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Abstract

From the many possible perspectives in which an
agent may be viewed, behavior-based Al selects
observable actions as a particularly useful level of
description. Yet behavior is clearly not structure,
and anyone using behavior-based constraints to
construct an agent still faces many implementa-
tional roadblocks. Such obstacles are typically
avoided by adopting a finite state automaton (FSA)
as a base representation. As a result, potential bene-
fits from alternative formalisms are ignored. To
explore these benefits, our work adopts a multi-
level view of an agent: behaviors and FSAs are but
two of many levels of description. We still focus on
behaviors for the expression of design constraints,
but we avoid using FSAs as an implementation.
Our particular agent, Addam, is comprised of a set
of connectionist networks, a substrate which pro-
motes the automatic design of subsumptive sys-
tems. Moreover, the implementational choice has
important behavioral consequences — some com-
plex behaviors emerge due to interactions among
networks and need not be specified explicitly. In
this way, the underlying layerteak into one
another, each affecting the others in subtle and
desirable ways.

1 Introduction

different directions: e.g., connectionism (Hinton et al., 1986;

McClelland et al., 1986), situated action (compare Vera and
Simon, 1993, with Agre, 1993), the observers’ paradox

(Kolen and Pollack, 1993, to appear), and others (e.g.,
Searle, 1993). Most recently, those studying the simulation
of adaptive behavior have stressed that intelligence should
not be viewed simply as knowledge and goals held together
with procedural glue; there is much to learn from studying

intelligence through self-sufficient agents competent to exist
in the world (Meyer and Guillot, 1991; Wilson, 1991).

Yet we often forget that agents can be viewed at multiple
levels of description, and as Chandrasekaran and Josephson
(1993) point out, there is no single level of description which
captures all aspects of an agent’'s behavior. To borrow their
example, a simple coin sorter can be described as an abstract
machine which classifies coins based on their weight and
diameter, but if a lever jams, then the physical nature of the
device becomes particularly important. Chandrasekaran and
Josephson propose that agents be described by a set of
“leaky levels,” where each level of description contributes to
the overall story of agent behavior, but the total picture arises
due to the way the various levels interact.

The lesson is an important one, but it fails to address an
important question: How does the recognition of multiple
levels of description help one to implement an intelligent
agent? In particular, how should one approach the task of
constructing an agent which satisfies multiple behavioral

Historically, Al has viewed agents from the Knowledgeconstraints?

Level (Newell, 1982), in which an individual is character-  gyooks (1986, 1991) proposes an interesting answer to
ized by its knowledge, goals, and rationalifjhe abstract thig question. Rather than observing a set of behavioral con-
nature of this level has been called into question from mangiraints and reasoning “The agent must have functional mod-
ules for perception, planning, etc.,” one can remain more
1. While none of these terms is ever rigorously defined, knowledcfaithful to the actual observations by constructing an agent
is the set of “beliefs” of the agent, a goal is a desired state (of ttwhich satisfies the first behavioral constraint, and then incre-
world, for instance), and the principle of rationality stipulates thamentally adding layers of structure to satisfy the remaining
an agent will use its knowledge to accomplish its goals. constraints sequentially. This behavior-based stance removes




a large bias on the part of the designer: modules arise frothe historical prerogatives of those below it, and only asserts
directly observable constraints on behavior rather than funits own control when confident. Given this basic architec-
tional constraints implicit in the mind of the designer. ture, we demonstrate how multiple behavioral constraints

Unfortunately, Brooks does not go far enough. After percan be trans_lated into network-level C(_)ns_traints. Finally, we
forming a behavioral decomposition to define the functionalfj'scuss the importance of the connectionist substrate for the
ity of a layer, he then proceeds to design a set of finite staMPlementation of leaky levels which produce emergent
automata (FSAs) to implement that layer. Yet, this is preP€havior in an agent.
cisely the type of functional decomposition he warns agains
(Brooks, 1991, p. 146). One might appeal to learning t« 2 Additive Adaptive Modules
avoid performing this functional decomposition by hand, bu
current work in automating behavior-based design focuseQur control architecture consists of a set of Additive Adap-
instead on learning the interactions between preexistintive Modules, instantiated @sidam an agent which lives in
behavioral modules (e.g., Maes, 1991). a world of ice, food, and blocks. To survive in this world,
Addam possesses 3 sets of 4 (noisy) sensors distributed in
the 4 canonical quadrants of the plane. The first set of sen-
sors is tactile, the second olfactory, and the third visual
(implemented as sonar that passes through transparent
objects). Unlike other attempts at learning that focus on a
single behavior such as walking (Beer and Gallagher, 1992),
we chose to focus on the subsumptive interaction of several
behaviors; hence, Addam’s actuators are a level of abstrac-
tion above leg controllers (similar to Brooks, 1986). Thus,
Addam moves by simply specifyirdx anddy.

We feel that the reliance upon designed modules aris¢
from choosing FSAs as the level in which to implement sub
sumptive systems; in particular, from the arbitrary ways ir
which FSAs interact. Brooks achieves modularity througt
task-based decomposition of complex behavior into a set «
simpler behaviors. In his system, for example, layer 0 imple
ments obstacle avoidance and layer 1 controls wanderin
Activity in layer 1 suppresses the activity of layer 0, and ye
obstacles are still avoided becadager 1 subsumes the
obstacle avoidance behavior of layer I8. order to avoid
duplication of lower layers as subparts of higher layers, h  Internally, Addam consists of a set of feedforward con-
allows the higher layers to randomly access the internal connectionist networks, connected as shown in Figure 1. The 12
ponents of any lower level FSAs. This fact, combined wittinput lines come from Addam’s sensors; the 2 output lines
multiple realizability of layers forces us to question Brooks’are fed into actuators which perform the desired movement
design methodology: development of single layer compe(dx, dy). Note that we desiréx, dy (-1, 1) so that Addam
tence, freezing it, and then layering additional competenciemay move in the positive or negative direction. Initially, we
on top of the first. If layer O can be realized equally well byimplemented desired movement as a single scalar value, but
method M or My, then under Brooks’ methodology we will this proved inadequate. It did not permit zero as a stable out-
not know until layer O is fixed which methodology’s internal put as the network outputs tended to saturate with training.
modules better facilitate the design of layer 1. We then switched to a difference scheme in which the actual

Furthermore, Brooks fails to limit the suppression and/omovement control was the difference between two outputs

inhibition which may occur between layers, so that a highei(*0x and &x). This configuration allows the system to stably
level may randomly modify a lower-level's computation. learn and generate positive and negative movement, as well
This unrestricted suppression/inhibition combined with theds no movement at all.
unrestricted access problem described above permit comp  Aqgam controls its movements as follows. First, the 12
cated interactions among layers. In Brooks’ case, carefigangors are sampled and fed into layer 0, placing its sugges-
de5|gn_ keeps the interactions under control, and the_ resultition for 8x and 3y on the output lines. Layer 1 combines
behav!oral modules perform well together._ For evolving subihase same 12 sensor readings with the sum squared output
sumptive systems, however, such design-space freedcos jayer 0, calculates its suggestions 3aranddy, and adds
must be limited. these to the output lines. Layer 2 works similarly, and the
In this paper, we present an alternative approach to sufinal dx anddy values are translated automatically to motor
sumptive learning. Recognizing the multitude of formalismscontrols which move Addam the desired amount and direc-
with which to describe behaviors (Chandrasekaran antion.
Josephson, 1993), we explore the merits and drawbacks
adopting a connectionist implementation for our layets.
will be discussed below, our version of subsumption replace
Brooks’ FSAs with feedforward networks and additional cir-
cuitry, combined so that each module in a hierarchy respec

Note that we could have avoided feeding the sum-
squared activation line into each module Y gating the
output of M with the sum-squared line. We did not do this
because our architecture is more general; gating can be
learned as one of many behaviors by eagh®ur goal was
to have each module decider itself whether it should

2. CIiff (1991) makes a similar proposal from the context of comphecome active — had we used gating, this decision would
putational neuroethology, but does not offer an implementation. p3ve pbeen made by, predecessors.
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Figure 1: Addam’s internal architecture. Each module possesses only limited information about the activity
of its predecessors. Layer 1 receives only the sum-squared activation of layer 0, implenmegntSuirélarly,

layer 2 monitors the activity of its predecessors through a singleagplitirough training, each layer learns

to exert control only when relevant based on the current sensors, and when none of its predecessors is active.

Instead of lumping Addam with other subsumptive sysdayer has access only to the sum-squared output of all previ-
tems, we prefer to identify our architecturepmsemptive  ous layers, and any preemption of layeesults from a sin-
The modules are prioritized such that the behaviors assogte real value &). This eliminates the methodological
ated with the lower levels may take precedence over thogwoblem with multiple realizability: the inpu# to a layer
associated with the higher levels. Prioritization is reflectedlepends only omhatis computed below, not dmow it is
both architecturally as well as functionally. Architecturally, abeing computed.

lower level provides its outputs to higher levels. Function- A few more things should be noted about Addam’s archi-
ally, higher-level modules are trained to relinquish control it re ~First, it has no internal state (or equivalently Add-
a lower-level module is active. For example, suppose thal,s entire state is stored external to the agent in the
layer O behavior is to avoid predators, and layer 1 behavior [, ironment. as in Simon 1969). Second, a few of Addam’s

to seek out food. In the absence of any threatening agenfgnnections are fixed a priori. (The changeable connections

layer O would remain inactive and layer 1 would movey g those in the boxes labelled layer 0, 1, and 2, above.) This

Addam towards food. However if a predator suddenlyninimal structure is the skeleton required for preemption,

appeared, layer 0 would usurp control from layer 1 ang it does not assume any prewired behaviors.
Addam would flee. _ o
Finally, we should acknowledge the similarity of Add-

Earlier we criticized Brooks’ method of subsumption foram’s internal structure to the cascade correlation architecture
two of its freedoms: unrestricted access by one layer tof Fahiman and Lebiere (1990). There are several important
another’s internal state, and unrestricted modulation of differences, however. First, our system is comprised of sev-
lower-layer’s computation by suppression/inhibition from aeral cascadechodulesnstead of cascaddidden unitsSec-
higher-layer. Neither problem is present in Addam. A higheond, Fahlman and Lebiere’s higher-level hidden units



Figure 2: Training scenarios for level 0 behavior, along with desired responses. Circles denote patches of ice.
The scenarios capture a range of situations; from each, Addam’s target response moves it away from the ice.

function as higher-level feature detectors and hence mu  Training begins with level 0 competence, defined as the
receive input from all the preceding hidden units in the netability to avoid ice. The training scenarios are shown in
work. This can lead to a severe fan-in problem. Due to thFigure 2, along with the desired response for each scenario.
preemptive nature of our architecture, higher-level moduleModule 0 can successfully perform this behavior in about
need only know if any lower-level module is active, so they600 epochs of backpropagation (adjusted so that the fixed
require only a single additional input measuring total activa+1/-1 connections remain constant), and the connections of
tion of the previous modules. Third, Fahlman’s systenthis module are then frozen.

grows more hidden units over time, correlating each to th
current error. The nodes of our architecture are fixe

throughout_tralnmg, S0 _that modulanty IS not gch|eved b’Once again, training is problematic, because there are a com-
S'”_"'p_'y adding more_umts._FmaIIy, there IS a dlffereljce Mhinatorial number of environmental configurations involving
training: Fahiman gives his network a single functlon Cfood and ice. We solve this problem as follows. First, we
learn, whereas our SVSter.“ attempts to Iee_lrn a series of M{4efine 14 scenarios as above, but with food replacing ice.
and more complex behaviors. (More on this below.) This defines a set S of {(SensorValues, MoveToFoodOut-
put)} pairs. Note that this does not define a valueafothe
3 Training Addam activation of the system prior to module 1. (See Figure 1.)
Instead of forcing module 1 to recognize the presence of ice,
As mentioned above, Addam’s environment consists of threwe assume that module 0 is doing its job, and that when ice
types of objects: ice, food, and blocks. Ice is transparent aris present; will be >> 0. This allows us to define a training
odorless, and is hence detectable only by the tactile senscset T for level 1 behavior by prepending the extreme values
Blocks trigger both the tactile and visual sensors, and fooof a; to the SensorValues in S, thus doubling the number of
emits an odor which diffuses throughout the environmenconfigurations instead of having them grow exponentially:

and triggers the_olfactory_ Sensors. Addam ez_its (in one tinr T={{(0-SensorValues, MoveToFoodOutput)},
step) whenever it comes into contact with a piece of food. {(1-SensorValues, ZeroOutput)}}

Addam’s overall goal is to move towards food while Thus layer 1 (which is initially always active) must learn to
avoiding the other obstacles. This makes training problensuppress its activity in cases where it is not appropriate.

atic — the desired response is a complex behavior indext  ager |evel 1 competence is achieved (about 3500

over many environmental configurations, and yet we do N(gpqchs), a training set for level 2 competence (avoid blocks)
wish to restrict the possible solutions by specifying an entirig ghtained in a similar manner. Note again that this avoids
behavioral trajectory for a given situation. Beer and Galiha combinatorial explosion of specifying the many possible

lagher (1992) attempted to solve this problem by usiniqmpinations of ice, food, and blocks. Level 2 competence is
genetic algorithms, which respond to the agent's overall pe 4 hieved in about 1000 epochs.

formance instead of to any particular movement. We take

different approach, namely, we train Addamsamgle moves 4 Results

for a given number of scenarios, defined as one particuli

environmental configuration. Under this methodology, theOnce Addam was trained, we placed it in the complex envi-
extended movewvhich define Addam’s behavior emerge ronment of Figure 3. Its emergent behavior is illustrated in
from the complex interactions of the adaptive modules anthe top half of the figure, where the small dots trace out Add-
the environment. am's path. Each dot is one time step (defined as one applica-

We next train Addam on level 1 behavior, defined as the
ability to move towards foodassuming no ice is present.
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Figure 3: Addam’s emergent behavior in a complex environment. The dots in the upper figure trace Addam’s
path as it moves through the environment in search of food. The graph shows the activity of each of Addam’s
layers over time.

tion of the trained network to move one step), so the spacirand usurping control from layer 1. In other words, Addam's
indicates Addam's speed. aversion to ice overcomes its hunger, and it moves southeast.

Addam begins at (3.5, 1) touching nothing, so its tactiléb‘ﬂer “bouncing off” the ice, the tactile sensors return to

sensors register zero and layer 0 is inactive. The olfactofr0: and layer 1 regains control, forcing Addam back

sensors respond slightly to the weak odor gradient, causin %wards the ice. This time it hits the ice just a little farther

slight activation of layer 1, disabling the block-avoidance!©"th than the last time, so that when it bounces off again, it

behavior of layer 2. Thus we observe a constant eastwan?s made some net progress towards the food. After several

drift, along with random north-south movements due to th&€MPts, Addam successfully passes the ice and then moves

noise inherent in the sensors. As Addam approaches tf¥ectly towards the food.

food, the odor gradient inqreases, the olfactory sensors To reach the third piece of food, Addam must navigate
become more and more active, and 'a¥er 1 responds MOiBwn a narrow corridor, demonstrating that its layer 1
and more strongly. When the random noise becomes negligiap o ior can override its layer 2 behavior of avoiding blocks
ble_ at ‘T"bOUt (6.5, 1), Addam speeds up and reaches the fo hich would repel it from the corridor entrance). After fin-
which is consumed. ishing the last piece of food, Addam is left near a wall,
Subsequently, Addam detects the faint odor of anothelthough it is not in contact with it. Thus both the tactile and
piece of nearby food, and once again layer 1 controls itglfactory sensors output zero, so both layers 0 and 1 are inac-
movement. However, at about (9, 5.5) Addam's tactile sertive. This allows Addam's block avoidance behavior to
sors detect the presence of a piece of ice, activating layer ecome activated. The visual sensors respond to the open



area to the north, so Addam slowly makes its way in thgust as easily been trained by either genetic or correlation
direction. When it reaches the middle of the enclosure, thalgorithms.

visual sensors are balanced and Addam halts (except f  our work also sheds light on the issue of neural network
small random movements based on the noise in the Se”SO'representations for agents. Collins and Jefferson (1991)

The bottom half of Figure 3 shows the activation of eacteXPlored such representations, but found them lacking
layer i of the system (where the activation of layeis because of their inability to shift behavior based on changing

(3x,3y);||, the norm of layef's contribution to the output inputs. Preemption offers one way in which these shifts may

lines). Ly is generally quiet, but becomes active betweerP® obtained.

time t=52 and t=64 when Addam encounters an ice patc/ One drawback, or at least cause for concern, with our
and shows some slight activity around t=140 and t=16imethod of preemption arises from the way in which the
when Addam’s tactile sensors detect blocks(‘approach  structural modules were defined. First, as with Brooks’ sub-
food” behavior) is active for most of the session except whesumption, we used a behavioral decomposition to define the
preempted by the “avoid ice” behavior of,las between number of modules, and second, we assumed a fixed net-
t=52 and t=64. The 5 peaks in's activity correspond to work architecture for each module. Angeline (1994) has
Addam’s proximity to the 5 pieces of food as it eat themexplored how modularization can arise without a behavioral
when the last piece of food is consumed at t=164,dctiv-  decomposition, and elsewhere, we have explored how the
ity begins to decay as the residual odor disperses. Finally, vstructure of a module (i.e., number of hidden units and net-
see that L (“avoid blocks” behavior) is preempted for work connectivity) can arise from an evolutionary program
almost the entire session. It starts to show activity only ¢(Saunders, Angeline, and Pollack, 1994).

about =160, when all the food is gone and Addam is awa  Many of the problems of training behavior-based sys-
from any ice. The activity of this layer peaks at about t=19Ctems stem from the failure to recognize the multiplicity of
and then decays to 0 as Addam reaches the center of its rOjevels in agents. We whole-heartedly agree with Brooks that

and the visual sensors balance. the level of behaviors is particularly useful for the expression
of design constraints. The level of FSAs may also be useful
5 Remarks for refining the behavioral description. Yet, in the context of

evolving agents, the network level is more appropriate. Our
The behavior of Chandrasekaran and Josephson’s coin sorconnectionist approach maintains the benefits of subsump-
is best described by appealing to multiple levels of behaviction: a behavior-based view, incremental construction of the
(Chandrasekaran and Josephson, 1993). Addam is beagent, and distributed control. But, in addition to the perfor-
described in a similar way. At one level, it is an agent whictmance and training benefits described above, the neural net-
exhibits only three behaviors: avoid ice, go to food, anwork substrate offers a many-to-many mapping between
avoid blocks. But the underlying connectionist levels lealstructure and behavior: a single module can affect multiple
through in the complex interaction that allows Addam tcbehaviors, and a single behavior can arise from the interac-
navigate around the ice in Figure 3. Had Addam been impletion of multiple modules. Chandrasekaran and Josephson
mented as a set of FSAs, such complex behavior would nproposed such leaking from a philosophical point of view;
have emerged; it would have required explicit design (Carihere we have shown how leaking occurs naturally and aids
ani, 1989). Similarly, had preemption been absolute, Addarperformance in an evolved connectionist system.
would have become stuck at the ice as module 0 and modt
1 alternately controlled the agent’s behavior. Acknowledgments
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Abstract

From the many possible perspectives in which an
agent may be viewed, behavior-based Al selects
observable actions as a particularly useful level of
description. Yet behavior is clearly not structure,
and anyone using behavior-based constraints to
construct an agent still faces many implementa-
tional roadblocks. Such obstacles are typically
avoided by adopting a finite state automaton (FSA)
as a base representation. As a result, potential bene-
fits from alternative formalisms are ignored. To
explore these benefits, our work adopts a multi-
level view of an agent: behaviors and FSAs are but
two of many levels of description. We still focus on
behaviors for the expression of design constraints,
but we avoid using FSAs as an implementation.
Our particular agent, Addam, is comprised of a set
of connectionist networks, a substrate which pro-
motes the automatic design of subsumptive sys-
tems. Moreover, the implementational choice has
important behavioral consequences — some com-
plex behaviors emerge due to interactions among
networks and need not be specified explicitly. In
this way, the underlying layerteak into one
another, each affecting the others in subtle and
desirable ways.

1 Introduction

different directions: e.g., connectionism (Hinton et al., 1986;

McClelland et al., 1986), situated action (compare Vera and
Simon, 1993, with Agre, 1993), the observers’ paradox

(Kolen and Pollack, 1993, to appear), and others (e.g.,
Searle, 1993). Most recently, those studying the simulation
of adaptive behavior have stressed that intelligence should
not be viewed simply as knowledge and goals held together
with procedural glue; there is much to learn from studying

intelligence through self-sufficient agents competent to exist
in the world (Meyer and Guillot, 1991; Wilson, 1991).

Yet we often forget that agents can be viewed at multiple
levels of description, and as Chandrasekaran and Josephson
(1993) point out, there is no single level of description which
captures all aspects of an agent’'s behavior. To borrow their
example, a simple coin sorter can be described as an abstract
machine which classifies coins based on their weight and
diameter, but if a lever jams, then the physical nature of the
device becomes particularly important. Chandrasekaran and
Josephson propose that agents be described by a set of
“leaky levels,” where each level of description contributes to
the overall story of agent behavior, but the total picture arises
due to the way the various levels interact.

The lesson is an important one, but it fails to address an
important question: How does the recognition of multiple
levels of description help one to implement an intelligent
agent? In particular, how should one approach the task of
constructing an agent which satisfies multiple behavioral

Historically, Al has viewed agents from the Knowledgeconstraints?

Level (Newell, 1982), in which an individual is character-  gyooks (1986, 1991) proposes an interesting answer to
ized by its knowledge, goals, and rationalifjhe abstract thig question. Rather than observing a set of behavioral con-
nature of this level has been called into question from mangiraints and reasoning “The agent must have functional mod-
ules for perception, planning, etc.,” one can remain more
1. While none of these terms is ever rigorously defined, knowledcfaithful to the actual observations by constructing an agent
is the set of “beliefs” of the agent, a goal is a desired state (of ttwhich satisfies the first behavioral constraint, and then incre-
world, for instance), and the principle of rationality stipulates thamentally adding layers of structure to satisfy the remaining
an agent will use its knowledge to accomplish its goals. constraints sequentially. This behavior-based stance removes




a large bias on the part of the designer: modules arise frothe historical prerogatives of those below it, and only asserts
directly observable constraints on behavior rather than funits own control when confident. Given this basic architec-
tional constraints implicit in the mind of the designer. ture, we demonstrate how multiple behavioral constraints

Unfortunately, Brooks does not go far enough. After percan be trans_lated into network-level C(_)ns_traints. Finally, we
forming a behavioral decomposition to define the functionalfj'scuss the importance of the connectionist substrate for the
ity of a layer, he then proceeds to design a set of finite staMPlementation of leaky levels which produce emergent
automata (FSAs) to implement that layer. Yet, this is preP€havior in an agent.
cisely the type of functional decomposition he warns agains
(Brooks, 1991, p. 146). One might appeal to learning t« 2 Additive Adaptive Modules
avoid performing this functional decomposition by hand, bu
current work in automating behavior-based design focuseQur control architecture consists of a set of Additive Adap-
instead on learning the interactions between preexistintive Modules, instantiated @sidam an agent which lives in
behavioral modules (e.g., Maes, 1991). a world of ice, food, and blocks. To survive in this world,
Addam possesses 3 sets of 4 (noisy) sensors distributed in
the 4 canonical quadrants of the plane. The first set of sen-
sors is tactile, the second olfactory, and the third visual
(implemented as sonar that passes through transparent
objects). Unlike other attempts at learning that focus on a
single behavior such as walking (Beer and Gallagher, 1992),
we chose to focus on the subsumptive interaction of several
behaviors; hence, Addam’s actuators are a level of abstrac-
tion above leg controllers (similar to Brooks, 1986). Thus,
Addam moves by simply specifyirdx anddy.

We feel that the reliance upon designed modules aris¢
from choosing FSAs as the level in which to implement sub
sumptive systems; in particular, from the arbitrary ways ir
which FSAs interact. Brooks achieves modularity througt
task-based decomposition of complex behavior into a set «
simpler behaviors. In his system, for example, layer 0 imple
ments obstacle avoidance and layer 1 controls wanderin
Activity in layer 1 suppresses the activity of layer 0, and ye
obstacles are still avoided becadager 1 subsumes the
obstacle avoidance behavior of layer I8. order to avoid
duplication of lower layers as subparts of higher layers, h  Internally, Addam consists of a set of feedforward con-
allows the higher layers to randomly access the internal connectionist networks, connected as shown in Figure 1. The 12
ponents of any lower level FSAs. This fact, combined wittinput lines come from Addam’s sensors; the 2 output lines
multiple realizability of layers forces us to question Brooks’are fed into actuators which perform the desired movement
design methodology: development of single layer compe(dx, dy). Note that we desiréx, dy (-1, 1) so that Addam
tence, freezing it, and then layering additional competenciemay move in the positive or negative direction. Initially, we
on top of the first. If layer O can be realized equally well byimplemented desired movement as a single scalar value, but
method M or My, then under Brooks’ methodology we will this proved inadequate. It did not permit zero as a stable out-
not know until layer O is fixed which methodology’s internal put as the network outputs tended to saturate with training.
modules better facilitate the design of layer 1. We then switched to a difference scheme in which the actual

Furthermore, Brooks fails to limit the suppression and/omovement control was the difference between two outputs

inhibition which may occur between layers, so that a highei(*0x and &x). This configuration allows the system to stably
level may randomly modify a lower-level's computation. learn and generate positive and negative movement, as well
This unrestricted suppression/inhibition combined with theds no movement at all.
unrestricted access problem described above permit comp  Aqgam controls its movements as follows. First, the 12
cated interactions among layers. In Brooks’ case, carefigangors are sampled and fed into layer 0, placing its sugges-
de5|gn_ keeps the interactions under control, and the_ resultition for 8x and 3y on the output lines. Layer 1 combines
behav!oral modules perform well together._ For evolving subihase same 12 sensor readings with the sum squared output
sumptive systems, however, such design-space freedcos jayer 0, calculates its suggestions 3aranddy, and adds
must be limited. these to the output lines. Layer 2 works similarly, and the
In this paper, we present an alternative approach to sufinal dx anddy values are translated automatically to motor
sumptive learning. Recognizing the multitude of formalismscontrols which move Addam the desired amount and direc-
with which to describe behaviors (Chandrasekaran antion.
Josephson, 1993), we explore the merits and drawbacks
adopting a connectionist implementation for our layets.
will be discussed below, our version of subsumption replace
Brooks’ FSAs with feedforward networks and additional cir-
cuitry, combined so that each module in a hierarchy respec

Note that we could have avoided feeding the sum-
squared activation line into each module Y gating the
output of M with the sum-squared line. We did not do this
because our architecture is more general; gating can be
learned as one of many behaviors by eagh®ur goal was
to have each module decider itself whether it should

2. CIiff (1991) makes a similar proposal from the context of comphecome active — had we used gating, this decision would
putational neuroethology, but does not offer an implementation. p3ve pbeen made by, predecessors.
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Figure 1: Addam’s internal architecture. Each module possesses only limited information about the activity
of its predecessors. Layer 1 receives only the sum-squared activation of layer 0, implenmegntSuirélarly,

layer 2 monitors the activity of its predecessors through a singleagplitirough training, each layer learns

to exert control only when relevant based on the current sensors, and when none of its predecessors is active.

Instead of lumping Addam with other subsumptive sysdayer has access only to the sum-squared output of all previ-
tems, we prefer to identify our architecturepmsemptive  ous layers, and any preemption of layeesults from a sin-
The modules are prioritized such that the behaviors assogte real value &). This eliminates the methodological
ated with the lower levels may take precedence over thogwoblem with multiple realizability: the inpu# to a layer
associated with the higher levels. Prioritization is reflectedlepends only omhatis computed below, not dmow it is
both architecturally as well as functionally. Architecturally, abeing computed.

lower level provides its outputs to higher levels. Function- A few more things should be noted about Addam’s archi-
ally, higher-level modules are trained to relinquish control it re ~First, it has no internal state (or equivalently Add-
a lower-level module is active. For example, suppose thal,s entire state is stored external to the agent in the
layer O behavior is to avoid predators, and layer 1 behavior [, ironment. as in Simon 1969). Second, a few of Addam’s

to seek out food. In the absence of any threatening agenfgnnections are fixed a priori. (The changeable connections

layer O would remain inactive and layer 1 would movey g those in the boxes labelled layer 0, 1, and 2, above.) This

Addam towards food. However if a predator suddenlyninimal structure is the skeleton required for preemption,

appeared, layer 0 would usurp control from layer 1 ang it does not assume any prewired behaviors.
Addam would flee. _ o
Finally, we should acknowledge the similarity of Add-

Earlier we criticized Brooks’ method of subsumption foram’s internal structure to the cascade correlation architecture
two of its freedoms: unrestricted access by one layer tof Fahiman and Lebiere (1990). There are several important
another’s internal state, and unrestricted modulation of differences, however. First, our system is comprised of sev-
lower-layer’s computation by suppression/inhibition from aeral cascadechodulesnstead of cascaddidden unitsSec-
higher-layer. Neither problem is present in Addam. A higheond, Fahlman and Lebiere’s higher-level hidden units



Figure 2: Training scenarios for level 0 behavior, along with desired responses. Circles denote patches of ice.
The scenarios capture a range of situations; from each, Addam’s target response moves it away from the ice.

function as higher-level feature detectors and hence mu  Training begins with level 0 competence, defined as the
receive input from all the preceding hidden units in the netability to avoid ice. The training scenarios are shown in
work. This can lead to a severe fan-in problem. Due to thFigure 2, along with the desired response for each scenario.
preemptive nature of our architecture, higher-level moduleModule 0 can successfully perform this behavior in about
need only know if any lower-level module is active, so they600 epochs of backpropagation (adjusted so that the fixed
require only a single additional input measuring total activa+1/-1 connections remain constant), and the connections of
tion of the previous modules. Third, Fahlman’s systenthis module are then frozen.

grows more hidden units over time, correlating each to th
current error. The nodes of our architecture are fixe

throughout_tralnmg, S0 _that modulanty IS not gch|eved b’Once again, training is problematic, because there are a com-
S'”_"'p_'y adding more_umts._FmaIIy, there IS a dlffereljce Mhinatorial number of environmental configurations involving
training: Fahiman gives his network a single functlon Cfood and ice. We solve this problem as follows. First, we
learn, whereas our SVSter.“ attempts to Iee_lrn a series of M{4efine 14 scenarios as above, but with food replacing ice.
and more complex behaviors. (More on this below.) This defines a set S of {(SensorValues, MoveToFoodOut-
put)} pairs. Note that this does not define a valueafothe
3 Training Addam activation of the system prior to module 1. (See Figure 1.)
Instead of forcing module 1 to recognize the presence of ice,
As mentioned above, Addam’s environment consists of threwe assume that module 0 is doing its job, and that when ice
types of objects: ice, food, and blocks. Ice is transparent aris present; will be >> 0. This allows us to define a training
odorless, and is hence detectable only by the tactile senscset T for level 1 behavior by prepending the extreme values
Blocks trigger both the tactile and visual sensors, and fooof a; to the SensorValues in S, thus doubling the number of
emits an odor which diffuses throughout the environmenconfigurations instead of having them grow exponentially:

and triggers the_olfactory_ Sensors. Addam ez_its (in one tinr T={{(0-SensorValues, MoveToFoodOutput)},
step) whenever it comes into contact with a piece of food. {(1-SensorValues, ZeroOutput)}}

Addam’s overall goal is to move towards food while Thus layer 1 (which is initially always active) must learn to
avoiding the other obstacles. This makes training problensuppress its activity in cases where it is not appropriate.

atic — the desired response is a complex behavior indext  ager |evel 1 competence is achieved (about 3500

over many environmental configurations, and yet we do N(gpqchs), a training set for level 2 competence (avoid blocks)
wish to restrict the possible solutions by specifying an entirig ghtained in a similar manner. Note again that this avoids
behavioral trajectory for a given situation. Beer and Galiha combinatorial explosion of specifying the many possible

lagher (1992) attempted to solve this problem by usiniqmpinations of ice, food, and blocks. Level 2 competence is
genetic algorithms, which respond to the agent's overall pe 4 hieved in about 1000 epochs.

formance instead of to any particular movement. We take

different approach, namely, we train Addamsamgle moves 4 Results

for a given number of scenarios, defined as one particuli

environmental configuration. Under this methodology, theOnce Addam was trained, we placed it in the complex envi-
extended movewvhich define Addam’s behavior emerge ronment of Figure 3. Its emergent behavior is illustrated in
from the complex interactions of the adaptive modules anthe top half of the figure, where the small dots trace out Add-
the environment. am's path. Each dot is one time step (defined as one applica-

We next train Addam on level 1 behavior, defined as the
ability to move towards foodassuming no ice is present.
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Figure 3: Addam’s emergent behavior in a complex environment. The dots in the upper figure trace Addam’s
path as it moves through the environment in search of food. The graph shows the activity of each of Addam’s
layers over time.

tion of the trained network to move one step), so the spacirand usurping control from layer 1. In other words, Addam's
indicates Addam's speed. aversion to ice overcomes its hunger, and it moves southeast.

Addam begins at (3.5, 1) touching nothing, so its tactiléb‘ﬂer “bouncing off” the ice, the tactile sensors return to

sensors register zero and layer 0 is inactive. The olfactofr0: and layer 1 regains control, forcing Addam back

sensors respond slightly to the weak odor gradient, causin %wards the ice. This time it hits the ice just a little farther

slight activation of layer 1, disabling the block-avoidance!©"th than the last time, so that when it bounces off again, it

behavior of layer 2. Thus we observe a constant eastwan?s made some net progress towards the food. After several

drift, along with random north-south movements due to th&€MPts, Addam successfully passes the ice and then moves

noise inherent in the sensors. As Addam approaches tf¥ectly towards the food.

food, the odor gradient inqreases, the olfactory sensors To reach the third piece of food, Addam must navigate
become more and more active, and 'a¥er 1 responds MOiBwn a narrow corridor, demonstrating that its layer 1
and more strongly. When the random noise becomes negligiap o ior can override its layer 2 behavior of avoiding blocks
ble_ at ‘T"bOUt (6.5, 1), Addam speeds up and reaches the fo hich would repel it from the corridor entrance). After fin-
which is consumed. ishing the last piece of food, Addam is left near a wall,
Subsequently, Addam detects the faint odor of anothelthough it is not in contact with it. Thus both the tactile and
piece of nearby food, and once again layer 1 controls itglfactory sensors output zero, so both layers 0 and 1 are inac-
movement. However, at about (9, 5.5) Addam's tactile sertive. This allows Addam's block avoidance behavior to
sors detect the presence of a piece of ice, activating layer ecome activated. The visual sensors respond to the open



area to the north, so Addam slowly makes its way in thgust as easily been trained by either genetic or correlation
direction. When it reaches the middle of the enclosure, thalgorithms.

visual sensors are balanced and Addam halts (except f  our work also sheds light on the issue of neural network
small random movements based on the noise in the Se”SO'representations for agents. Collins and Jefferson (1991)

The bottom half of Figure 3 shows the activation of eacteXPlored such representations, but found them lacking
layer i of the system (where the activation of layeis because of their inability to shift behavior based on changing

(3x,3y);||, the norm of layef's contribution to the output inputs. Preemption offers one way in which these shifts may

lines). Ly is generally quiet, but becomes active betweerP® obtained.

time t=52 and t=64 when Addam encounters an ice patc/ One drawback, or at least cause for concern, with our
and shows some slight activity around t=140 and t=16imethod of preemption arises from the way in which the
when Addam’s tactile sensors detect blocks(‘approach  structural modules were defined. First, as with Brooks’ sub-
food” behavior) is active for most of the session except whesumption, we used a behavioral decomposition to define the
preempted by the “avoid ice” behavior of,las between number of modules, and second, we assumed a fixed net-
t=52 and t=64. The 5 peaks in's activity correspond to work architecture for each module. Angeline (1994) has
Addam’s proximity to the 5 pieces of food as it eat themexplored how modularization can arise without a behavioral
when the last piece of food is consumed at t=164,dctiv-  decomposition, and elsewhere, we have explored how the
ity begins to decay as the residual odor disperses. Finally, vstructure of a module (i.e., number of hidden units and net-
see that L (“avoid blocks” behavior) is preempted for work connectivity) can arise from an evolutionary program
almost the entire session. It starts to show activity only ¢(Saunders, Angeline, and Pollack, 1994).

about =160, when all the food is gone and Addam is awa  Many of the problems of training behavior-based sys-
from any ice. The activity of this layer peaks at about t=19Ctems stem from the failure to recognize the multiplicity of
and then decays to 0 as Addam reaches the center of its rOjevels in agents. We whole-heartedly agree with Brooks that

and the visual sensors balance. the level of behaviors is particularly useful for the expression
of design constraints. The level of FSAs may also be useful
5 Remarks for refining the behavioral description. Yet, in the context of

evolving agents, the network level is more appropriate. Our
The behavior of Chandrasekaran and Josephson’s coin sorconnectionist approach maintains the benefits of subsump-
is best described by appealing to multiple levels of behaviction: a behavior-based view, incremental construction of the
(Chandrasekaran and Josephson, 1993). Addam is beagent, and distributed control. But, in addition to the perfor-
described in a similar way. At one level, it is an agent whictmance and training benefits described above, the neural net-
exhibits only three behaviors: avoid ice, go to food, anwork substrate offers a many-to-many mapping between
avoid blocks. But the underlying connectionist levels lealstructure and behavior: a single module can affect multiple
through in the complex interaction that allows Addam tcbehaviors, and a single behavior can arise from the interac-
navigate around the ice in Figure 3. Had Addam been impletion of multiple modules. Chandrasekaran and Josephson
mented as a set of FSAs, such complex behavior would nproposed such leaking from a philosophical point of view;
have emerged; it would have required explicit design (Carihere we have shown how leaking occurs naturally and aids
ani, 1989). Similarly, had preemption been absolute, Addarperformance in an evolved connectionist system.
would have become stuck at the ice as module 0 and modt
1 alternately controlled the agent’s behavior. Acknowledgments
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