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Abstract

Co-evolutionary learning, which involves the
embedding of adaptive learning agents in a �t-
ness environment which dynamically responds to
their progress, is a potential solution for many
technological chicken and egg problems, and is
at the heart of several recent and surprising suc-
cesses, such as Sim's arti�cial robot and Tesauro's
backgammon player. We recently solved the two
spirals problem, a di�cult neural network bench-
mark classi�cation problem, using the genetic pro-
gramming primitives set up by [Koza, 1992]. In-
stead of using absolute �tness, we use a rela-
tive �tness [Angeline & Pollack, 1993] based on a
competition for coverage of the data set. As the
population reproduces, the �tness function driv-
ing the selection changes, and subproblem niches
are opened, rather than crowded out. The solu-
tions found by our method have a symbiotic struc-
ture which suggests that by holding niches open,
crossover is better able to discover modular build-
ing blocks.

1 Introduction

Co-evolution is an ecological theory which attempts
to explain how traits can evolve which are depen-
dent between di�erent species. In evolutionary com-
putation however, it has been appropriated from
its ecological roots to describe any iterated adapta-
tion involving "arms-races", either between learning
species or between a learner and its learning envi-
ronment. Examples of co-evolutionary learning in-
clude the pioneering work by Hillis on sorting net-
works [Hillis, 1992], by Tesauro on self-playing Backgam-
mon learner [Tesauro, 1992] with a recent follow up by
Pollack, Blair and Land [Pollack et al., 1996], by Sims
and Ray in evolving life-forms [Sims, 1994, Ray, 1992],
by Angeline and Pollack on co-evolving Tic-tac-toe
players [Angeline & Pollack, 1993]. In the adaptive
behavior community, there is a focus developing on

co-evolution in predator/prey games [Reynolds, 1994,
Miller & Cli�, 1994].
Using competitive �tness in a massively parallel imple-

mentation of the genetic programming (GP) paradigm
[Koza, 1992] we solved the problem of intertwined spi-
rals, a very di�cult classi�cation benchmark from
the �eld of neural networks. This learning problem,
originated by Alexis Wieland, perhaps based on the
cover of Perceptrons, has been a challenge for pat-
tern classi�cation algorithms and has been subject of
much work in the AI community, in particular in
the Neural Network �eld (e.g., [Lang & Witbrock, 1988,
Fahlman & Lebiere, 1990, Carpenter et al., 1992]). In
Neural Network classi�cation systems, based on linear,
quasi-linear, radial, or clustering basis function, the in-
tertwined spirals problem leads to di�culty. When it
is solved, the neural net solution often has a very \ex-
pansive" description of the spiral, i.e. the conjunction
of many small regions, does not generalize outside the
training regions, and is thus not particularly satisfying.
In this paper we compare our competitive �tness co-

evolutionary approach to an absolute �tness approach to
the spirals problem and �nd it more e�ective. Moreover,
co-evolution in this context leads to interesting func-
tional modularizations of the problem.
Section 2 presents a survey of the implementation of

our Massively Parallel Genetic Programming (MPGP).
This will help to understand the techniques that have
been used in the following sections. Then, the inter-
twined spiral problem is described in section 3, along
with its representation in the competitive �tness frame-
work and results. Section 4 presents both theoretical and
empirical analysis of our results comparing canonical and
co-evolutionary optimization.

2 Massively Parallel GP

2.1 Parallel Evaluation of S-expressions

MPGP runs on a SIMD machine of 4096 processor ele-
ments (PEs), the MasPar MP-2. The individual struc-
tures that undergo adaptation in GP are represented by



expression trees composed from a set of primitive func-
tions and a set of terminals (either variables or functions
of no argument). Usually, the number of functions is
small, and the size of the expression trees are restricted,
in order to restrict the size of the search space.
In our parallel implementation, each of the 4096 pro-

cessors simulates a virtual processor. This virtual pro-
cessor is a Stack Machine and takes the post�x represen-
tation of an S-expression as its input.
To be able to evaluate a GP expression, the following

instructions are supported by the abstract machine:

� one instruction for each primitive function of the
function set. At execution time, arguments for these
instructions are popped from the stack into general
purpose registers, the function is computed, and the
result is pushed on the top of the stack.

� a PUSH instruction which pushes on the top of the
stack the value of a terminal,

� a IFGOTO and a GOTO instruction which are necessary
for branching if conditional functions are used,

� a STOP instruction which indicates the end of the pro-
gram.

This architecture allows each PE to process e�ciently
a di�erent genetic program in a MIMD-like way. The
parallel interpreter of the SIMD machine reads the cur-
rent post�x instruction for each virtual processor and
sequentially multiplexes each instruction, i.e, all proces-
sors for which the current instruction is a PUSH become
active and the instruction is performed; other proces-
sors are inactive (idle state). Then, the same operation
is performed for each of the other instructions in the in-
struction set in turn. Once a STOP instruction is executed
for a processor, that processor becomes idle, leaving the
result of its evaluation on the top of the stack. When
all processors have reached their STOP instruction, the
parallel evaluation of the entire population is complete.
[Perkis, 1994] has already shown that the stack-based

approach for Genetic Programming can be very e�cient.

2.2 Models for Fitness Evaluation, Selection

and Recombination

The MasPar MP-2 is a 2-dimensional wrap-around mesh
architecture. In our implementation, the population has
been modeled according to this architecture: an individ-
ual or a sub-population is assigned to each node of the
mesh and, therefore, has 4 neighbors. This architecture
allows us to implement di�erent models for �tness eval-
uation, selection and recombination, using the kernel of
the parallel GP described in the previous section.
In this paper, only a tournament style of competi-

tive evolution has been used and compared to canon-
ical GP. A more general presentation of the di�erent

strategies that have been implemented can be found in
[Juill�e & Pollack, 1996].

3 The Spiral Problem and the Competi-

tive Evolution Paradigm

3.1 Presentation

The intertwined spiral problem consists of learning to
classify points on the plane into two classes according
to two intertwined spirals. The data set is composed of
two sets of 97 points, on the plane between -7 and +7.
These two intertwined spirals are shown as \�" and \�"
in �gures 5 and 6.
[Koza, 1992] and [Angeline, 1995] have also investi-

gated this problem using the Genetic Programming
paradigm. We used the same setup as them to de�ne
the problem and to perform our experiments. That is,
the function set is composed of: f+, �, �, %, iflte, sin,
cosg, and the terminal set is composed of: fx, y, <g,
where < is the ephemeral random constant.
With a population of 4096 individuals, we tried two

di�erent approaches to tackle this problem. In the �rst
experiment, following Koza and Angeline, the �tness
function was de�ned as the number of hits out of 194.
In the second experiment, the �tness was de�ned as

the result of a competition among the individuals. We
ignored the fact that we really knew the absolute �tness
function, and set up a \game" in which only relative
�tness was used as the basis for reproduction. The trivial
idea would be to simply compare the absolute score of
each individual and the winner would be the individual
with the larger score. However, such a competition of
absolute scores would simply approximate the canonical
version.
Instead, we only counted a player's ability to classify

those test cases which are not classi�ed by its opponent.
As more or less copies of a player spread through the
population, their scores may rise or fall depending on
how many other members of the population also \cover"
the test cases. This is a form of adaptive behavior imple-
mented dynamically in the �tness function. As a simpli-
�ed view, consider a full pairwise evaluation between one
weak but unique player with 25 novel hits, against 4 iden-
tical strong players all with the same 50 hits. Although
they would reproduce twice as fast in an absolute �t-
ness competition, in this modi�ed tournament, they will
only receive their 50 points for playing the weak player,
who will actually receive 100! In section 4, a simpli-
�ed ecological model is presented to study the dynamics
of the population evolution when an absolute �tness or
a competitive �tness is used to control interactions be-
tween species. We do not play all-against-all, but several
rounds of a more limited tournament competition, and
compute the �nal relative �tness of each individual as
the sum of all its scores during the competition. We can



of course track the absolute �tness of a population even
though it is not used otherwise.
Our hypothesis is that the competitive evolution would

work better because it would promote more diversity in
the population, and allow subpopulations which covered
di�erent subproblems to emerge. As copies of individ-
uals which perform well on parts of the spiral spread
through the population, they will start to meet them-
selves in competition, and get a score of 0. This allows
other individuals who may have less total hits, but cover
other parts of the spiral to survive. From the recombina-
tions between individuals of those two sub-populations
one may expect the emergence of a better individual that
combine the \advantages" of both.
Several approaches may be used when simulating a

competitive evolution [Sims, 1994]. In this work, each
generation is composed of a sequence of competition
rounds in which individuals are \randomly" paired up.
In fact, because of the architecture of our parallel com-
puter which doesn't have any fast-access shared-memory,
this random pairing is approximated by making all the
individuals perform a \random walk" in the population.
At each round, the score of individuals is the number of
hits that their opponent doesn't get. At the end of each
generation, individuals' �tness is calculated by summing
all their scores in the competition.
Once individual �tness is evaluated, selection and re-

combination are performed according to a �tness propor-
tionate rule. Details of the implementation of this model
of tournament, and of selection and recombination proce-
dures for MPGP can be found in [Juill�e & Pollack, 1996].

3.2 Preliminary Results and Discussion

For the two classes of experiments, we performed 25 runs
and each run was stopped after 300 generations. At each
generation, 90% of the population was replaced by o�-
springs resulting from recombination and the remaining
10% was the result of �tness proportionate reproduction.
Each individual meets 96 opponents at each generation
(this number comes from the implementation of the tour-
nament on the mesh architecture of the MasPar).
Our preliminary results concerning performance illus-

trate that competitive evolution outperforms the abso-
lute �tness approach. In fact, the absolute �tness strat-
egy works better at the beginning, with average �tness
rising faster. However, this absolute �tness paradigm
improves its current solution very slowly after its initial
burst of optimization, and is ultimately outperformed by
the competitive evolution.
There are multiple competing explanations for this

performance gap. It may be that the absolute �tness
is simply converging prematurely. It may be that the
competitive �tness system bene�ts from more diversity.
In sections below we analyze and try to understand these
di�erences.
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Figure 1: A 52-atom S-expression scoring 194 for the
intertwined spiral problem.

If (4 � x2 � y2) < 0:0 then

return (sin(�3:0 � y));
else

return

�
sin( 0:3214�x

0:04762�cos(sin(
y

x
�0:7874))

)

�
;

endif

Figure 2: Interpretation of the solution for the inter-
twined spiral problem.

However, only a few runs of competitive �tness have
provided us with a perfect (194 hits) solution for the
intertwined spiral problem within 300 generations. We
harvested some of the perfect classi�cation solutions;
One of the shortest of these S-expressions has 52 atoms
and is shown in �gure 1.

Because of the relatively small size of this result we
were able to analyze it and simplify it mathematically,
by collapsing constant calculations, removing insigni�-
cant digits, algebraic simpli�cation, and elimination of
redundant \introns". This analysis resulted in the con-
ditional function presented in �gure 2.

Basically, this solution splits the geometric plane into
two domains and a di�erent function is used for each
domain. Figure 3 displays the 4x2 � y2 function which
multiplexes the two other functions, shown in �gure 4,
to create the spiral.

The resulting function is shown in �gure 5, which plots
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Figure 3: 4x2�y2 < 0, used to divide the plane into two
domains.
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Figure 4: sin(�3y) and the other function which are
selectively added to make a spiral.
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Figure 5: Perfect score generalizing classi�cation of the
two intertwined spirals.

the function (above/below 0) along with the training
data on the range -10 to 10. Although it does not form
a perfect spiral, it does continue to simulate a spiral way
outside the original training range. In another set of
experiments (limited to 100 generations) another per-
fect solution has been discovered (presented in �gure 6).
The S-expression representing this solution is composed
of 161 atoms.

Furthermore, we believe that compared to neural net-
work solutions, which are often the composition of hun-
dreds of clusters or decision boundaries, and some of the
GP solutions shown by Koza, ours is the most perspi-
cacious to date. The fact that the spiral is composed
of a symbiosis of two (or more) functions which cover
separate parts of the data supports the hypothesis that
the relative �tness competitive evolution strategy can be
more e�ective than an absolute �tness function. This
idea is supported by the analysis presented in the follow-
ing section.

4 Co-evolution and the Dynamics of

Learning

4.1 A Theoretical model for Absolute and Rel-

ative Fitness

To support the idea that competitive evolution allows
subpopulations which cover di�erent part of the prob-
lem to survive, contrary to an absolute �tness driven
evolution, we propose the following analysis. The two-
intertwined problem is a classi�cation problem. There-
fore, it can be seen as a set of test cases and the popu-
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Figure 6: Another perfect score classi�cation of the two
intertwined spirals.

lation can be split up into groups (or clusters) in which
individuals would cover exactly the same test cases. For
the sake of clarity, let us formalize this idea. First, let
us de�ne the following terms:

� n: number of test cases,

� m: number of groups (or clusters) that compose the
population,

� ti: i
th test case,

� Gj : j
th group of individuals,

� sj(t): size (number of individuals) of group Gj at
time t,

� T (Gj): returns a list of booleans of size n in which
the kth entry indicates whether the test case tk is
covered by individuals in group Gj ,

� B: matrix whose rows are the T (Gj)s.

B =

0
B@

T (G1)
...

T (Gm)

1
CA

Each entry bi;j of B is a 1 (true) if the test case tj is
covered by the group Gi, and 0 (false) otherwise.

For the following, let us consider an example:

� n = 10,

� m = 5,

� T (G1) = (0; 1; 1; 1; 0; 1; 0; 1; 0; 1),
T (G2) = (1; 0; 0; 0; 1; 0; 0; 0; 1; 0),
T (G3) = (0; 1; 0; 1; 0; 0; 1; 1; 0; 1),
T (G4) = (0; 0; 1; 1; 0; 0; 0; 0; 1; 0),
T (G5) = (0; 1; 0; 1; 1; 0; 1; 0; 0; 1)

Now, we can de�ne the (m�m) square matrix A for
which each entry ai;j equals the number of test cases cor-
rectly classi�ed by group Gi but that group Gj doesn't.
Thus, each entry of A is de�ned as follows:

ai;j =

nX
l=1

(bi;l ^ :bj;l)

With our example, A equals:

A =

0
BBBB@

0 6 2 4 3
3 0 3 2 2
1 5 0 4 1
1 2 2 0 2
2 4 1 4 0

1
CCCCA

Now, we can de�ne the �tness function for the two cases
of study:

� absolute �tness for an individual of group Gj :

fa(j) =
nX
l=1

bjl

For our example:
fa(1) = 6; fa(2) = 3; fa(3) = 5; fa(4) = 3; fa(5) = 5

� relative �tness for an individual of group Gj :

fr(j) =

mX
l=1

(sl(t)� aj;l)

According to this de�nition, each individual com-
petes once against all other individuals in the popu-
lation. In our experiments, we only approximate this
by making each individual compete against a sample
of the population.

For the sake of simplicity, we assume there are no re-
combination between individuals but only �tness pro-
portionate reproduction. Indeed, what we want to show
with this simpli�ed model is that subpopulations that
cover di�erent test cases survive when competitive evo-
lution is involved. Therefore, we want to study the dy-
namics of the evolution of group size with time. A simple
rule for �tness proportionate reproduction, similar to the
one used by [Lindgren, 1992] to model population evolu-
tion, gives us:

sj(t+ 1) = sj(t)�

�
1 + ��

f(j)� f

f

�

where:
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Figure 7: Evolution of the ratio for each group in the
population in the case of an absolute �tness.
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Figure 8: Evolution of the ratio for each group in the
population in the case of a relative �tness.

� � is a parameter that controls the speed of the sim-
ulated evolution,

� f(j) is the �tness. According to the case of study, it
is replaced by fa(j) or fr(j).

� f is the average of the �tness.

A normalization step for sj(t + 1) is then performed in
order to keep a constant population size. If � = 1, we
get the well known expression for �tness proportionate
reproduction:

sj(t+ 1) = sj(t)�
f(j)

f

The graphical results of the evolution of the ratio for
each group in the population for the two models of evo-
lution are presented in �gure 7 and �gure 8. For our
analysis, all groups have the same size at t = 0, and we

took � = 0:5. One can see that in the case of the absolute
�tness, all the population is overcome by the �rst group
which has the largest absolute �tness (fa(1) = 6). The
curves for the groups 2 and 4, and for the groups 3 and 5
overlap in this �gure. On the contrary, in the case of the
competitive evolution, once stability is reached, the �rst
group takes a little more than 50% of the population
and groups 2 and 5 around 20%. Group 4 disappears
very quickly and group 3 takes only a tiny part of the
population. It is possible to prove that these ratios at
the equilibrium are independent of the initial size of the
di�erent groups (at the condition that no group has null
size) and of the value of the non-null parameter �.
The aim of this analysis is to show that competitive

evolution allows di�erent subpopulation to survive, con-
trary to the canonical model of evolution, therefore keep-
ing more diversity in the population. We also believe
that in the case of the intertwined spiral problem, re-
combination of individuals from di�erent subpopulations
are at the origin of new solutions that cover some part
of the problem that were speci�c to each of the two sub-
populations. This idea is con�rmed by the results of
experiments presented in section 4.2.

4.2 Diversity and Useful Recombination

We realized that our co-evolution system was in fact op-
erating to prevent convergence by increasing diversity in
the population. This can also be done simply by chang-
ing parameters in a canonical genetic optimization task.
So we performed more experiments to compare the evo-
lutionary and the co-evolutionary approaches. In partic-
ular, we tried three di�erent settings for the parameters
that control the convergence rate of the search proce-
dure and therefore control the decrease of diversity in
the population. More precisely, the normalized �tness of
individuals, which is used to control the selection pro-
cess, is computed as follows:

raw fitness = score

standardized fitness =
(max(score) � raw fitness)� �

adjusted fitness = 1
1+standardized fitness

normalized fitness = adjusted fitnessP
population

adjusted fitness

The parameter � controls the range of the standardized
�tness and therefore the distribution of the normalized
�tness. Indeed, if � decreases, the di�erence between
�t and less �t individuals for the adjusted �tness, and
therefore for the normalized �tness, decreases, making
the convergence slower. However, the raw �tness doesn't
represent the same measure for the absolute and relative
�tness approaches (the number of hits for the former and
the number of hits not covered by each of the opponents
for the later). Thus, the only way to compare the two
methods is to try a large range for the parameter �. For



Absolute �tness Relative �tness
� = 1:0 � = 0:2
� = 0:2 � = 0:05

� = 1:0
(standardized fitness)2

� = 0:01

Table 1: Parameter setting for the experiments.

the absolute �tness, we tried two values for � and we per-
formed one experiment for which the standardized �tness
was squared, altering in another way the distribution of
the normalized �tness. For the relative �tness experi-
ments, three values were tested for �. Table 1 presents
the di�erent parameter settings for our experiments.
The tournament-like competition was implemented

to be a realistic model of competition. In partic-
ular, it could be used to co-evolve game strategies
[Angeline & Pollack, 1993]. However, in the case of an
inductive learning problem like the intertwined spirals,
the set of test cases is well-de�ned, �xed and of manage-
able size. Therefore, it is possible to e�ciently imple-
ment an all vs. all competition as follows:

� For each test case, compute the number Si of indi-
viduals that do not classify it correctly. This can be
implemented in O(log n) on a parallel machine, us-
ing a form of divide-and-conquer to perform addition
(reduce operator). Then, Si is made available to all
the individuals.

� The relative �tness of an individual j is then:

# test casesX
i=1

bj;i � Si

where: bj;i equals 1 if individual j classi�es correctly
the ith test case, and 0 otherwise.

The result of this process is the same as if each individual
would have compete against all the other individuals in
the population.
We addressed the issue of all vs. all competition here

for the following reason. For most problems, the tour-
nament competition is of more practical interest than all
vs. all competition. This is the case in particular when
the set of test cases is too large to allow an exhaustive
evaluation of individuals with the whole set (e.g., when
each individual represents a game strategy). Thus, it is
interesting to estimate how accurately the tournament
competition approximates the all vs. all competition.
We limited the number of generations to 150. The

results are presented in �gure 9 where each curve corre-
sponds to the average over 25 runs with the same value
for the parameters.
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Figure 9: Absolute �tness versus tournament-like com-
petition (top) and absolute �tness against all vs. all com-
petition (bottom) for the intertwined spiral problem, for
di�erent parameter setting. Each curve is the average of
the best individual, at each generation, over 25 runs.

The �rst observation is that all vs. all competition
clearly outperforms canonical evolution. After 150 gen-
erations, one of the three parameter settings resulted in
a perfect solution for 5 out of the 25 runs. Those runs
where extended up to 200 generations and resulted in
10 perfect solutions out of the 25 runs. None of our ex-
periments with canonical evolution resulted in a perfect
solution. In the case of tournament-like competition, it
is more di�cult to conclude, even if a slight advantage
might be given to this form of co-evolution. Only 2 out
of the 75 runs resulted in a perfect solution before 150
generations.

Those experiments show that co-evolution o�ers a
di�erent approach to tackle the learning task and po-
tentially works better than canonical evolution. The
tournament-like competition uses only 96 rounds (com-
pared to 4096 rounds for all vs. all) which might be seen
as too small. It is di�cult to extrapolate the number of
rounds to achieve a given accuracy for the approximation
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Figure 10: Comparison between absolute �tness and
tournament-like competition (top) and between absolute
�tness and all vs. all competition (bottom) for the evo-
lution of the ratio of o�springs in the population that
cover more test cases than their parents, for di�erent
parameter settings.

of all vs. all but it seems that 96 rounds is a good com-
promise regarding computer resource when the method
presented in this paper to perform all vs. all cannot be
applied.

For the same experiments, we also observed the evo-
lution of another measure in order to show that learn-
ing is more e�cient in the case of co-evolution. Rosca
[Rosca & Ballard, 1996] de�ned di�erential �tness as a
measure of the �tness improvement in the population.
He de�ned this measure for o�spring i as follows:

Di�erential Fitness(i) =
Standard Fitness(i) �
minp2Parents(i)fStandard Fitness(p)g

For an heuristic reason [Rosca & Ballard, 1996], themin

of the parents was taken to de�ne the di�erential �tness.
However, in our case, one is more interested in a mea-
sure that would indicate an improvement of o�springs

over both parents. Therefore, the max of the parents
has been taken to de�ne our di�erential �tness. More-
over, in order to compare both approaches, we de�ned
Standard F itness as the number of hits. This de�nition
is used only for the evaluation of the di�erential �tness
and is independent of the previously de�ned standard
�tness used to evaluate the normalized �tness. Thus,
the di�erential �tness is positive only for those o�springs
that cover more test cases than both parents. Figure 10
presents the evolution of the ratio of o�springs in the
population for which this new di�erential �tness is pos-
itive. Each curve represents the average over 25 runs.
Data were collected while performing the previous ex-
periments.

One can see that the average ratio seems to be almost
independent of the parameter setting for relative as well
as absolute �tness. However, this ratio for co-evolution
is at least 50% larger than for canonical evolution after
the �rst 50 generations. This di�erence means that the
probability that an o�spring be better than both its par-
ents, i.e. the probability of useful recombination or the
probability of the exchange of building blocks, is signif-
icantly greater in the case of a relative �tness than for
an absolute �tness. Indeed, since co-evolution maintains
niches that cover di�erent subsets of the test cases and
that the relative �tness favours the covering of all the
test cases by those subsets, it is more likely that recom-
bination will occur between parents that cover di�erent
test cases. This is not the case for the absolute �tness
which doesn't have this kind of bias. Moreover, diversity
in the population is not the main reason to explain this
di�erence since the increase of diversity for experiments
with absolute �tness doesn't change signi�cantly the ra-
tio. This clearly shows that our model of co-evolution fa-
vors useful recombination and, ultimately, is more likely
to lead to a better solution than canonical evolution.

5 Conclusion

Experiments presented in this paper show that the classi-
�cation procedure for a challenging problem (namely, the
intertwined spiral problem) can be signi�cantly improved
by using a relative �tness rather than an absolute �tness
approach. As we look at the All versus All tournament,
which is not plausible for most tasks, we can see that
the competitive �tness model of co-evolution approx-
imates �tness sharing [Goldberg & Richardson, 1987],
which helps prevent premature convergence by increas-
ing diversity in a population. Rosin and Belew's
[Rosin & Belew, 1995] work on �tness sharing demon-
strates this connection as well.

In summary, we achieve co-evolution within a single
species by using a heuristic which dynamically adapts the
�tness function to help the population cover all the test
cases, rather than giving a great reproductive advantage
to those individuals which perform well on the whole



problem. Indeed, by giving the minority an advantage in
the competition, one can expect the emergence of novel
niches which are held open until they are incorporated
into more successful solutions.
In evolutionary terms, the set of traits which lead to in-

creased relative �tness of individuals or species cannot be
pre-determined in a �nite list as can be done for the inter-
twined spirals problem. However, the traits which arise
over evolutionary time scales, such as strength, speed,
olfaction, vision, and even cognition, are simply a com-
petitive advantage until competitors acquire those traits
or �nd counter-measures. Thus co-evolution, which may
be viewed as an adaptive behavior on evolutionary time
scales between species, can also be useful for problems
for which absolute �tness is known on individual species,
such as a population of genetic programs.
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