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Abstract

Hierarchical modular composition is often cited as a requisite
for scalable complexity. The most popular reference in this
regard is Herbert Simon’s allegory of the watchmakers Tem-
pus and Hora. And yet, while numerous studies have used
this story as a jumping-off point to explain the emergence
of hierarchical modular composition in evolutionary systems,
relatively few emphasize the role ofnoisein the parable. De-
velopmental representations, which model “biological assem-
bly”, are a suitable lens through which to explore this latter
aspect, since noise and error during ontogeny can have a sig-
nificant negative impact on the progress of evolution. In this
work we present an endosymbiotic model for modular acqui-
sition in a developmental representation, and demonstrateits
ability to hierarchically assemble large objects in the presence
of developmental noise.

Introduction
In his landmark essay “The Architecture of Complexity”,
Herbert Simon (1962) makes the case for the evolution-
ary necessity of hierarchical modularity through his para-
ble of the watchmakers Tempus and Hora. Tempus builds
his watches incrementally, piece by piece, and when inter-
rupted, puts down the watch he is working on, which then
falls apart into its constituent pieces. Hora, on the other
hand, first combines pieces into separate small modules, and
then combines those modules together into a final watch.
Consequently, he only loses the particular module that he
is working on, and so is significantly more likely to build
a complete watch than Tempus is. Simon uses this story to
claim that increasingly complex forms are nearly impossi-
ble to evolve without such hierarchical composition ofsta-
blemodules.

Many researchers have used this parable as inspiration for
exploring adaptive representations and the relationship be-
tween modularity and evolvability. In this context the sta-
bility of a form is interpreted as evolutionary stability - that
is, insulation from potentially deleterious effects of mutation
and crossover. As such, the evolvability of adaptive repre-
sentations comes from their ability to dynamically generate
modules in the process of search (Wagner and Altenberg,
1996).

Our interest here, however, is in a different perspective on
the story - that of the relationship between modularity and
noise in developmental representations,which take their cue
from the biological processes of ontogeny and growth. Since
they seek to model “biological assembly” (albeit of systems
quite distinct from watches), these systems lend themselves
to a rather straightforward interpretation of Simon’s parable.

Like watchmakers, developmental systems seek to assem-
ble complex forms from primitive constituent parts, and per-
form their tasks under the risk of interruption. While for the
watchmakers interruption during assembly took the form of
a telephone call, in developmental systems the role is per-
formed by error and noise during ontogeny. Like watch-
makers, in order to generate complex objects, adaptive de-
velopmental representations require modularity and, much
like Hora’s subcomponents, in order to be useful, these de-
velopmental modules must be stable and reliably producible
in the presence of noisy assembly.

Unfortunately, conventional models of modular acquisi-
tion, which form representational modules by compartmen-
talizing favorable genetic sequences, can be stymied by de-
velopmental representations in which the phenotypic con-
sequence of a genetic sequence is highly contingent upon
its context. The challenge of modular acquisition in such
context dependentdevelopmental representations therefore
lies in figuring out a process by which themeaning, not just
the syntax, of a favorable genetic sequence can be preserved
across contexts.

In this work we provide anendosymbioticmodel of mod-
ular acquisition which overcomes the context sensitivity of
developmental representations by encapsulating complete
phenotypes, rather than genetic sequences, into the set of
primitives available to the evolutionary developmental sys-
tem. Using this model we describe an adaptive representa-
tion which exhibits the emergence of the hierarchical assem-
bly of stablemodules in the presence of developmental noise
which otherwise severely retards evolutionary progress.



Modularity and Hierarchy in Representation
The importance of representational modularity lies in its
ability to couple functionally related portions of the geno-
type while simultaneously decoupling them from function-
ally unrelated portions. Changes to a representational mod-
ule have few side effects in the remaining genome, and
changes outside a module have few effects upon the mod-
ule. Wagner and Altenberg (1996) persuasively argue that
the evolvability of a system is highly contingent upon its
representation’s ability to adapt by discovering and incorpo-
rating evolutionary modules.

Several models of representational modularity in evolu-
tionary computation exist. Many systems, such as Hornby’s
L-systems (Hornby, 2005) and Bongard’s Gene Regulatory
Networks (Bongard, 2002) feature representations which
are implicitly modular.

Of those which provide for theexplicit encapsulation
of modular components, the most common fall under the
rubric of Hierarchical Genetic Programming (HGP), where
encapsulated modules become new primitives in the lan-
guage. Koza (1992) developed Automatically Defined Func-
tions (ADFs), in which sub-functions are allowed to evolve
their own function and terminal sets. Angeline expanded
upon ADFs with module acquisition(MA), which co-
evolve a representational genetic “library” of encapsulated
primitives which are universally available to evolving pro-
grams(Angeline and Pollack, 1994). Subsequently, Rosca
and Ballard introduced Adaptive Representation through
Learning (ARL), which replaced the randomness inherent
in modular acquisition in ADFs and MA with a “usefulness”
heuristic based upon fitness contribution and activation fre-
quency of subtrees (Rosca and Ballard, 1996).

More recently, de Jong co-evolved a representation and its
corresponding population of genotypes (2003). Candidate
modules were chosen by finding the most frequent pair of
alleles in the current population and, drawing from Watson’s
work on symbiotic composition (2002), were added to the
language as primitives only if they their fitness contribution
was at least as good as the fitness contribution of all other
possible pairs in a randomly chosen context.

While they vary in their details, each of these models of
modular encapsulation involve incorporatinggenotypicse-
quences, thereby protecting them from the deleterious ef-
fects of mutation and crossover, and then adding them to the
language of representation. As such, encapsulated modules
are simply shorthand for the genetic sequence they represent
- one can be substituted for the other without consequence.
Below, we will motivate a system of encapsulation which,
by contrast, involves incorporatingphenotypicresults into
the language or representation.

Why Endosymbiosis?
Because of their prescriptive nature, developmental repre-
sentations display a measure of context dependency: the

same sequence of operations can have vastly different re-
sults depending on where in the process it occurs. Consider
a developmental representation as arecipe. The set of in-
structions which produce egg whites in a souffle recipe (sep-
arate yolks and whites, place whites in a bowl, whip into
soft peaks) would produce a mess (if anything at all) if they
occurred later in the recipe or, for that matter, in an omelet
recipe.

To make matters worse, in developmental systems such as
the one we describe below, a contiguous portion of the phe-
notype which we might want to modularize may have been
produced by disjoint portions of the genotype. Similarly,
a contiguous portion of the genotype may produce disjoint
phenotypic results.

These factors can therefore stymie adaptive models such
as HGP, which generate modules by extracting and com-
pressing favorable genetic sequences. A genetic sequence
which produces a favorable trait in one context will not nec-
essarily preserve that result when transferred to another con-
text. Furthermore, favorable phenotypic traits may not be
attributable to modularizable portions of the genotype, and
modularizable portions of the genotype may not produce
useful phenotypic modules.

The challenge of modular acquisition in developmental
representations, then, lies in preserving not the syntax, but
rather themeaningof a desired phenotypic result.Endosym-
biosis, the encapsulation of an entire organism by its host, is
the model which we propose for this.

In our model of endosymbiotic encapsulation (See Fig-
ure 1), complete organisms, not just specific portions of their
phenotype, are used to form modules. As such, endosym-
bionts becomeprecompiledphenotypes, and join the set of
primitives available to the representation. To continue the
metaphor of the recipe, endosymbiosis is analogous to the
parallel creation of asous chef, who specializes in producing
that one particular higher-order ingredient, such as stiffened
egg whites.

When referenced during the course of development, it is
the phenotypic result – the complete endosymbiont – rather
than the genetic sequence responsible for creating the en-
dosymbiont, that is used by the developmental process. In
this manner, the meaning, rather than merely the syntax, of a
module is preserved, and can be applied consistently across
contexts.

The Role of Noise in Development
Stochastic effects which lead to error and noise during de-
velopment can significantly complicate the task of evolution.
When subjected to noise during development, a genotype is
capable of developing into an entire range of phenotypes,
each with a corresponding fitness (Figure 2) Determining
which, if any, is the phenotype most representative of the
originating genotype is a difficult, and in some cases, en-
tirely misleading task (Viswanathan and Pollack, 2005a).
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Figure 1: In the endosymbiotic model of module acquisition,
only complete phenotypes, rather than genetic samples, are
added to the set of primitives.

Although the effect of noise and error during develop-
ment has been extensively studied in biological systems,
the matter has only lately begun to attract attention in
developmentally-inspired artificial systems. Yilmaz and
Wu, for instance, recently explored the relation between ge-
netic redundancy and developmental noise (Yilmaz and Wu,
2005).

Viswanathan (Viswanathan and Pollack, 2005b) has stud-
ied the impact of stochastic development on assembly, and
has demonstrated the ability of adaptive processes which
measure the state and progress of the system to achieve
higher reliability than purely ballistic processes.

In earlier work of ours (Rieffel and Pollack, 2004),
we used a two-dimensional development environment, with
a“tetris”-like physics to evolve assembly plans capable of
building a predefined goal arch. Evolved assembly plans
were able to reliably build the goal arch despite a stochastic
noise model, which could knock over structural elements.
The key to the assembly plans’ robustness was the use of
ontogenic scaffolding- the placement of intermediate struc-
tural elements that were removed once the structure was
completed.

Modularity in Noisy Development
If stochastic development imposes one-to-many relation on
the genotype-phenotype map, such that each genotype can
grow into an entire distribution of phenotypes, then another
criterion for modular acquisition arises: that of developmen-
tal stability.

An important aspect of the utility of modules is their
reusability. If, therefore, a module is to be generated and
reused multiple times, then it stands to reason that multiple
copies of the module should exhibit low variance. Consider
Figure 2. A genotype which, under noise, develops into a
wide or multi-modal distribution of phenotypes, such as the
one of the left hand side of the figure, is not ontogenically
stable, and so would not make a very reliable module. A
more ontogenically stable genotype, on the other hand, typ-
ically develops into a tight, unimodal distribution with low
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Figure 2: Under the presence of developmental noise, each
genotype develops into an entirerange of phenotypes, each
with an associated fitness. A bad module is one which ex-
hibits high variance or multimodality across multiple builds;
a good module will be unimodal with very low variance.

variance, such as the one on the right hand side of the figure,
meaning that it will generate near-identical copies, and so
makes for a more suitable module.

Experiments
The first purpose of these experiments is to demonstrate the
deleterious effects of noisy ontogeny on the evolution of de-
velopmental representations. The second is to demonstrate
that an adaptive representation with endosymbiotic modular
acquisition is capable of overcoming these effects.

Our Artificial Ontogeny takes the form ofEvolutionary
Fabrication: the prescriptive genotype is a linear set of in-
structions to an external assembly mechanism. In this case
the mechanism is a LOGO-like turtle, capable of movement
in the X-Z plane, and of depositing objects in the environ-
ment. When strung into a sequence, commands to the tur-
tle (move, rotate, put object, take object) form anassembly
plan. Commands which would cause the turtle to move out-
side the target area, or place a brick where a brick already
exists, are ignored.

The “put” command takes as an argument a unique identi-
fier corresponding to an object in the library of encapsulated
modules. Initially, the only objects available to the “put”
command are primitive 2×1× 1 bricks. As new modules
are encapsulated, they are inserted into the library as new
objects and can be referenced by the “put” command (for
instance put(brick) or put(module15).) As the modular li-
brary grows, the mutation operator selects from any of the
modules currently available.

Assembly occurs within a realistic physics environment
based upon the Open Dynamics Engine (ODE)1 the widely
used open-source physics engine, which provides high-
performance simulations of 3D rigid body dynamics.

Assembly falls into three stages. In the first, the turtle
interprets the assembly plan, moving and placing bricks as
directed. In this stage, each brick is a separate component in

1www.ode.org



Figure 3: Illustration of the Fitness Function. The struc-
ture itself is black, and the gray region beneath is considered
“shaded”.

the environment, subject to gravity and interactions (suchas
collisions) with other objects.

It is this aspect, of construction being situated in a realistic
physics environment, that gives the assembly plans particu-
larly high context dependency: where a brick is placed and
where it ultimately lands is contingent upon the exact turtle
location, as well as the presence of supporting and surround-
ing objects.

Once assembly is complete and the structure is stable,
the scaffolding is removed and adjacent bricks are glued to-
gether (but not to the floor). Finally, once the scaffolding is
gone, the final structure is allowed to come to a rest before
being evaluated.

Noise Model
Noise is injected into the system using a “shaky hand”
model. When instructed to place object, the turtle puts any-
where within some range4x around its current position,
with uniform probability. Noise settings were given as per-
centages of a brick’s width.

Evaluation
Our design task was to create a structure which maximizes
the total open volume beneath it, thereby rewarding struc-
tures which both maximize height and maximize the number
of empty spaces beneath them (Figure 3).

We used a simple Evolutionary Multi Objective Optimiza-
tion (EMOO) Algorithm over a set of objectives described
below.

• Length Of Assembly Plan (minimizing)

• Mass of Objects in Environment (minimizing)

• Shaded Area or Sum of Heights (maximizing)

To measure the effect of developmental noise on evaluated
genotypes, each assembly plan was interpreted 10 times, and
average values over each objective were used for selection.

Module Selection
Candidate endosymbiotic modules were selected from the
phenotypes of the evolving population every 10 generations.
The criteria for selection are as follows:

• Fitness - must be a member of the current pareto front.

• Single Piece - must only consist of a single piece. Obvi-
ously if an assembly plan results in a structure with two
distinct pieces, then it cannot be usefully encapsulated as
a context-independent building block.

• Reliability - must have sufficiently low variance in fitness
(see Figure 2.)

If a phenotype matches the criteria then it is added, as a
whole, to the set of objects available to the “put” instruction.

Module Rejection
Theevolutionary viabilityof the modules is determined by
their reference count in the population of evolving assembly
plans. Whenever a module’s reference count in the evolv-
ing population drops to zero it is deemed irrelevant, and re-
moved from the object library.

Algorithmic Details
Initial population size was 30 individuals, each with a ran-
domized length of between 8 and 40 instructions. After each
generation was evaluated, the N non-dominated individuals
(i.e., pareto front) were selected as parents, and N new indi-
viduals generated using two-point crossover (60%) and mu-
tation (2% per locus). In order to limit population sizes,
duplicate genotypes were rejected, and duplicate objective
values were limited using crowding with a limit of 3 indi-
viduals per bin.

Results
Three sets of experiments were run for 1000 generations
each, with noise set to 0.1%, 1.0% and then 2.5% of a brick
width, For comparison, parallel setups without modular ac-
quisition were run at noise levels of 0, 0.1 and 1.0%.

Figure 4 demonstrates the deleterious effects of noise on
non-modular development. In the absence of noise, evolu-
tion proceeds fairly well. But, even with relatively modest
noise, at 0.1%, average fitnesses are half of what they are
in the noiseless case. As noise is increased to 1.0%, perfor-
mance drops even further.

Figure 5 shows a comparison in performance for modu-
lar assembly across a range of noise values. Not surpris-
ingly, the modular setups reach near-optimal fitness rather
quickly, and outperform the non-modular ones in Figure 4.
Furthermore, there is very little difference in performance
for modular assembly across the range of noises. Interest-
ingly, the modular noisy evolution shown in Figure 5, across
the entire range of noise values even outperforms non-noisy
non-modular evolution in Figure 4. We discuss this further
below.

Tables 1 and 2 contain representative assembly graphs
for some of the evolved objects. These graphs were cre-
ated by observing each evolved assembly process, and cap-
turing frames of each module which was used in a subse-
quent structure. The graphs provide some insight into the
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processes by which evolved assembly plans were able to
hierarchically assemble the objects. Full color animations
of the assembly processes can be found at the author’s web
page2.

These graphs only show modules which contribute struc-
turally to a higher-order module, but not those which are
used by the assembly process and subsequently removed,
nor those which are referenced by assembly plans but which
would cause a collision with an existing object and are there-

2www.cs.brandeis.edu/˜jrieffel/modularity/

fore ignored by the assembly process.
As a consequence the graphs shown potentially underes-

timate the number of modules used in each assembly. In
particular, it is likely that some modules serve a valuable
temporaryfunction, much like the ontogenic scaffolding we
discovered in (Rieffel and Pollack, 2004). We are currently
implementing methods of automatically parsing assembly
trees to generate these graphs.

Discussion
It is interesting to observe that modular assembly outper-
forms non-modular assembly, even in the absence of noise.
Consider that non-modular assembly must place structures
brick by brick, and so is in general limited to incremen-
tal improvements in fitness over the course of evolution.
The strength of modular assembly, on the other hand, lies
in its ability to add larger sub-assemblies to its vocabulary,
and then place them as a single unit, thus enabling faster
progress.

This aspect affects not only the speed of evolution, but
also the type of structure that is evolved. As we first noted in
(Rieffel and Pollack, 2005), non-modular assembly plans in
a non-stochastic environment tend to generate arches, even
though tree-shapes are a more optimal solution. Our con-
jecture at the time was that this was due to the difficulty
in building balanced trees brick by brick: both matching
branches of the tree must be discovered in parallel, and most
mutations to a balanced tree would unbalance it. Arches, on
the other hand, are more evolutionarily stable, because they
are supported on two legs, and can be discovered by a pro-
cess which first creates a filled arch and then slowly learns
to empty out the middle portion.

It is interesting to observe, therefore, that the majority of
structures evolved in this noisy environment with modular
assembly plans are trees. This is because the adaptive repre-
sentation is able to generate larger, multi-brick modules,and
then place them as a single, balanced unit atop a column. As
can be seen, in every case it is a single module which forms
both branches of the tree.

Several of the assembly trees shown in the tables also ex-
hibit what might be considered a form ofexaptationin the
evolutionary process, of which the tree in the second row of
Table 1 is a particularly recursive example. Because mod-
ules are selected for, among other things, their presence on
the pareto front, they often have a measurable fitness when
encapsulated as modules. When they are used in hierarchi-
cal assembly, however, instead of being placed in a manner
which takes advantage of this inherent fitness (for instance,
by placing them in parallel to form an arch), they are rotated
and placed sideways atop a newly formed trunk. As such
they serve a new function - for instance as a branch instead
of a trunk, and in that role they are able to contribute more
fitness than they do alone. This phenomenon is worthy of
further exploration.



Conclusion
We have introduced a form of modular encapsulation based
upon phenotypic symbiogenesis which addresses the con-
text dependency of developmental representations. Struc-
tures which exhibithigh reliability in the face of noisy de-
velopment are chosen as candidate modules, and added as a
whole, to the set of primitives available to the assembly pro-
cess. Not only does this method of modular assembly over-
come the deleterious effects of noisy development in an arti-
ficial ontogeny across a range of noise levels, but even at the
highest noise level tested it also outperforms non-modular
methods evolved without noise. The strength of this method
lies in a form ofdevelopmental bootstrapping- small sub-
components are composed into largerstablemodules avail-
able to the representation, and in that manner multi-tier hier-
archically composed assembly methods emerge. As the size
of the sub-assemblies increases, evolution is able to make
incrementally larger structures with relatively fewer instruc-
tions.

While the structures evolved in this study were con-
strained to a relatively small bounding box, this method
opens the door to the increasing scales and complexity pro-
vided by more open ended problems. We are particularly
interested in the effects of noise level on the topology of
evolved hierarchies of assembly. As Simon’s parable would
lead us to believe, increasing noise reduces the size of in-
termediate stable forms, which means that tree spans would
decrease and tree depths would increase.
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