exposed

to [tests] that are just a little more difficult than those they already know how to

solve.

The Ideal Trainer is introduced as an abstract entity that can provide such an ideal

training environment that realizes the pedagogical principle. To maintain consistency with

the broader Machine Learning literature, we will refer to this idealization as the IDEAL

TEACHER instead.

An IDEAL TEACHER that can provide such a training environment would need to address

the two previously stated requirements by (a) providing tests that are a “little more difficult”

than the current capabilities of the learners, and (b) posing tests of “increasing difficulty”.

He proposed two key methods to realize this IDEAL TEACHER:

1. A distance measure over the tests to formalize the notion of “little more difficult”

2. A mechanism to maintain a partial order over the tests to control the evolution of the

tests toward incremental increases in difficulty.

Of the two design issues proposed by Juillé, the first to do with the notion of a “difficulty”

measure has so far been a problematic one and has seen subsequent revision.

Difficulty measure

One of the reasons for the interest in coEAs has been the belief that they could reduce the

inductive bias and domain knowledge required to engineer the fitness function in standard

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 54

EAs [34, 67]. However, the need to define a specialized notion of difficulty involves the use

domain-specific knowledge that conflicts with this belief.

In his paper introducing Pareto coevolution, Ficici [24] argued that an explicit notion

of difficulty, as proposed by Juillé, was unnecessary. Since the effect of tests being a “little

more difficult” was to provide a learnable gradient, all that mattered was to provide the net

effect. To this end, Ficici proposed replacing the variation-based gradient of Juillé’s model

associated with adaptability with a selection gradient.

For example, if there are two learners A and B in the evolving population, and the

training environment provides a test t such that A can correctly solve the test and B cannot

then this test reveals a behavior difference (or distinction) between A and B. As selection

operates on fitness relevant differences in behavior, such a distinction making test t enables

selection to act preferentially on A over B.

Ficici claimed that when this distinction-based selection gradient is combined with a

mechanism to maintain a partial order over the solutions (rather than the tests), the ben-

efits of the IDEAL TEACHER model could be obtained without the need for any additional

domain knowledge about the problem. Consequently, the need to define an explicit notion

of difficulty is replaced by the problem of finding distinction making tests for the evolving

population of candidate solutions.

Partial order on solutions

This notion of using a partial ordering mechanism on the candidate solutions without an

explicit difficulty measure over the tests has since been formalized via the notion of Pareto

dominance from Multi-Objective Optimization (MOO) [24, 53]. Using this MOO frame-

work, Bucci and Dejong [12, 19] strengthened the requirement of distinction-making tests

to one of tests that can accurately reveal whether a candidate solution si is in fact “better”

than sj with respect to fT .

As the set of outcomes R of the interaction function are ordered, a preference relation

� between each s, s′ ∈ S is defined by a pairwise comparison ≤pw of the outcomes on each

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 55

test [12]. The relation� is defined as being the Pareto dominance relation. So s ≺ s′ implies

that s′ Pareto-dominates s.

For example, in the tableau shown below, s1 dominates s2 as it correctly solves all the

tests that s2 solves and at least one more test

s2 ≺ s1 =

t1 t2 t3 t4 t5 t6

s1 1 1 0 1 0 1

s2 0 0 0 0 0 1

In the following tableau, however, s3 and s4 are non-dominated or incomparable as s3

solves at least one test that s4 doesn’t and vice versa

s3 ◦ s4 =

t1 t2 t3 t4 t5 t6

s3 1 1 1 0 0 1

s4 0 0 0 1 0 1

The resultant ordering obtained from the complete set of interactions defines a partial

order (S,�) on S. So, the maximal elements of (S,�) are the desired solutions to the

problem. Accordingly, the coevolutionary search problem is to find the maximal elements

of (S,�) defined by the Pareto dominance relation over the set of all interaction outcomes

as defined by p. Since there may be several maximal elements, it is important to note here

that a solution to the problem may be a subset of S rather than necessarily being a single

individual learner.

Summary

Despite being couched in informal and analogy-laden terms, Juillé’s model is conceptually

valuable in proposing that the ideal properties of the testing EA are intimately related to

the variability properties of the primary substrate that encodes the candidate solutions (i.e.

the learners).

However, while Juillé’s model explicitly treats “adaptability” of the learners as a central

element, it is silent on the issue of the “adaptability” of the tests. The learner is treated

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 56

as an entity bounded by variational constraints but the EA realizing the IDEAL TEACHER is

treated as a decision-making entity, namely, one that “picks” or decides on the appropriate-

ness of tests rather than searches for them by random variation and selection. As a result,

this model provides no concept of the search performance of a Teaching EA and its ability to

(a) find the suitable tests as required by the theoretical model (b) using selection and vari-

ation on the secondary representation with (c) a performance better than random search

on (d) a particular problem as defined by p. As the problem of interest here is this very as-

pect, we treat the Teaching algorithm as an explicitly resource bounded and representation

dependent entity.

The approach we adopt here is to retain the basic representation-based rationale of

Juillé’s IDEAL TEACHER concept but instead replace the difficulty measure with the notion

of Pareto dominance. All subsequent references to the IDEAL TEACHER are with respect

to this modified version. While we retain the objective function fT that sums the number

of “corrects”, Pareto dominance is used for fitness evaluation during coevolution. In the

next section, we propose a geometric formalism to integrate the behavior of the IDEAL

TEACHER with the structure of the state-spaces of the candidate solutions and the tests.

This formalism is a variant of the fitness landscape that is explicitly tuned to coevolution.

3.3 The Delta landscape

3.3.1 Learnability and test difficulty

As noted earlier, an IDEAL TEACHER can consistently provide tests that are neither too “dif-

ficult” nor too “easy” but that are at a level of difficulty that provides a learning gradient

that is “just appropriate” to promote the adaptation of the learner based on its current ca-

pabilities. In order to address how this notion can be operationalized, we need to define

what it means for a test to be “difficult” or “easy” for a particular learner. We interpret this

as a difference in terms of the learnability of a test.

Ficici and Pollack [24] define the learnability of a test with respect to a particular learner

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 57

as “the probability that the learner can be transformed, over some number of variation steps,

to become competent (or more competent) at the task posed by the teacher” [emphasis

added].

From this definition, we can see that given a learner s ∈ S and a test t ∈ T such that

p(s, t) = 0, the ability of s to learn to solve t is dependent on the variational structure of the

learner space S. This space is essentially the set S augmented by the topological structure

induced by the variational operators particular to the encoding of the members of S.

For simplicity, we restrict our attention to variation with mutation operators. With mu-

tational operators, the topology induced on S can be assumed to take the form of an undi-

rected graph S = (S,E), where S is the vertex set and E is the set of edges. An edge e ∈ E

exists between si and sj (si, sj ∈ S) if and only if si can be obtained by a single application

of the mutational operator µ to sj . We assume here that the effect of the mutation operator

is reversible, i.e. if si can be obtained from s2 by a single application of the operator, then

the reverse is also possible.

Given this space S, if a learner s′ = µn(s) can be obtained by n applications of the

mutation operator to s such that p(s′, t) = 1, then it would follow that t is learnable by s

1. Critical to this interpretation is the value of n. Here we focus on the case where n = 1.

Therefore, the learnability of a test t by the learner s is the likelihood that there exists a

learner s′ = µ(s) such that p(s′, t) = 1.

Based on this notion of learnability, the “difficulty” of a test t for a learner s, can be

interpreted as follows. A test t is said to be “too difficult” for a learner s, if p(s, t) = 0

and n > 1 mutations of s are required to produce s′ such that p(s′, t) = 1. However, if

p(µ(s), t) = 1 then the test is “appropriate”, in being just beyond the present capability of

s. On the other hand, if p(s, t) = 1 then no variation on s is required to solve the test. Such

a test can be considered to be “too easy”. The “fitness landscape” corresponding to these

three cases is shown in Figure 3.2.

1µn(s) is used to indicate n applications of µ to s

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 58

0

Interaction
outcome

p(.,t)

(a) "Too Difficult"

Current
learner, s

µ

1

(s)4 Current
learner, s

Current
learner, s

(b) "Appropriate" (c) "Too easy"

µ(s)

Figure 3.2: Effect of variation on the “difficulty” of learning to solve test t by a learner s

3.3.2 Learnability and Improvement

The above definition of learnability with respect to a single test however requires an amend-

ment in the context of the global search problem. Suppose s′ = µ(s) was such that it indeed

solves the test t. This by itself is insufficient to determine whether s′ Pareto dominates s,

i.e. s′ is better or no worse than s on all the tests in T .

In order for a teacher to ascertain whether s′ is indeed a true improvement over s,

the relative performance of the two learners would, in principle, need to be evaluated

across all the tests in T . Indeed if the teacher could present all the tests to the learner at

each instance then there would no demands on the teacher to provide graded challenges

to the learner and there would no need for coevolution. Therefore, rather than posing a

gradient defined by a single learnable test for s, we would ideally like the teacher to pose a

small and sufficient collection of tests ∆ ⊂ T such that if learnable by s would indicate an

improvement with respect to the global solution concept.

In this regard, ∆ may need to contain tests that s can solve, in addition to tests that s

cannot solve. This is to avoid a situation where a variant s′ that solves tests that s cannot

solve also “forgets” how to solve the tests that s can solve. For example, consider the

scenario in Table 3.2. Let ∆ = {t1, t2, t3} be a subset of tests that s cannot solve. The

perceived learnability of ∆ due to the existence of a variant s′ that solves all the tests in ∆

is deceptive. Even though s′ solves all the tests in ∆, it has “forgotten” how to solve t5. So,

an evaluation of s ≺ s′ based on ∆ alone would be inaccurate in this case.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 59

t1 t2 t3 t4 t5 t6
s 0 0 0 1 1 1

s′ 1 1 1 1 0 1

Table 3.2: Deceptive evaluation due to “forgetting”

It is learnability in this stronger sense that is of particular relevance to the overall goals

of coevolutionary search. This brings us to the question – given a learner s in S what is the

set of sufficient tests ∆s that are learnable by s? The answer to this question follows from

the above definitions, as discussed next.

3.4 The Complete Learnable Test set

As S can be treated as a graph, each learner s is associated with a set Ns ⊂ S of all 1-

neighbors obtained by a single application of the mutation operator to s. Corresponding to

the edge between s and each member of Ns is a unique test set as described below.

Consider the interaction profile of a learner s given by ps. Applying a mutation to s

produces another learner, say s′ ∈ Ns. If the interaction profiles are such that ps′ 6= ps, it

implies that s and s′ have different behaviors. Let ∆s,s′ be the set of all tests in T such that

∆s,s′ = {t|p(s, t) 6= p(s′, t), s′ ∈ Ns, t ∈ T}.

The properties of the tests in ∆s,s′ can be interpreted in a dynamic way. The tests

∆s,s′ ⊆ T are sensitive to the variation of s by responding to this change by a change in

their outcomes. Since each test t ∈ ∆s,s′ produces different values corresponding to s and

s′, each t distinguishes between s and s′. Similarly, the tests in T −∆s,s′ are insensitive as

the change of s to s′ does not result in a change in their values.

From this perspective, if the change in s to s′ is such that only the tests in ∆s,s′ having

interaction outcomes of 0 with s change their values to being 1 with s′ then it implies that

s ≺ s′. Similarly if this change in the test outcomes is from 1 to 0 then it implies that

s′ ≺ s. And finally, if there exist at least two tests in ∆s,s′ such that one changes its outcome

from being 0 to 1 and the other from 1 to 0, then s and s′ are mutually non-dominated or

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 60

1

2

3

4
5

Figure 3.3: Subgraph of S corresponding to Ns ∪ {s}

incomparable by �.

Such a set ∆s,si
of “sensitive” tests, with respect to s and si, exists for each si ∈ Ns.

This set ∆s,si
can be considered to be an attribute associated with the edge joining s and

each si as shown in Figure 3.3. The complete set of tests which are learnable (and possibly

improvable) by s can therefore be obtained as ∆s =
⋃

∆s,si
. ∆s is complete in that s cannot

learn to or forget how to solve any further test from T , for the given variational structure S.

From this point on we will refer to ∆s as being the Complete Learnable Test (CLT) set for s.

At the outset, we can see that the Complete Learnable Test set has the following charac-

teristics:

• If s ≺ s′ with respect to ∆s (s′ ∈ Ns) then s ≺ s′ with respect to T .

• A test t, where p(s, t) = 0, is learnable by s if and only if t is a member of ∆s.

• Similarly, for every test t′ ∈ ∆s where p(s, t′) = 1, there exists some variant in Ns that

can forget how to solve t′.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 61

It is important to note that ∆s is not necessarily the minimal set of tests required to

accurately evaluate the relation between s and its neighbors, if they were simultaneously

present. The set ∆s,s′ may contain a number of tests that are redundant in the information

that they provide [13]. Furthermore, there may be different non-minimal proper subsets of

∆s,s′ that can perform the same role, i.e. where the relation between s and every s′ ∈ Ns as

evaluated using these test sets is identical to that obtained with ∆s. It is in this sense that

∆s is the set of sufficient tests for evaluating learning though all the tests are not necessary

for this purpose.

So, to summarize what we have achieved: Starting from the general intuition about the

dynamic behavior of an IDEAL TEACHER, we have arrived at a definition of a specific concept

describing the exact properties of the tests generated by the IDEAL TEACHER to achieve this

dynamic process of continuous learning. So, when we speak of an IDEAL TEACHER that

constructs a learnable gradient for an individual learner, the gradient it provides to the

learner takes the form of a Complete Learnable Test set.

In the next section, we describe how such an IDEAL TEACHER can produce the dynamic

of continuous improvement.

3.5 Idealized coevolution

To reduce the various complications of coevolutionary dynamics and focus on the low-level

properties of the representations, we will focus on local search.

Let γ = {∆s|s ∈ S}. This is the set of all the CLT sets corresponding to each of the

elements s in S. We can define a topological structure as Γ = (γ,E), where an edge e exists

between ∆s and ∆s′ if and only if there exists an edge between s and s′ in S, i.e. Γ and S

are isomorphic. The key idea that we propose here is the conception of the IDEAL TEACHER

as operating on the structured state space defined by Γ rather than on the test space T .

Whenever presented with a learner from S, the meta-problem that the teacher poses to this

learner is not a single test but a collection of tests corresponding to a particular member of

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 62

Learner
space

Teacher
space CLT construction

Learning

Time

Continuing
interaction

Figure 3.4: Idealized (asynchronous) coevolution with CLT sets

the set γ.

This process can be conceived as taking the form shown in Figure 3.4. Given a learner s,

the meta-problem posed by the teacher is the corresponding collection of tests ∆s. Given the

gradient posed by ∆s, the learner performs a local hillclimbing operation. All the variants

of s are generated, and if a variant s′ ∈ Ns dominates s with respect to the tests in ∆s then

it is selected.

Rather than a synchronous adaptation, at the next iteration when presented with s′,

the teacher correspondingly performs a local search in Γ using s′ as the basis to find the

corresponding CLT set for s′, i.e. ideally “moving” along the edge from ∆s to ∆s′ . The test

set ∆s′ is in turn presented as the learning gradient for s′, and so on. In this idealization,

the tests posed by the teacher are always learnable and the learning that occurs corresponds

to progress with respect to the global learning problem.

If this idealized coevolutionary process were realizable in this form, the pathologies of

“disengagement” (i.e. loss of gradient), “forgetting” and cycling [76] would be impossible.

Even so, one pathology typical of hill-climbers would however be present, namely, of the

learners getting stuck on local optima when the learner dominates or is incomparable to

all its neighbors. As all the relevant tests are intrinsically contained in each CLT set, there

would be no possibility of making a locally inaccurate evaluation to escape the local opti-

mum and the notion of variation opening up a new dimension along which learning could

continue [24, 69] would not be meaningful.

So, the overall behavior of such an algorithm can be represented as the ordered se-

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 63

quence

OS = 〈(s0,∆s0
), (s1,∆s1

), · · · , (sk,∆sk
)〉 (3.5.1)

for the learner algorithm where si+1 ∈ Nsi
(si ∈ S), and ∆i ⊂ T,∆i ∈ Γ. The solution sk is

either the global optimum, or a local optimum where it has no neighbors that dominate it.

Similarly for the teaching algorithm,

OT = 〈(∆s0
, s1), (∆s1

, s2), · · · , (∆sk−1
, sk)〉 (3.5.2)

where ∆si+1
is the neighbor of ∆si

in the abstract evaluation space Γ.

A candidate and test space pair on which such an algorithm could work will be consid-

ered to have matching variability properties.

These definitions are of a black-box coEA that is uncommitted to any problem domain.

This by itself is inadequate much more as it provides no notion of why such variability

matching should or could be possible. Furthermore, this definition is dependent on the

interaction function p, which is problem dependent. So, it presents the question of whether

and how sensitive this variability matching property is to uncertainty in the fitness function

as with standard EAs.

To explicitly ascertain the nature of this sensitivity, we use a framing similar to Valiant’s

PAC-learning model [72] for concept learning, where the target concept to be learned is

drawn from a class of concepts but where the specific concept that is being used to evaluate

the candidate hypotheses is unknown. Since concept learning is a test-based problem to

which coEAs have been widely applied [40, 38, 9, 57, 55], here we pose the question of

whether variability matching and hence engagement is impacted by this uncertainty in the

concept learning domain.

In order to distinguish the black-box model of Pareto coevolution from the domain spe-

cific application, we use the typical notation used for concept learning while explicitly re-

taining their correspondence.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 64

3.6 Concept learning

In this section, we define the basic terms used in the Computational Learning Theory frame-

work and use an example to provide an intuition for the main question to be answered.

3.6.1 Definition

The following definitions are derived from Kearns and Vazirani [44].

Let X be a set called the instance set. This corresponds to the set of encodings of the

objects in the learner’s world or possible inputs.

A concept over X is a subset c ⊆ X of the instance space. It can be considered as the

set of all instances that positively exemplify some rule over X. This can be represented as a

boolean function c : X → {+,−}, with c(x) = + indicating that x is a positive example of c

and c(x) = − indicating that x is a negative example. So, an instance x in X is an element

of c if and only if c(x) = +. The elements of the set {+,−} are referred to as labels.

A concept class over X is a collection of concepts C ⊆ 2X . A hypothesis class over X is a

collection of concepts H ⊆ 2X . As such H need not necessarily be contained in C but here

we assume that H = C.

In the PAC framework, the general problem takes the following form. The learning

algorithm has access to positive and negative examples of an unknown target concept c∗,

chosen from a known concept class C. The learning algorithm is evaluated by its ability to

identify a hypothesis concept that can accurately classify instances as positive or negative

examples of c∗. The focus is on the scenario where the designer of the learning algorithm

is guaranteed that the target concept will be chosen from C but where the challenge is to

design an algorithm and representation that meets the constraints defined by the learning

protocol and satisfies the desired performance criteria for any target concept in C.

Our interest in adopting this methodological framework to study coEAs is not motivated

by an interest in forcing coevolutionary learning into the PAC learning framework but the

value of the precise methodology that Computational Learning Theory provides as a way to

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 65

study coEAs.

The mapping of this concept learning problem to coevolution is as follows: the instance

space X corresponds to the set of tests T , the hypothesis spaceH corresponds to the learner

space S and the unknown target concept c∗ from C is part of the interaction function p and

is denoted as pc∗ . The goal is to find a hypothesis inH that minimizes the error with respect

to the unknown target concept c∗, or alternatively maximizes
∑

x∈X

pc∗(h, x), where the error

of a hypothesis h on a target concept c∗ is defined as

error(h) =

∑

x∈X

(pc∗(c
∗, x)− pc∗(h, x))

|X|
=

∑

x∈X

(1− pc∗(h, x))

|X|
(3.6.1)

Let the EA operating on the hypothesis space be denoted as AH (i.e. the learning algo-

rithm) and that operating on the instance space be AX (i.e. the teaching algorithm). We

assume that neither EA has access to the correct labels associated with each instance. The

only information obtained during search is whether the prediction was correct or wrong, or

the labels returned by the hypothesis on an instance but not whether it is correct or wrong.

In the following example, the learning algorithm only has access to the evaluation of the

hypothesis h, where pc∗(h, x) = 1 if c∗(x) = h(x) and pc∗(h, x) = 0 if c∗(x) 6= h(x).

x1 x2 x3 x4 x5 x6

c∗ + + − − + +

h + − + − − −

pc∗(h, x) 1 0 0 1 0 0

The concept class C is said to be Pareto-coevolvable if there exists a Pareto-coevolutionary

algorithm L = 〈AH , AX〉 and a pair of genetic representations 〈H,X〉 with the following

property: For every concept c∗ ∈ C, if L is given access to pc∗(h, x) then it has a performance

defined by the sequence of hypotheses OL = 〈h0, h1, h2, ..., hk〉 such that the terminal solu-

tion error(hk) < ǫ and error(hi) ≥ error(hi+n) (n > 0) , where k is the maximum number

of generations, hi is the best hypothesis in generation i, and 0 < ǫ < 0.5 is an externally

defined tolerance on the acceptable error. Our focus is on the case where L is the algorithm

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 66

described earlier in Section 3.4. We consider the desired tolerance ǫ = 0, i.e. the target

concept has to be exactly learnt.

3.6.2 Example

To provide an intuition for this problem, consider the geometric concept class of d-dimensional

axis-parallel rectangles described by Maass and Turan [51] as the BOXd
n concept class.

The primary reason for choosing to focus on this concept class is its intuitiveness both for

analysis and for convenient visualization for small dimensions. Despite seemingly being

simplistic, we will use this simplicity to draw some general conclusions about coEAs.

For any fixed finite dimension d, the instance set is defined as Xd
n = {0,, n−1}d. This

can be considered to be the equivalent of a discrete grid within the Euclidean space R
d. The

concept class is defined as follows:

BOXd
n = {c ⊆ Xd

n | there is a d− dimensional axis-parallel rectangle R ⊆ Z
d

with R ∩Xd
n = c}

= {
d
×

k=1

{ik,, jk} | 0 ≤ ik ≤ jk ≤ n− 1 for k = 1, ..., d}

An example of a concept belonging to this class containing all the points in {3, ..., 6} ×

{3, ..., 6} for Xd
n where n = 11 and d = 2 is shown in Figure 3.5. The positive examples

associated with c are indicated by the label +. In more concrete computational terms, a

concept belonging to this class implements a rule that returns a label c(x) = + for a point

x = (a, b) ∈ X if i1 ≤ a ≤ j1 and i2 ≤ b ≤ j2, and c(x) = − otherwise. In this case

i1 = 3, j1 = 6, i2 = 3, j2 = 6.

This concept class consists of all such rectangle concepts in a particular Xd
n. A difference

here from the original definition is that the null concept {∅} is not a member of the concept

class.

To provide an intuition for the nature of the problem, there are nd(n + 1)d/2 different

target concepts for a particular class of BOXd
n. The Figures 3.6, 3.7 and 3.8 show some

of the fitness functions for the different target concepts (where the fitness of a hypothesis

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 67

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

(3,3)

(6,6)

Figure 3.5: The concept defined by [3, 6]× [3, 6].

is treated as being 1 − error(h) for a particular target concept) for the d = 1 case and

n = 70. Each hypothesis is treated as being defined by its endpoints denoted as Xlower and

Xupper. So, each hypothesis in H can be considered as a single point (Xlower, Xupper). Since

Xlower ≤ Xupper for all the hypothesis, only the portion of the plane above the diagonal

is sufficient for this purpose. The target concept in each case corresponding to the point

having fitness = 1 is shown with an arrow.

Given this significant difference from one fitness function to another, it suggests that

if the target concept c∗ is variable then the CLT set ∆h also variable. If this is so, then

variability matching and hence coevolutionary engagement would be effected. In the next

section, we prove that this surprisingly is not the case, i.e. ∆h remains unchanged for any

target concept in C.

3.6.3 Invariance of ∆h

The question we posed earlier can be restated as follows. For a hypothesis h, is ∆h different

when the interaction function is pci
from the case where pcj

. If this is so then we expected

that the ability of AX operating on X would suffer.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 68

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X lower
X upper

 fi
tn

es
s

=
1−

 e
rr

or

0
10

20
30

40
50

60
70

0

10

20

30

40

50

60

70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X lowerX upper

 fi
tn

es
s

=
1−

 e
rr

or

Figure 3.6: The fitness function for target concept at (1,40) viewed from different perspec-

tives.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 69

0
10

20
30

40
50

60

70

0
10

20
30

40
50

60
70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X lowerX upper

fit
n

e
ss

 =
 1

 −
 e

rr
o

r

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X lowerX upper

fit
n

e
ss

 =
 1

 −
 e

rr
o

r

Figure 3.7: The fitness function for target concept at (20,40) viewed from different per-

spectives.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 70

0
10

20
30

40
50

60
70

0
10

20
30

40
50

60
70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X lower

X upper

fit
n

e
ss

 =
 1

 −
 e

rr
o

r

Figure 3.8: The fitness function for target concept at (30,30).

Each hypothesis h is defined by the tests on which it returns a positive label as follows.

Definition 3.6.1. A hypothesis h ⊆ X defined to be the set h = {x| h(x) = +, x ∈ X}.

Since we use the same representation even when the target concept is unknown, a

hypothesis remains the same independent of the target concept to be learnt. Even though

it remains the same, the instances for which it returns correct predictions would change

with the target concept. To capture this, we introduce the notion of the evaluation form

of a hypothesis which is the subset of all instances in X that are correctly classified by the

hypothesis, i.e. exactly like the target concept.

Definition 3.6.2. The evaluation of a hypothesis h on a target concept c∗ ∈ C is the set

h = {x| pc∗(h, x) = 1, x ∈ X}.

In general, these two are not always identical except in the special case below (proof in

Appendix).

Theorem 3.6.3. A hypothesis h ∈ H is equal to its evaluation h on a target concept c∗ ∈ C if

and only if h ⊆ c∗ and c∗ = X.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 71

Similarly, the intersection of h and h is empty only in the following special case (proof

in Appendix).

Corollary 3.6.4. The intersection of a hypothesis h and its evaluation h on a target concept

c∗ ∈ C is the empty set if and only if h ∩ c∗ = ∅.

In coevolution, we use the instance population to distinguish between the hypotheses in

the population as well as evaluate whether one is “better” than the other. For this evaluation

to be accurate, any arbitrary set of tests will not do. The jury is defined to be a set of tests

that provides an accurate evaluation. The term “jury” is deliberately an extension of the

notion of a witness set [43] which is the set of instances that can distinguish a hypothesis

from every other hypothesis, however the witness makes no value judgment but the “jury”

does.

Definition 3.6.5. A subset j ⊆ X is a jury for two hypotheses hi and hj (hi, hj ∈ H)

on a target concept c∗ ∈ C if error(hi) − error(hj) = k
∑

x∈j

(pc∗(hj , x) − pc∗(hi, x)), where

k = 1/|X|.

Definition 3.6.6. The minimal jury for two hypothesis hi, hj ∈ H is the smallest set J ⊆ X

that can serve as a jury for the two hypothesis on a target concept c∗ ∈ C.

A concrete example of a minimal jury is the CLT set ∆h,h′ , which is exactly those in-

stances in X on which h and h′ differ.

The following two theorems will show that no matter what the target concept, the

minimal jury for two hypothesis remains unchanged.

Proposition 3.6.7. The minimal jury J ⊆ X for two hypotheses hi, hj ∈ H on a target concept

c∗ ∈ C is equal to the symmetric difference 2 of hi and hj .

Proof. An instance x ∈ X is in the minimal jury Jhi,hj
only if pc∗(hi, x) 6= pc∗(hj , x). So, an

instance x ∈ X − (hi ∪ hj) is not in Jhi,hj
as hi(x) = hj(x) = −. Similarly, an instance y ∈

2The symmetric difference of two sets A and B is given by (A ∪ B) − (A ∩ B), or alter-

natively by (A−B) ∪ (B −A).

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 72

hi∩hj is not in Jhi,hj
as hi(y) = hj(y) = +. Therefore Jhi,hj

= X−((X−(hi∪hj))∪(hi∩hj)).

This can be reduced further as follows

Jhi,hj
= X − ((X − (hi ∪ hj)) ∪ (hi ∩ hj))

= (X − (X − (hi ∪ hj)) ∩ (X − (hi ∩ hj))

= ((X ∩ (hi ∪ hj)) ∪ (X −X)) ∩ (X − (hi ∩ hj))

= (hi ∪ hj) ∩ (X − (hi ∩ hj)

= X ∩ ((hi ∪ hj)− (hi ∩ hj))

= (hi ∪ hj)− (hi ∩ hj)

Therefore, the minimal jury for two hypotheses hi, hj ∈ H is equal to their symmetric

difference.

Now, black-box coEAs do not access the labels and only use the feedback of “correct”

and “wrong”. So, the following corollary to Theorem 3.6.7 says that the minimal jury is

identical even when using only the evaluated form.

Corollary 3.6.8. The minimal jury J ⊆ X for two hypotheses hi, hj ∈ H on a target concept

c∗ is equal to the symmetric difference of their evaluations hi and hj on c∗.

Proof. Let ANB represent the symmetric difference relation between two sets A and B. So,

the assertion to be proved here is that Jhi,hj
= hiNhj .

The error of a hypothesis h on a target concept c∗ is equivalent to error(h) = error(h)−

error(c∗). So Jh,c∗ is the minimal jury for h and c∗. As h is the subset of instances in X

where h(x) = c∗(x) (x ∈ X) , it can be written as h = X − Jh,c∗ . So hiNhj = (X −

hiNc
∗)N(X − hjNc

∗).

To reduce this expression, we use the following two general identities described here

with respects to some sets A,B and C,

1. (A−B)N(A− C) = BNC.

2. (ANC)N(BNC) = ANB.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 73

Using these identities

hiNhj = (X − hiNc
∗)N(X − hjNc

∗)

= (hiNc
∗)N(hjNc

∗) (by identity 1)

= hiNhj (by identity 2)

Now, Jhi,hj
= hiNhj from Proposition 3.6.7.

Therefore, Jhi,hj
= hiNhj .

Based on this, we can now state that

Theorem 3.6.9. Let ∆ci

h be the Complete Learnable Test set for a hypothesis h and target

concept ci. The CLT sets ∆ci

h = ∆
cj

h for every target concept ci, cj ∈ C.

This result suggests that even though the overall performance of the coEA may be ef-

fected by different target concepts, the difficulty of engagement is unchanged for any target

concept. So for two hypotheses hi and hj , the same tests are needed to distinguish them

for every target concept, even if hi may have a lower error than hj in some cases and vice

versa on other cases. Furthermore, it clearly indicates that the absence of problems such as

cycling, forgetting and disengagement is only a pre-condition for learning. In the next sec-

tion, we implement a simple algorithm for the BOXd
n problem and show that coEAs are not

immune to the fundamental constraints of blind search as with standard EAs. The “ridges”

on the fitness functions in Figures 3.6 and 3.7 have a definite meaning.

3.7 Learnability

For the sake of easy visualization, we consider the two dimensional case d = 2 and n = 16.

Each hypothesis is encoded using a scalar vector [x, x′, y, y′] similar to the one dimensional

case described earlier, where 1 ≤ x, x′, y, y′ ≤ n and x and x′ are the lower and upper limits

of the interval in one dimension and y and y′ are the lower and upper limits of the interval

on the other dimension. The mutation operators either add +1 or −1 to each gene. The

instances are also encoded as scalars [x, y], with identical mutation operators.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 74

For every hypothesis h = [x, x′] × [y, y′], the corresponding CLT set ∆h = ([x − 1, x′ +

1]× [y − 1, y′ + 1])− ([x+ 1, x′ − 1]× [y + 1, y′ − 1]). These are all the points contained in

the mutant h′ that fully contains h but not in the mutant h′′ that is fully contained by h. For

this pair of representations, the following proposition holds.

Proposition 3.7.1. For the given mutation operator, if x ∈ ∆h then x has a mutant x′ such

that h(x) 6= h(x′).

This states very basically that a point x on the edge of a rectangle h has a mutant that is

not in h.

This fact enables the encodings of H and X as described above to be variationally

matched. Based on this we construct a simple hillclimbing algorithm AH and AX as de-

scribed below. These two algorithms operate interactively in alternating learning and teach-

ing sessions.

AH

Initialize with hypothesis h = h0, and popX = ∆h0
.

while(1)

• All the variants of h are generated (popH) and evaluated on the test population

popX using pc∗ .

• If no member of popH dominates h then exit.

• Else, pick the successor h′ in popH that (a) Pareto dominates h on popX , and (b)

if there are multiple individuals in popH that dominate h, pick the one that has

the least error.

• Set h← h′

• Call AX

The teaching algorithm performs the following operations to always find the tests in ∆h.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 75

AX

while(1)

(a) Initialize a temporary population pop′X

(b) For each test x in popX

• Generate all the variants of x and add to tmpx.

• If there is a test in x′ in tmpx such that h(x) 6= h(x′) then add x and x′ to

pop′X (without duplication).

(c) Set popX ← pop′X .

(d) Call AH .

When the algorithm is initialized with the most general hypothesis, i.e. [1, n, 1, n], the

entire concept class BOX2
n is learnable. This follows as a direct consequence of Proposition

3.7.1. An example of this is shown in Figure 3.9 with the corresponding change in error,

here distinguished into the false-positive and false-negatives. For this initial condition, the

change in error is guaranteed to decrease in a monotonic fashion.

2 4 6 8 10 12 14

2

4

6

8

10

12

14
1

Dimension 1

D
im

e
n

si
o

n
 2

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Generations

E
rr

o
r

False positive error
False negative error

(a) (b)

Figure 3.9: Trace of algorithm behavior with h0 = [1, n, 1, n] where the colored rectangle is

the unknown target concept, with the corresponding false-positive and false-negative error.

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 76

In contrast, compare the behavior of the same algorithm with the initial condition h0 =

[7, 14, 7, 14] as shown in Figure 3.10. Since, this hypothesis does not overlap with c∗ (shown

as a colored rectangle) the error is entirely of the false positive variety. So, it is dominated

by the inner rectangle which has a lower false positive error. This occurs till it collapses to

a single point. This is because every hypothesis h such that h ∩ c∗ = ∅, |h| = 1 and where

no hypothesis in the neighborhood of h has a point in c∗, is a local optimum. Since this

single point hypothesis dominates all its neighbors that are larger, and is incomparable to

all its single point neighbors, it has no neighbor that dominates it. At this point, the only

remaining mode of search is by random drift.

2 4 6 8 10 12 14

2

4

6

8

10

12

14
1

Dimension 1

D
im

e
n

si
o

n
 2

2

3

4

5

6

0 1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1

Generations

E
rr

o
r

False positive error
False negative error

(a) (b)

Figure 3.10: Trace of algorithm behavior with h0 = [7, 14, 7, 14] exhibiting a collapse to a

local optimum.

This provides a special case of the Red Queen effect [16]. In this case, the error of the

hypothesis is technically reducing however it leads to a degenerate or mediocre solution.

In the absence of inductive bias about the target concept, we see that a fully engaged coEA

can flounder even in the absence of any of the well-known failures. Rather than appealing

to the mystery of coevolutionary dynamics, here we see that this occurs due to the use of

an imbalanced set of examples to train the learner over the coevolutionary process even

though technically the error is decreasing. This provides a principled explanation for this

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 77

observation that was made empirically by Bongard and Lipson [10], however the solution

they used to address this was the introduction of an external memory mechanism (or “test

bank”).

2 4 6 8 10 12 14

2

4

6

8

10

12

14

1

Dimension 1

D
im

e
n

si
o

n
 2

2

3

4

5

6

7

8

9

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

Generations

E
rr

o
r

False positive error
False negative error

(a) (b)

Figure 3.11: Trace of algorithm for target concept c∗ = [1, n, 1, n]

In contrast, when the target concept is c∗ = [1, n, 1, n], it can be learnt from any initial

condition. An example is shown in Figure 3.11. The reason that this concept class is

learnable only from h0 = [1, n, 1, n] is because, this most-general hypothesis contains every

possible target concept and hence cannot collapse to a local optimum.

3.8 Conclusions

Here we proposed a novel representational model of coevolution that specifies the prop-

erties required of the secondary substrate to enable perfect matching in the capabilities of

the two populations. This model provides a principled way to analyze the determinants of

coevolution performance in terms of the variability properties of both representations.

In the regime of concept learning, we showed that there exist regularities that on one

hand can enable ideal engagement with coevolution even in the presence of uncertainty but

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 78

in the absence of variational matching would remain problematic for any target concept.

The finding of the invariance of ∆h with the target concept shows that even though the

testing algorithm has all the trappings of an EA involving typical selection and variation

operators, it is not involved in adaptation in a real sense but serves more as a recogni-

tion mechanism for the solutions in the learning population. Whether an EA is adequately

suited to perform this function for practical applications, and conversely whether Pareto

coevolution is indeed a form of “evolution” presents a semantic question.

This model provides a starting point towards a principled basis for the practical design

of representations for coevolution as well as a treatment of representational issues as an

integral part of the coevolutionary learning process. Finally, this provides a direct intuition

that the variability properties of the secondary substrate and its properties have a key role

to play in coevolution.

3.9 Appendix

Theorem 3.9.1. A hypothesis h ∈ H is equal to its evaluation h on a target concept c∗ ∈ C if

and only if h ⊆ c∗ and c∗ = X.

Proof. We prove the assertion in the backward direction prior to the forward direction.

Backward:If h ⊆ c∗ and c∗ = X then it implies that h = h

By definition 3.6.1, an instance x ∈ X is in h if and only if h(x) = +. Similarly, an instance

y ∈ X is in c∗ if and only if c∗(y) = +. So, if h ⊆ c∗ then it follows that for every instance

x in h it must be the case that h(x) = + and c∗(x) = +. By definition 3.6.2, an instance

x ∈ X is in h if and only if pc∗(h, x) = 1. This can be the case only if either c∗(x) = + and

h(x) = +, or c∗(x) = − and h(x) = −. So it follows that if h ⊆ c∗ then every instance x in

h is also in h, i.e. h is a subset of h.

When c∗ is a proper subset of X, there necessarily exists an instance y ∈ X for which

c∗(y) = −. If h ⊆ c∗ then it must also be the case that h(y) = −. As c∗(y) = − and h(y) = −,

from definition 3.6.2 it follows that the instance y is in h and from definition 3.6.1 it also

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 79

follows that y is not in h. Therefore, if c∗ is a proper subset of X and h ⊆ c∗ then h is a

proper subset of h. By the same reasoning, if c∗ is equal to X then there exists no instance

y in X for which c∗(y) = −. So, if h ⊆ c∗ then there is also no instance y in X for which

h(y) = −. In such a case, an instance z ∈ X is in h if and only if c∗(z) = + and h(z) = +,

i.e. if z is in h.

Therefore if h ⊆ c∗ and c∗ = X then it implies that h = h.

Forward: If h = h then it implies that h ⊆ c∗ and c∗ = X

By definition 3.6.1, an instance x ∈ X is in h if and only if h(x) = +. So, if h = h then

it implies that h(y) = + for every instance y ∈ h. Now, by definition 3.6.2, an instance

z ∈ X is in h if and only if pc∗(h, z) = 1. This can be the case only if either c∗(z) = + and

h(z) = +, or c∗(z) = − and h(z) = −. From this definition it follows that if h(y) = + for

every instance y in h then c∗(y) = + for every such instance as well. As h = h, it follows

that every instance in h is also in c∗. Therefore h ⊆ c∗.

If h = h then, from the above reasoning, it follows that there exists no instance x ∈ X

in h for which h(x) = − and c∗(x) = −. So, if there existed an instance z ∈ X such that

c∗(z) = − then it would imply that h(z) = +. However, as h ⊆ c∗, if z ∈ X− c∗ then it must

be the case that z ∈ X − h that in turn implies that h(z) = −. This leads to a contradiction

as the hypothesis h cannot return two different labels for the same instance. Therefore

such an instance z such that c∗(z) = − cannot exist. Hence if h = h then it implies that

X − c∗ = ∅, i.e. c∗ = X.

Therefore if h = h then it implies that h ⊆ c∗ and c∗ = X.

So, we can conclude that a hypothesis h ∈ H is equal to its evaluation h on a target

concept c∗ ∈ C if, and only if, h ⊆ c∗ and c∗ = X.

Corollary 3.9.2. The intersection of a hypothesis h and its evaluation h on a target concept

c∗ ∈ C is the empty set if and only if h ∩ c∗ = ∅.

Proof. If h ∩ h = ∅ then h ∩ c∗ = ∅. An instance x is in h if and only if h(x) = +. If such

an instance is not in h then it implies that c∗(x) = − (by Definition 3.6.2). Since h ∩ h = ∅,

CHAPTER 3. COEVOLUTION AND THE IDEAL TEACHER 80

it implies that c∗(x) = − for every x in h. Since an instance y is in c∗ only if c∗(x) = +, it

follows that no instance in h is in c∗(x). Therefore h ∩ c∗ = ∅.

If h ∩ c∗ = ∅ then h ∩ h = ∅. An instance x is in h if and only if h(x) = +. If h ∩ c∗ = ∅

then it implies that c∗(x) = − for every x in h. Since h(x) 6= c∗(x) for every x in h, these

instances are also not in h (by Definition 3.6.2). Therefore h ∩ h = ∅.

Chapter 4

Conclusions

4.1 Contributions

In Chapter 1 we singled out the secondary substrate as being a distinguishing feature of

coEAs and devo-EAs that has evaded a rigorous characterization comparable to the study

of the evolvability of genetic representations of candidate solutions. Observing that this

additional substrate was associated with mechanisms of change that were independent of

the variation operators of the primary genetic substrate, we posed the basic question - does

this secondary substrate present its own unique version of the representation problem?

The main contribution of this dissertation is to show that the secondary substrate in

coEAs and devo-EAs exerts a systematic and structured effect on the performance of both

algorithms and suggests the need to complement the standard single substrate genetic mod-

els with this consideration when using devo-EAs and coEAs.

One way to empirically answer this question would be to compare the performance us-

ing, say, two different secondary substrates A and B on a particular problem while keeping

all others variables constant. In this way, any observed difference in performance can be

attributed to the choice of secondary substrate, and furthermore, one could even conclude

that the substrate associated with better performance is therefore a “better” substrate for

the problem being considered. However, such an approach comes with the danger of merely

81

CHAPTER 4. CONCLUSIONS 82

reiterating that some substrates are better than others on a particular problem and that the

choice of secondary substrate “matters” to the performance of a coEA or a devo-EA.

Our motivation for adopting a top-down, theory-driven approach to study the secondary

substrate problem posed by coEAs and devo-EAs was to seek a substantive answer the ques-

tions of why and how this substrate matters and to do so manner that could advance the

quantitative understanding of these otherwise complicated algorithms. To do so, the key

emphasis in both cases was on modeling the influence of a particular secondary substrate

on the performance across different fitness functions drawn from a problem class. Adopting

this approach resulted in the development of a novel analytical framework for devo-EAs

and one for co-EAs, both of which are capable of making quantitative predictions about

performance effects of the secondary substrate.

To model the effect of the secondary substrate in development, in Chapter 2, we pro-

posed a novel computational model for deterministic development consisting of the gen-

erative, decision and delivery functions. This also provided a descriptive model for devel-

opmental dynamics expressed as ontogenies. This model enabled a principled modeling of

computational decisions taken during development by mapping this to a decision-theoretic

framing as a multi-player non-cooperative game. This model was used to identify a novel

phenomenon associated with devo-EAs, which we termed as the Haeckel effect. Depending

on the fitness function, the relationship between the secondary substrate and the decision

function can introduce biases in selection that can result in a covert retarding effect on

evolutionary performance for different fitness functions. This retarding effect is covert as it

isn’t detectable using typically used performance measures. The key conceptual issue that

this effect raises is that the genotype needs to be viewed as more than just a recipe for how

a phenotype is to be constructed but also as a strategy for the evaluation of the products of

development.

In Chapter 3, we defined a geometric variational model for coEAs called the ∆ land-

scape, using the IDEAL TEACHER model as the basis, to explicitly incorporate the role of

both representations into the modeling of performance. The computational model intro-

CHAPTER 4. CONCLUSIONS 83

duced to integrate their behavior was an algorithm based on the concept of variability

matching. Using this characterization, we demonstrate a very different effect from that

arising in devo-EAs. It has typically been assumed that the main reason for the failure of

coEAs is attributable to the use of a dynamic rather than a fixed fitness function. Using a

secondary substrate that ensures that no such distortions in fitness evaluation and selection

occur with dynamic fitness evaluation on a standard class of classification problems, here

we show that it is still possible for a coEA to perform poorly. Rather than being a pathology

attributable to the dynamic peculiarities of a coEA, this poor performance is due to typical

limitations associated with any greedy, blind-search algorithms with inadequate inductive

bias. This provides a first demonstration that the absence of pathologies only implies that

the coEA satisfies the baseline requirement to exhibit learning on a particular problem and

does not imply high quality performance on the problem.

4.2 Synthesis

Despite seemingly being disparate techniques intended to address very different concerns, a

key observation arising from the work presented here is that when we take a large step back

and consider the as specialized interpretations of the basic EA, both devo-EAs and coEAs

share some fundamental similarities both at the micro-scale of their implementations and

at the abstract macro-scale of the general formalisms of EAs. The value of this comparison

is not as a metaphor or to claim that one is really the other. Instead, the deliberately weak

analogy that we draw between coEAs and devo-EAs is to provide a novel way of looking at

these algorithms.

In mechanistic terms both coEAs and devo-EAs involve:

1. An additional representation (and associated computational mechanisms of change)

distinct from the genetic representation:

(a) In a coEA, this is the data-structure used to represent the members of the test set

and its associated variation operators that induce an adaptively searchable test

CHAPTER 4. CONCLUSIONS 84

space.

(b) In a devo-EA, it is the data-structure used to represent the phenotypes and the

associated operators used by the interpreter to construct the phenotype based on

the rules specified by the genotype.

2. An independent algorithm defined on the secondary representation distinct from

the EA acting on the primary genetic representation:

(a) In a coEA, this is the EA operating on the test space.

(b) In a devo-EA, this is the algorithm that defines how each genotype in the geno-

type set G is to be interpreted as a procedure to construct a phenotype.

3. A protocol for the interaction between the secondary computational process and

the primary evolutionary process:

(a) In a coEA, this is the protocol that determines how the individuals in the test

population are to be used to evaluate the current population of candidate solu-

tions and how the corresponding fitness values are computed and assigned to

the individuals in both populations based on the outcome of these interactions.

This protocol has traditionally been considered to the heart of a coEA and has

been the dominant focus of research on coEAs.

(b) In a devo-EA, this is the protocol that determines which of the many states oc-

curring during the construction process is to be treated as the “phenotype” asso-

ciated with a specific genotype.

In juxtaposing these two otherwise unrelated algorithms, firstly, it suggests the value of

applying the information processing perspective, that has achieved significant sophistication

in coevolution research, to the study of development as well.

A first key issue to see that the use of development converts the problem of fitness

maximization to a test-based problem, where intermediate states in the ontogeny serve as

“tests” providing information about the problem. By this we do not imply the need for

CHAPTER 4. CONCLUSIONS 85

incorporating learning in development but to bring greater attention to the problems of

developmental control, i.e. how the developmental substrate and the computational capa-

bilities of the genome could result in a performance-relevant control of the developmental

process.

Secondly, the problem of progress due to the absence of a fixed fitness function that has

dominated coevolution research is of relevance to the interpretation of development. Even

if the genotype is a “recipe” for the construction of a phenotype, it does not follow that the

actual process of development is associated with any notion of ”progress”.

Conversely, our analysis suggests the value of the mechanistic perspective that has dom-

inated developmental research to coevolution, namely, treating coEAs explicitly as mechan-

ical procedures for state-space search without invoking misleading analogies that attribute

greater capabilities to the two interacting EAs than they necessarily possess. Furthermore,

it suggests the value of viewing coevolution from a more domain centered perspective, i.e.

where different problem domains require coEAs to have different capabilities, rather than

treating games, concept learning, and function optimization as being equivalent problems

for a black-box coEA.

4.3 Conclusions

Thomas English [20] in his analysis of the implications of the No Free Lunch theorems

[78] notes that algorithms are akin to tools and contain information about the nature of

the problems they are good for. In the empirical study of optimizers, the objective is to

determine the properties of the task using the information in the tool. However, in EC, the

tool is often made and buried, before attempting to excavate it and trying to explain them.

The same can be said about coEAs and devo-EAs. While the biological analogies in-

spiring these algorithms are compelling, the unfortunate trend has often been to treat the

algorithms as being as opaque as their inspirations. Where biologists borrow analogies and

the language of computation to speak of organisms, EC researchers seem to borrow the

CHAPTER 4. CONCLUSIONS 86

opaqueness of biological terminology and then re-discover the computational metaphors,

even when the tool is designed by them. Indeed, with this approach, the phenomena and

dynamics that arise seem puzzling and difficult to understand. However, it begs the question

whether this is simply a distraction that brings a misplaced concreteness to the dynamics

that do not necessarily require it.

An example is the pathologies in coevolution. In naming them and treating them as

units of study, it gives them independent existence which may not be merited resulting in

an implicit assumption that the absence of pathologies implies “success”. However, we have

shown that the absence of pathologies merely indicates that coEAs are legitimately capable

of learning. This does not imply “success” as there remain hard problems and coEAs are

still blind search algorithms.

Development provides another example of a tool that is made and buried to be re-

excavated and puzzled about. In a scathing deconstruction of the “information”-gene

metaphor, Oyama [54] criticizes the lack of intellectual hygiene in using computational

and informational metaphors in developmental biology. A key dictum she proposes to avoid

the slip into the vacuous use of the term “interaction” while talking about such processes

is the need for a parity of reasoning, i.e. a logical consistency and completeness in talk-

ing about such processes. While directed toward biologists, in designing developmental-

representations in a Computer Science setting, we ought to be able to exercise this parity of

reasoning in a very detailed fashion.

Far from being a criticism of the use of biological analogies and the value of biologi-

cally motivated thinking, the power of coEAs and devo-EAs may in fact lie in taking these

analogies with utmost seriousness.

Bibliography

[1] H. Abelson and A. diSessa. A. Turtle Geometry: The Computer as a Medium.for Exploring

Mathematics. MIT Press, Cambridge, MA, 1981.

[2] L. Altenberg. The evolution of evolvability in genetic programming. pages 47–74,

1994.

[3] P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for

complex tasks. In S Forrest, editor, Proceedings of the Fifth International Conference on

Genetic Algorithms, pages 264–270, San Mateo, Calif., 1993. Morgan Kaufmann.

[4] P.J. Angeline. Morphogenic evolutionary computations: Introduction, issues and ex-

ample. In John R. McDonnell, Robert G. Reynolds, and David B. Fogel, editors, Evolu-

tionary Programming IV: Proceedings of the Fourth Annual Conference on Evolutionary

Programming, pages 387–401. MIT Press, March 1995.

[5] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, April

1988.

[6] Robert Axelrod. The evolution of strategies in the iterated prisoner’s dilemma. In

L. Davis, editor, Genetic Algorithms and Simulated Annealing. Pitman: London, 1987.

[7] Thomas Bäck. Evolution strategies: An alternative evolutionary algorithm. In J.-M.

Alliot, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial Evolution,

number 1063 in LNCS, pages 3–20. Springer Verlag, 1995.

[8] José L. Balcázar. The complexity of searching implicit graphs. Artificial Intelligence,

86(1):171–188, 1996.

[9] Josh Bongard and Hod Lipson. Active coevolutionary learning of deterministic finite

automata. Journal of Machine Learning Research, 6:1651 – 1678, 2005.

[10] Josh C. Bongard and Hod Lipson. ’managed challenge’ alleviates disengagement in co-

evolutionary system identification. In Hans-Georg Beyer et al., editor, GECCO 2005:

Proceedings of the 2005 conference on Genetic and evolutionary computation, volume 1,

pages 531–538, Washington DC, USA, 25-29 June 2005. ACM Press.

[11] Josh C. Bongard and Rolf Pfeifer. Evolving complete agents using artificial ontogeny.

In Morpho-functional Machines: The New Species (Designing Embodied Intelligence).

Springer-Verlag, 2003.

87

BIBLIOGRAPHY 88

[12] Anthony Bucci and Jordan B. Pollack. A mathematical framework for the study of

coevolution. In Kenneth A. De Jong, Riccardo Poli, and Jonathan E. Rowe, editors,

Foundations of Genetic Algorithms 7, pages 221–236. Morgan Kaufmann, San Fran-

cisco, 2003.

[13] Anthony Bucci, Jordan B. Pollack, and E. D. De Jong. Automated Extraction of Prob-

lem Structure. In Kalyanmoy Deb et al., editor, Proceedings of the Genetic and Evolu-

tionary Computation Conference 2004 (GECCO 2004), pages 501–512, Seattle, Wash-

ington, USA, June 2004. Springer-Verlag, Lecture Notes in Computer Science Vol.

3102.

[14] John Cartlidge and Seth Bullock. Combating coevolutionary disengagement by reduc-

ing parasite virulence. Evolutionary Computation, 12(2):193–222, 2004.

[15] Kumar Chellapilla and David B. Fogel. Evolving neural networks to play checkers

without expert knowledge. IEEE Transactions on Neural Networks, 10(6):1382–1391,

1999.

[16] D. Cliff and G. Miller. Tracking the Red Queen: Measurements of adaptive progress

in co-evolutionary simulations. In F. Morán, A. Moreno, J. J. Merelo, and P. Chacón,

editors, Advances in Artificial Life: Third European Conference on Artificial Life, number

929 in Lecture Notes in Computer Science, pages 200–218, Berlin, New York, 1995.

Springer.

[17] David A. Cohn, Les E. Atlas, and Richard E. Ladner. Improving generalization with

active learning. Machine Learning, 15(2):201–221, 1994.

[18] R. Dawkins and J. R. Krebs. Arms races between and within species. Procs of the Royal

Society of London, Series B(205):489 – 511, 1979.

[19] E. De Jong and Jordan B. Pollack. Ideal evaluation from coevolution. Evolutionary

Computation, 12(2):159 – 192, 2004.

[20] Thomas M. English. Evaluation of evolutionary and genetic optimizers: No free lunch.

In Lawrence J. Fogel, Peter J. Angeline, and Thomas Bäck, editors, Evolutionary Pro-

gramming V: Proc. of the Fifth Annual Conf. on Evolutionary Programming, pages 163–

169, Cambridge, MA, 1996. MIT Press.

[21] Susan L. Epstein. Toward an ideal trainer. Machine Learning, 15(3):251–277, 1994.

[22] S. Ficici and J. B. Pollack. Challenges in coevolutionary learning: Arms-race dynamics,

open-endedness, and mediocre stable states. In C Adami, editor, Artificial Life VI, 1998.

[23] Sevan Ficici. Solution Concepts in Coevolutionary Algorithms. PhD thesis, Brandeis

University, 2004.

[24] Sevan G. Ficici and Jordan B. Pollack. Pareto optimality in coevolutionary learning. In

J. Kelemen and P. Sosik, editors, Advances in Artificial Life: 6th European Conference

(ECAL 2001). Springer, 2001.

BIBLIOGRAPHY 89

[25] D. Floreano, S. Nolfi, and F. Mondada. Competitive co-evolutionary robotics: From

theory to practice. In From Animals to Animats 4. MIT Press, 1998.

[26] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated

Evolution. John Wiley & Sons, New York, 1966.

[27] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boosting.

In COLT, pages 325–332, 1996.

[28] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting. Journal of Computer and System Sciences,

55(1):119–139, 1997.

[29] C. Gathercole and Peter Ross. Dynamic training subset selection for supervised learn-

ing in genetic programming. In Yuval Davidor, Hans-Paul Schwefel, and Reinhard

Männer, editors, Parallel Problem Solving from Nature – PPSN III, pages 312–321,

Berlin, 1994. Springer. Lecture Notes in Computer Science 866.

[30] D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading, 1989.

[31] S. A. Goldman and R. H. Sloan. The power of self-directed learning. Machine Learning,

14(3):271–294, 1994.

[32] S. J. Gould. Ontogeny and phylogeny. Belknap press, 1985.

[33] F. Gruau. Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm.

PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale Supirieure

de Lyon, France, 1994.

[34] D. Hillis. Co-evolving parasites improves simulated evolution as an optimization pro-

cedure. In J. Farmer C. Langton, C. Taylor and S. Rasmussen, editors, Artificial Life II.

Addison-Wesley, Reading, MA, 1991.

[35] Geoffrey E. Hinton and Steven J. Nowlan. How learning can guide evolution. Complex

Systems, 1:495–502, 1987. reprint in: Adaptive Individuals in Evolving Populations:

Models and Algorithms, R. K. Belew and M. Mitchell (eds.), 1996, pp. 447–454, Read-

ing, MA: Addison Wesley.

[36] J. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan

Press, 1975.

[37] G.S. Hornby and J.B. Pollack. Creating high-level components with a generative rep-

resentation for body-brain evolution. Artificial Life, 8(3):223–246, 2002.

[38] H. Juillé and J. B. Pollack. Co-evolving intertwined spirals. In Proceedings of the Sixth

International Conference on Genetic Algorithms, pages 351–358, 1996.

[39] H. Juillé and J. B. Pollack. Dynamics of co-evolutionary learning. In From Animals to

Animats 4, pages 526–534. MIT Press, 1996.

BIBLIOGRAPHY 90

[40] H. Juillé and J. B. Pollack. Coevolving the ”ideal trainer”: Discovery of cellular au-

tomata rules. In Koza, editor, Proceedings Third Annual Genetic Programming Confer-

ence, July 1998.

[41] Hugues Juillé. Methods for Statistical Inference: Extending the Evolutionary Computa-

tion Paradigm. PhD thesis, Brandeis University, 1999.

[42] Hugues Juille and Jordan B. Pollack. Coevolving the ideal trainer: Application to

the discovery of cellular automata rules. In John R. Koza, Wolfgang Banzhaf, Kumar

Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max H. Garzon, David E.

Goldberg, Hitoshi Iba, and Rick Riolo, editors, Genetic Programming 1998: Proceedings

of the Third Annual Conference, pages 519–527, University of Wisconsin, Madison,

Wisconsin, USA, 22-25 July 1998. Morgan Kaufmann.

[43] Stasys Jukna. Extremal Combinatorics — With Applications in Computer Science. EATCS

Texts in Theoretical Computer Science. Springer-Verlag, Berlin-Heidelberg-New York-

Hong Kong-London-Milan-Paris-Tokyo, 2001.

[44] M. J. Kearns and U. V. Vazirani. An introduction to computational learning theory. MIT

Press, Cambridge, MA, 1994.

[45] H. Kitano. Designing neural network using genetic algorithm with graph generation

system. Complex Systems, 4:461–476, 1990.

[46] Maciej Komosinski and Adam Rotaru-Varga. Comparison of different genotype encod-

ings for simulated three-dimensional agents. Artificial Life, 7(4):395–418, 2001.

[47] J. Koza. Genetic Programming. MIT Press, Cambridge, 1992.

[48] John R. Koza. Genetic evolution and co-evolution of computer programs. In Christo-

pher Taylor Charles Langton, J. Doyne Farmer, and Steen Rasmussen, editors, Artifi-

cial Life II, volume X, pages 603–629. Addison-Wesley, Santa Fe Institute, New Mexico,

USA, 1990 1991.

[49] Sanjeev Kumar and Peter J. Bentley. Computational embryology: past, present and

future. Advances in evolutionary computing: theory and applications, pages 461–477,

2003.

[50] Christian W. G. Lasarczyk, Peter Dittrich, and Wolfgang Banzhaf. Dynamic subset

selection based on a fitness case topology. Evolutionary Computation, 12(2):223–242,

Summer 2004.

[51] Wolfgang Maass and Gyrgy Turn. Algorithms and lower bounds for on-line learning

of geometrical concepts. Machine Learning, 14(3):251 –269, 1994.

[52] John Maynard-Smith. Evolution and the Theory of Games. Cambridge: Cambridge

University Press, 1982.

BIBLIOGRAPHY 91

[53] Jason Noble and Richard A. Watson. Pareto coevolution: Using performance against

coevolved opponents in a game as dimensions for Pareto selection. In Lee Spec-

tor et al., editor, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’2001), pages 493–500, San Francisco, California, 2001. Morgan Kaufmann

Publishers.

[54] S. Oyama. The ontogeny of information. Duke University Press, 2000.

[55] Ludo Pagie and Paulien Hogeweg. Evolutionary consequences of coevolving targets.

Evolutionary Computation, 5(4):401–418, 1998.

[56] Ludo Pagie and Melanie Mitchell. A comparison of evolutionary and coevolutionary

search. International Journal of Computational Intelligence and Applications, 2(1):53–

69, 2002.

[57] Ludo Pagie and Melanie Mitchell. A comparison of evolutionary and coevolutionary

search. International Journal of Computational Intelligence and Applications, 2(1):53–

69, 2002.

[58] J. B. Pollack and A. D. Blair. Coevolution in the successful learning of backgammon

strategy. Machine Learning, 32:225–240, 1998.

[59] Mitchell A. Potter and Kenneth A. De Jong. Cooperative coevolution: An architecture

for evolving coadapted subcomponents. Evolutionary Computation, 8(1):1–29, 2000.

[60] Nicholas J. Radcliffe and Patrick D. Surry. Fundamental limitations on search algo-

rithms: Evolutionary computing in perspective. In J. Van Leeurwen, editor, Computer

Science Today, pages 275–291. Springer-Verlag, 1995.

[61] C Reynolds. Competition, coevolution, and the game of tag. In Artificial Life IV, pages

59–69. MIT Press, 1994.

[62] C. D. Rosin. Coevolutionary Search Among Adversaries. PhD thesis, University of Cali-

fornia, San Diego, 1997.

[63] C. D. Rosin and R. K. Belew. Methods for competitive co-evolution: finding opponents

worth beating. In Proceedings of the 6th International Conference on Genetic Algorithms,

pages 373–380. Morgan Kaufman, 1995.

[64] Arthur L. Samuel. Some studies in machine learning using the game of checkers. IBM

Journal of Research and Development, 3(3):210–229, 1959.

[65] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5:197–227,

1990.

[66] C. Schumacher, M. D. Vose, and L. D. Whitley. The no free lunch and description

length. In L. Spector, E. Goodman, A. Wu, W. Langdon, H.-M. Voigt, M. Gen, S. Sen,

M. Dorigo, S. Pezeshk, M. Garzon, and E. Burke, editors, Genetic and Evolutionary

Computation Conference (GECCO 2001), pages 565–570. Morgan Kaufmann, 2001.

BIBLIOGRAPHY 92

[67] K Sims. Evolving 3D morphology and behavior by competition. In R. Brooks and

P. Maes, editors, Artificial Life IV, pages 28–39. MIT Press, 1994.

[68] Kenneth O. Stanley and Risto Miikkulainen. A taxonomy for artificial embryogeny.

Artificial Life, 9:93–130, 2003.

[69] Kenneth O. Stanley and Risto Miikkulainen. Competitive coevolution through evolu-

tionary complexification. Journal of Artificial Intelligence Research, 21:63–100, 2004.

[70] G. Tesauro. Practical issues in temporal difference learning. Machine Learning, 8:257–

277, 1992.

[71] L. Van Valen. A new evolutionary law. Evolutionary Theory, 1:1 – 30, 1973.

[72] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, November

1984.

[73] Wouter van Haaften, Michiel Korthals, and Thomas Wren, editors. Philosophy of de-

velopment. Kluwer Academic Publishers, 1997.

[74] C. H. Waddington. The strategy of the genes. George Allen & Unwin Ltd., 1957.

[75] G. Wagner and L. Altenberg. Complex adaptations and the evolution of evolvability.

Evolution, 50:967 – 976, 1996.

[76] Richard. A. Watson and Jordan B. Pollack. Coevolutionary dynamics in a minimal sub-

strate. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO

2001), pages 702–709, 2001.

[77] A. S. Wilkins. The Evolution of Developmental Pathways. Sinauer Associates, 2001.

[78] David H. Wolpert and William G. Macready. No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

[79] David H. Wolpert and William G. Macready. Coevolutionary free lunches. IEEE Trans.

Evolutionary Computation, 9(6):721–735, 2005.

