
Evolving Assembly Plans for Fully Automated Design and Assembly

John Rieffel
jrieffel@cs.brandeis.edu

(781) 736-3366

Jordan Pollack
pollack@cs.brandeis.edu

DEMO Lab, Brandeis University
415 South St Waltham, MA 02454

Abstract

Evolutionary Design has demonstrated great potential
to automatically generate a wide array of novel, interest-
ing, and human-competitive designs. Few of these evolved
designs, however, have in turn been physically manufac-
ture. This is due largely to the fact that most evolved de-
signs only specify what to build, and carry no information
on how, or even if, a designed object can be assembled in
the real world. When the goal is a physical object, rather
than a mere schematic, substantial further effort, most often
human-level, is subsequently required to develop a physical
assembly process. Evolution of such descriptive represen-
tations therefore stands as an obstacle to the full automa-
tion of both design and assembly. In this paper we describe
an alternative, the evolution of prescriptive representations,
which offers to remove human effort from the design-and-
assembly loop.

1 Introduction

Evolutionary Algorithms (EAs) have recently been used
to design, without human involvement, a wide array of
novel and interesting objects. Yet very few of these evolved
designs have been transferred from simulation to reality –
the two most notable examples perhaps being Lohn et al’s
evolved antenna [9], due to be launched into space aboard
a Low Earth Orbit satellite, and Pollack et al’s evolved
robots [11].

Despite being designed without human input, none of
the physically-manifested evolved designs were in turn au-
tomatically assembled. Rather, they required significant hu-
man effort and insight to transfer them from simulation to
the real world. Funes’ LEGO structures [4], for instance,
had to be assembled on a horizontal surface and then slowly
tilted into place. Lohn et al’s evolved antennas had to be
expertly bent and soldered into place by hand, with extreme
care taken to preserve the precise measurements specified
by the evolved design. Our interest is in removing human

effort from the assembly of, not just the design of, evolved
objects. other words to fully automate both design and as-
sembly. Crucial to this Fully Automated Design and As-
sembly are two things: evolving how to build rather than
what to build, and simulating the entire process of an ob-
ject’s assembly.

2 Blueprints and Assembly Sequence Plan-
ning

The majority of Evolutionary Design systems have pro-
duced, as their product, a descriptive representation of the
designed object, such as a blueprint. When simple schemat-
ics are the end-goal of Evolutionary Design, then such de-
scriptive representations are sufficient - and many impres-
sive human-competitive results have emerged from such
systems, as demonstrated by recent winners of the human-
competitive competition at GECCO 2005 such as Lohnet
al’s antennas [9], and Lipson’s straight-line drawer [8].

When, however, the aim is to produce a physical object,
then the evolved descriptive representations require signifi-
cant further effort, most often human level, to generate the
actual object. This is due to the fact that descriptive rep-
resentations describe what to build, but contain no informa-
tion about how to build - just as looking at a photograph of a
meal provides little insight into how to cook it. The further
effort therefore lies in inferring the actual assembly process
required to create the physical object.

While the process of determining an assembly sequence
for a given blueprint may come readily to humans, it is
much harder to solve computationally. In fact, there is an
entire field of engineering, Assembly Sequence Planning,
which studies this very task. The complexity of Assembly
Sequence Planning has been well studied, and it has been
proven to be NP-complete in the general case [7].

3 Direct Evolution of Assembly Plans

The closest that the field of Evolutionary Design has
come to Fully Automated Design and Assembly is Hornby’s

1



evolved tables [5]. His voxel-based representations were
converted into STL - a CAD format which was then in-
terpreted by a rapid-prototyping machine, which in turn
printed the object out of plastic. While approaches such
as this may reduce human involvement, they don’t elimi-
nate it - and may in fact only defer it. Significant human
effort was necessary to create the means by which the rapid
prototyping machine could translate an STL file into a se-
ries of commands to the print-head. More importantly, such
a solution is brittle, if the entire machine were tilted at a
slight angle, the printed object would no longer resemble
the original design, and an entirely new human-designed
STL-to-printer translation system would be needed. We are
interested, therefore, in more dynamic and adaptive meth-
ods.

This begs the question: rather than rely on some brittle
translation between descriptive representation and assembly
process, why not evolve rapid prototyping machine instruc-
tions directly? Such evolution of prescriptive representa-
tions allows us to design the process of assembly rather than
the subject of assembly. Unlike blueprints, prescriptive rep-
resentations can provide step-by-step instructions on how
to build an evolved design. In their simplest form, prescrip-
tive representations are merely assembly plans: sequential,
ballistic 1 , sets of instructions to an assembly mechanism,
which when executed results in the construction of an ob-
ject.

As linear sets of instructions, a key advantage of assem-
bly plans is that they can be directly interpreted by an as-
sembly mechanism, without the need for further human in-
tervention, and so they allow for the full automation of as-
sembly.

Prescriptive representations are in fact not uncommon in-
termediate representations in Evolutionary Design. Both
Hornby’s tables [6] and Toussaint’s virtual plants [14] for
instance, were “built” by a LOGO-like turtle interpreting a
linear set of instructions to place OpenGL voxels in simula-
tion space. In neither case, however, was this process meant
to be analogous to an actual physical assembly process.

Evolving for automated assembly requires that Evolu-
tionary Design simulate an object’s entire assembly pro-
cess, not just its final behavior. In this work we use Arti-
ficial Ontogenies, a form of Evolutionary Design that takes
its inspiration from biological processes of growth and de-
velopment, as a tool for exploring these issues of auto-
mated assembly. Unlike the majority of Artificial Onto-
genies, however, we do not take the process of assembly,
nor the environment in which it occurs, for granted. Rather,
we use what we describe as Situated Development: Artifi-
cial Ontogenies in which an object’s assembly is subject to
the same environment as its evaluation as a complete ob-

1That is to say, without any ability to test intermediate results, or alter
their behavior mid-assembly

ject. The best recent example of Situated Development is
Bongard’s Gene-Regulatory Networks [1], which slowly
“grew” a robotic morphology piece-by-piece in a realistic
physics environment. Like Hornby and Toussaint’s work
above, however, this process was not meant to be analogous
to physical assembly.

The situated development environment which we use,
based upon a realistic 3-D dynamics engine, is constructed
so that it is akin to an automated manufacturing process,
and therefore provides a framework for exploring fully au-
tomated design and manufacture.

4 A Framework for Simulating Fully Auto-
mated Design and Assembly

We have discussed how prescriptive representations
evolved within the context of Situated Development allow
for the evolution of buildable objects, and can lead to the
full automation of physical assembly. We now introduce a
framework we have created for simulating the process of
fully automated design and assembly, and discuss results
obtained from experiments run within that framework.

4.1 Earlier Work: Assembly Plans for Simple 2-D
Structures

This is in many ways an extension of our earlier work
on evolving assembly plans within stochastic development
environments [12, 13]. In that work, our environment con-
sisted of a discrete 10x10 grid with “tetris”-like physics.
The goal of those experiments was to evolve assembly plans
capable of building a goal structure - an arch - with high re-
liability, despite the the noisy environment. Our evolved as-
sembly plans were able to overcome the stochastic physics
and achieve high yields by placing what we called ontogenic
scaffolding: intermediate structural elements that supported
the goal structure during assembly, but were removed be-
fore final evaluation. The important result of this work was
the demonstration that mechanisms such as ontogenic scaf-
folding could emerge in ballistic assembly plans, using only
evolutionary-scale feedback.

4.2 A Situated Development Environment

While an important result, our 2-D, grid-based, tetris-
physics assembly environment was far from realistic. In
this paper we are more interested in more realistically sim-
ulating an assembly mechanism, and on the effects of such
an environment on the evolution of assembly plans.

In the context of this environment, we begin by evolv-
ing assembly plans for a goal structure (again, an arch).
We then remove the need for an explicit goal structure, and

2



Figure 1. Assembly has three stages. In the
first, both permanent and temporary bricks
are placed. In the second, adjacent perma-
nent bricks are glued together, and scaffold-
ing is removed. Finally, the remaining struc-
ture settles.

evolve assembly plans for structures with more implicit de-
sign goals.

Our simulated assembly system is based upon the Open
Dynamics Engine (ODE) 2 the widely used open-source
physics engine, which provides high-performance simula-
tions of 3D rigid body dynamics. Assembly is performed by
a LOGO-like turtle, acting as a print head or pick-and-place
arm, which is capable of movement in the X-Z plane, and of
depositing 2x1x1 bricks in the environment. When strung
into a sequence, commands to the turtle (move, rotate, put
brick, take brick) form an assembly plan. Commands which
would cause the turtle to move outside the target area, or
place a brick where a brick already exists, are ignored. The
speed of an ODE simulation is heavily influenced by the
number of objects being simulated. Consequently, the max-
imum number of objects placed by any assembly plan was
limited to 25.

Since our earlier work demonstrated the ability of simi-
lar systems to discover scaffolding using only evolutionary-
scale feedback [12, 13], we chose to allow for the explicit
placement of scaffolding. The machine is therefore capable
of placing two kinds of bricks: permanent ones (shown as
black in the animation frames), and temporary ones(shown
in gray), which are removed once the assembly is com-
pleted. Modern models of rapid prototyping machines have
similar capabilities.

The assembly process falls into three stages (Figure 1).
In the first, the machine interprets the assembly plan, mov-
ing around and placing bricks as directed. Although each
assembly instruction is executed at discrete time intervals,
the assembly space dynamics are continuously evaluated.
In this stage, each brick is a separate component in the en-
vironment, subject to gravity and interactions (such as col-
lisions) with other objects. Once assembly is complete and
the structure is stable, the scaffolding is removed and adja-
cent bricks are glued together (but not to the floor). Finally,
once the scaffolding is gone, the final structure is allowed
to come to a rest.

2www.ode.org

Table 1. Parameterized Assembly Instructions

Instruction Parameters
(M)ove +2, +1, -1, -2
(Rotate +90, -90, +180
(P)ut Brick (a)head, to (r)ight, to (left), (b)ehind
Put (S)caffolding (a)head, to (r)ight, to (l)eft, (b)ehind
(T)ake Brick (none)

5 Experiments

Two sets of Evolutionary Multi-Objective Optimization
(EMOO) [2] experiments were run in this Situated Assem-
bly system. In the first, we evolve an assembly plan to
build a pre-defined arch goal structure, similar to the one
evolved in our earlier work [12] (except of course, for being
three-dimensional). Secondly, we evolve assembly plans
for structures with an implicit goal.

5.1 Method

In each case, the genotypes of the system consisted of
assembly plans: sequential set of parameterized instructions
to the assembly system. Table 1 lists the instructions used.

The evolutionary framework used was based upon Multi-
Objective Optimization (MOO) [2]. Since the scope of this
paper is about the use of Artificial Ontogenies to simulate
Fully Automated Design and Assembly, not on the advan-
tages of any particular algorithm, we refer the reader to our
earlier work [12] for details of the system used. In each
experiment, the initial population was created with 30 ran-
dom genotypes, with randomized length between 8 and 40
instructions. After each generation was evaluated, the N
non-dominated individuals (i.e. pareto front) were selected
as parents, and N new individuals generated using two-point
crossover (60%) and mutation (2% per locus), were added
to the population. In order to limit population sizes, dupli-
cate genotypes were rejected, and duplicate objective values
were limited using crowding [10], with a limit of 3 individ-
uals per bin.

5.2 Evolving Assembly Plans for an Explicit Goal

While the full power of Evolutionary Design lies in open
ended design, there is often the need to determine whether
a pre-determined structure is at all buildable by a specified
automated assembly mechanism. In this context, the goal
is to find a suitably efficient assembly plan which, when
interpreted by that mechanism, results in the goal struc-
ture. This is, in a sense, automating the task of Assembly
Sequence Planning from the bottom-up. We began, there-

3



fore, by evolving assembly plans capable of building a pre-
determined goal structure, as in our earlier work. For the
sake of consistency we once again chose an arch (shown in
the last frame of Figure 2).

In order to compare each resulting structure to the goal
structure, a simple bitmap was generated by sampling the
central

�������������
region (where b is the width of a brick) in

the X-Z plane, at a resolution of � 	 � . This bitmap was then
compared to a corresponding bitmap of the goal structure.

The specific objectives used were as follows (in each
case, smaller values are considered more fit): length of
genotype, mass of phenotype, number of squares missing
from the goal structure, and number of “wrong” (i.e. either
extraneous or missing) squares. These objectives are iden-
tical to the ones used to evolve the goal arch in our earlier
2-D grid-based work.

The first two objectives exist for more than just deter-
rence against bloat, per [3]. Rather, they also reward assem-
bly plans for efficiency in terms of time (the length objec-
tive) and in terms of material (the mass objective). Physical
prototyping machines are slow, and require expensive mate-
rial - therefore any reduction in print time or print material
is highly valuable.

Figure 2 shows animation frames from a representative
evolved solution. (Full color images of all results, as well as
animations, are available at the author’s web page 3 ). Dis-
covered after roughly 2000 generations and with a length
of 22 instructions, it is able to perfectly generate the goal
structure. By comparison, we were unable to produce a
hand-built assembly plan shorter than 29 instructions.

This efficiency is due largely to the novel placement of
the vertical scaffolding used to hold up the center section
of the arch. Each vertical scaffolding brick is placed di-
rectly under the center of mass of the brick it supports. This
placement location exists between two of the discrete print-
head positions, and so could not have been placed directly.
Rather, it is dropped horizontally onto the leg sections and
subsequently topples vertically into its final location. In
fact, if it had been placed directly into one of the adjacent
positions, it wouldn’t have been under the supported brick’s
center of mass, and the supported brick might have tilted
sideways.

5.3 Evolving Assembly Plans with for Implicit
Goals

Having evolved assembly plans for a pre-determined
goal structure, we now evolved assembly plans for struc-
tures with implicit goals. This allows for more open-ended
design, and follows the lead of several earlier evolved de-
signs.

3www.cs.brandeis.edu/˜jrieffel/situated-development/

Figure 3. Shading Fitness Function. Only the
gray region is shaded by the black structure.

We chose a simple “shaded area” fitness function, which
measures the total amount of open volume beneath a struc-
ture. First a bitmap of the resulting structure is created in
the same fashion as above. Then, every region (x,z) of
the bitmap which is empty and underneath a filled region
��������������������
���� �!���

, is considered shaded. Figure 3 illus-
trates this. This fitness function is similar to those used for
Funes LEGO trees [4] and Toussaint’s OpenGL plants [14]

The length and mass objectives are retained from the ex-
periment is Section 5.2, and the fitness function above re-
places the two goal-based objectives from 5.2.

Table 2 shows representative evolved assembly plans.
The table shows the structures before and after the glue/melt
phase, and lists their fill percentage as well as the length of
the assembly plan that produced them. For comparison, our
best hand-built structure, shown on the far right hand side,
while perfect, required 34 bricks, more than the maximum
25 allowed for evolved assembly plans, and was 65 instruc-
tions long.

As is suggested by the array of shapes in Table 2, the
majority of structures evolved with the implicit design goal
were arch-shaped rather than tree-shaped, even though tree
shapes, since they have only one supporting leg, can shade
more area. It is worth exploring this further: the best ex-
planation is that although trees are more fit, they are less
stable in the face of change. Any addition or removal of a
brick along a branch would unbalance it, causing it to tip
over after the glue/melt phase. Any change on one branch
would need to have a corresponding change along the other
branch in order to retain balance. Arches, on the other hand,
are much more stable in the face of perturbation: any addi-
tion of a brick along the top surface would have no effect
on the balance of the structure. Furthermore, any removal
of a central brick might allow the two sides to fall toward
each other and meet. Therefore, arches present a larger, if
slightly less optimal, evolutionary target than trees do.

6 Conclusion

Prescriptive representations, interpreted in the context of
a Situated Development environment, allow for the full au-
tomation of both design and assembly. We have described a
framework which simulates such Fully Automated Design
and Manufacture, and demonstrated the ability of assembly
plans evolved in that context to describe novel and efficient

4



Figure 2. Building the Goal Arch. Note how the horizontal scaffolding placed in frame 3 tumbles into
a vertical position to support the top of the arch. This is repeated with the piece of scaffolding placed
in frame 5. (frames are read left to right, top to bottom - solid bricks are black, scaffolding is gray,
the small sphere is the location of the print-head. The horizontal line is the horizon)

Table 2. Structures Evolved for “shadow” fitness. The top-row images show the structure before
scaffolding (gray) is removed, and the bottom images show the final, stable structure. The structures
on the far right were hand-built.

With Scaffolding

Final
Fitness 84% 80% 95% 90% 100% (hand-built)
Length 30 54 58 43 65

5



manufacturing processes.
Although our interest is in the physical manifestation of

evolved designs, we have, for the time being, limited our-
selves to the simulation of physical assembly. We are cur-
rently investigating approaches to transferring our results to
the real world. One approach is to evolve prescriptive repre-
sentations in simulation space, as we have done, but to use
a language of representation that can be directly interpreted
by a corresponding physical manufacturing system.

In the long term, our aim is to create a fully adaptive
automated design and manufacturing system, capable of
changing its manufacturing process to suit local conditions
and materials. Currently, planetary rovers are designed on
earth, and must be generalized to accommodate a wide ar-
ray of anticipated landing sites. Imagine, instead, sending
an entire fleet of identical rover manufacturing plants to the
surface of Mars, each one landing in a different (and unan-
ticipated) environment - some in deep sand, some on the an-
gled face of a crater. Having landed and surveyed its landing
site, each could then generate rovers specialized to their par-
ticular local environment, all without human involvement.

References

[1] J. Bongard and R. Pfeifer. Morpho-functional Ma-
chines: The New Species (Designing Embodied In-
telligence), chapter Evolving complete agents using
artificial ontogeny, pages 237–258. Springer-Verlag,
Berlin, 2003.

[2] C. A. C. Coello. An updated survey of evolu-
tionary multiobjective optimization techniques: State
of the art and future trends. In P. J. Ange-
line, Z. Michalewicz, M. Schoenauer, X. Yao, and
A. Zalzala, editors, Proceedings of the Congress on
Evolutionary Computation, volume 1, pages 3–13,
Mayflower Hotel, Washington D.C., USA, 6-9 1999.
IEEE Press.

[3] E. D. De Jong, R. A. Watson, and J. B. Pollack.
Reducing bloat and promoting diversity using multi-
objective methods. In L. Spector, E. Goodman, A. Wu,
W. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. Garzon, and E. Burke, editors, Pro-
ceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO-2001, pages 11–18, San
Francisco, CA, 2001. Morgan Kaufmann Publishers.

[4] P. Funes. Evolution of Complexity in Real-World Do-
mains. PhD thesis, Brandeis University, Dept. of
Computer Science, Boston, MA, USA, 2001.

[5] G. S. Hornby. Generative Representations for Evo-
lutionary Design Automation. PhD thesis, Brandeis

University, Dept. of Computer Science, Boston, MA,
USA, Feb. 2003.

[6] G. S. Hornby and J. B. Pollack. The advantages of
generative grammatical encodings for physical design.
In Proceedings of the 2001 Congress on Evolution-
ary Computation CEC2001, pages 600–607, COEX,
World Trade Center, 159 Samseong-dong, Gangnam-
gu, Seoul, Korea, 27-30 2001. IEEE Press.

[7] L. E. Kavraki, J.-C. Latombe, and R. H. Wilson. On
the complexity of assembly partitioning. Information
Processing Letters, 48(5):229–235, 1993.

[8] H. Lipson. How to draw a straight line using a GP:
Benchmarking evolutionary design against 19th cen-
tury kinematic synthesis. In M. Keijzer, editor, Late
Breaking Papers at the 2004 Genetic and Evolutionary
Computation Conference, Seattle, Washington, USA,
26 July 2004.

[9] J. D. Lohn, G. S. Hornby, and D. S. Linden. An
Evolved Antenna for Deployment on NASA’s Space
Technology 5 Mission. In U.-M. O’Reilly, R. L. Riolo,
T. Yu, and B. Worzel, editors, Genetic Programming
Theory and Practice II. Kluwer, in press.

[10] S. W. Mahfoud. Niching methods for genetic algo-
rithms. PhD thesis, University of Illinois at Urbana-
Champaign, Urbana, IL, USA, 1995.

[11] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes.
Three generations of automatically designed robots.
Artifial Life, 7(3):215–223, 2001.

[12] J. Rieffel and J. Pollack. The Emergence of Onto-
genic Scaffolding in a Stochastic Development Envi-
ronment. In K. D. et al., editor, Genetic and Evolution-
ary Computation–GECCO 2004. Proceedings of the
Genetic and Evolutionary Computation Conference.
Part I, pages 804–815, Seattle, Washington, USA,
June 2004. Springer-Verlag, Lecture Notes in Com-
puter Science Vol. 3102.

[13] J. Rieffel and J. B. Pollack. Artificial ontogenies for
real world design and assembly. In M. B. et al., edi-
tor, Ninth International Conference on the Simulation
and Synthesis of Living Systems (ALIFE9) Workshop:
Self-Organization and Development in Artificial and
Natural Systems (SODANS), pages 37–41. MIT Press,
2004.

[14] M. Toussaint. Demonstrating the evolution of com-
plex genetic representations: An evolution of artificial
plants. In Proceedings of the 2003 Genetic and Evo-
lutionary Computation Conference (GECCO 2003).
Springer-Verlag, New York, 2003.

6


