
RAAM for In�nite Context-Free Languages

Ofer Melnik, Simon Levy and Jordan Pollack

Dynamical and Evolutionary Machine Organization

Volen Center for Complex Systems, Brandeis University, Waltham, MA, USA

melnik, levy, pollack@cs.brandeis.edu

With its ability to represent variable sized trees in �xed width patterns,RAAM is a bridge between

connectionist and symbolic systems. In the past, due to limitations in our understanding, its development

plateaued. By examining RAAM from a dynamical systems perspective we overcomemost of the problems

that previously plagued it. In fact, using a dynamical systems analysis we can now prove that not only

is RAAM capable of generating parts of a context free language (anbn) but is capable of expressing the

whole language.

1 Introduction

Recursive Auto-Associative Memory or RAAM [8] is a method for storing tree structures in �xed-width

vectors by repeated compression. Its architecture consists of two separate networks - an encoder network,

which can construct a �xed dimensional code by compressively combining the nodes of a symbolic tree

from the bottom up, and a decoder network which decompresses a �xed-width code into its two or more

components. The decoder is applied recursively until it terminates in symbols, reconstructing the tree. These

two networks are simultaneously trained as an autoassociator with time-varying inputs. If the training is

successful, the result of bottom up encoding will coincide with top down decoding.

Although RAAM has found wide use in demonstration and feasibility studies, and in philosophical discus-

sions of what could be done with networks using symbolic representations, our understanding of what RAAM

could do and HOW it works has been incomplete. Depending on some factors like the trees themselves and

the dimensionality of the network, learning parameters, etc., the system might or might not converge, and

even when it converged it might not be reliable. Several studies of sequential RAAM demonstrated that

the network could �nd variable-valued codings which were understandable [2]. Douglas Moreland discovered

that under certain conditions sequential RAAM had a very high counting capacity [7] similar to subsequent

work by [10].

The decoder works in conjunction with a logical \terminal test", which answers whether or not a given

representation requires further decoding. The default terminal test merely asks if all elements in a given

code are boolean, e.g. above 0.8 or below 0.2. This analog-to-binary conversion was a standard interface in

back-propagation research of the late 1980's to calculate binary functions from real valued neurons. However,

although it enabled the initial discovery of RAAM training, it led to several basic logical problems which

prevented the scaling up of RAAM: 1) The \In�nite Loop" problem is that there are representations which

\break" the decoder by never terminating. In other words, some trees appear \in�nitely large" simply because

their components never pass the terminal test. This behavior breaks computer program implementations

or requires depth checking. 2) The \Precision vs. Capacity" problem is that tighter tolerances lead to

more decoding errors instead of a greater set of reliable representions. 3) The \Terminating Non-Terminal"

problem arises when there is a \fusion" between a non-terminal and a terminal, such that the decoding of

an encoded tree terminates abruptly.

Various people have noticed problems in the default terminal test of RAAM and have come up with

alternatives, such as simply testing membership in a list, or simultaneously training a \terminal test network"

which classi�es representations as terminal or nonterminal. [3]. In addition, there are attempts at increasing

capacity through modularization and serialization [5, 11].

In the rest of this paper we present a new formulation of RAAM decoders based on an analysis of the

iterated dynamics of decoding, that resolves all these problems completely. This formulation leads to a new

\natural terminal test", a natural labeling of terminals, and an inherent higher storage capacity. We then

continue the dynamical systems analysis to prove that based on a prototype anbn RAAM decoder generated

by hill-climbing, we can generate a competence class of parameterized decoders that not only exclusively

generate anbn sequences but in some cases are capable of generating the full in�nite language.

2 New RAAM Formulation

Left X Left Y Right X Right Y

X Y

LeftX =
1

1 + e�(wLXXx+wLXY y+wLX)

LeftY =
1

1 + e�(wLYXx+wLY Y y+wLY)

RightX =
1

1 + e�(wRXXx+wRXY y+wRX)

RightY =
1

1 + e�(wRYXx+wRY Y y+wRY)

Figure 1: An example RAAM decoder that is a 4 neuron network, parameterized by 12 weights. Each

application of the decoder converts an (X;Y) coordinate into two new coordinates.

Consider the RAAM decoder shown in �gure 1. It consists of four neurons that each receive the same

(X;Y) input. The output portion of the network is divided into the right and left pairs of neurons. In the

operation of the decoder the output from each pair of neurons is recursively reapplied to the network. Using

the RAAM interpretation, each such recursion implies a branching of a node of the binary tree represented

by the decoder and initial starting point. However, this same network recurrence can also be evaluated in

the context of dynamical systems. This network is a form of iterated function system (IFS) [1], consisting of

two pseudo-contractive transforms which are iteratively applied to points in a two dimensional space.

In the past we have examined the applicability of the IFS analogy to other interpretations of neural

dynamics [9, 4, 6]. But in the context of RAAMs the main interesting property of contractive IFSes lies

in the trajectories of points in the space{ when we take a point and recursively apply the transforms to it

(applying both or randomly choosing between them) where will the point eventually end up? For contractive

IFSes the space is divided into two sets of points: The �rst set consists of points located on the underlying

attractor (fractal attractor) of the IFS. Points on the attractor never leave it. That is, repeated applications

of the transforms to points on the attractor only moves them within the attractor{ e�ectively coercing them

to take on orbits within its con�nes. The second set is the inverse of the �rst, points that are not on

the attractor. The trajectories of points in this second set are characterized by a gravitation towards the

attractor. Finite, multiple iterations of the transforms have the e�ect of bringing the points in this second

set arbitrarily close to the attractor.

As noted before, problems 1 and 3 arise from a problematic terminal test. To solve them, there needs

to be a clear separation between terminals and non-terminals, such that for any non-terminal starting point

a terminal test must eventually \catch" a trajectory delineated by the decoder's dynamics. Since some

trajectories never leave the attractor and all others eventually hit the attractor, a terminal test must contain

points on the attractor. There is no gurantee that a trajectory on the attractor will hit all parts of the

attractor, therefore the only terminal test that guranttees the termination of all trajectories of the RAAM

(IFS) is a test that includes all the points of the attractor itself.

By taking the terminal test of the decoder network to be \on the attractor", not only are problems of

in�nite loops and early termination corrected, but it is now possible to have extremely large sets of trees

represented in small �xed-dimensional neural codes. The attractor, being a fractal, can be generated at

arbitrary resolution (see [1] or [6] for how the attractor is generated). In this interpretation, each possible

tree, instead of being described by a single point, is now an equivalence class of initial points sharing

the same tree-shaped trajectories to the fractal attractor. For this formulation, the set of trees generated

and represented by a speci�c RAAM are a function of the weights, but are also governed by how the initial

condition space is sampled, and by the resolution of the attractor construction. Note that the lower resolution

attractors contain all the points of their higher dimensional counterparts (they cover them), therefore as a

coarser terminal set they terminate trajectories earlier and therefore act to \pre�x" the trees of the higher

dimensional attractors.

Two last pieces complete the new formulation. First, the encoder network, rather than being trained, is

constructed directly as the mathematical inverse of the decoder. The terminal set of each leaf of a tree is run

through the inverse left or right transforms, and then the resultant sets are intersected and any terminals

subtracted. This process is continued from the bottom up until there is an empty set, or we �nd the set of

initial conditions which encode the desired tree.

Second, using the attractor as a terminal test also allows a natural formulation of assigning labels to

terminals. Barnsley [1] noted that each point on the attractor is associated with an address which is simply

the sequence of indices of the transforms used to arrive on the attractor point from other points on the

attractor. The address is essentially an in�nite sequence of digits. Therefore to achieve a labeling for a

speci�c alphabet we need only consider a suÆcent number of signi�cant digits from this address.

3 Hill-Climbing an a
n
b
n decoder

We used hill-climbing to arrive at a set of RAAM decoder weights for the simple non-regular context-free

language anbn; that is, the set of strings consisting of a sequence of a's followed by an equal-length sequence

of b's. Two ways to represent the targets for hill-climbing would be either a set of strings in anbn: ab, aabb,

aaabbb, . . . , or a set of parenthesized expressions representing binary-branching trees having those strings at

their frontiers: (ab), ((a(ab))b), ((a((a(ab))b))b), RAAM is a method for representing structure, and not

just strings of symbols. Therefore, we chose the latter, tree-based representation. Speci�cally, we used trees

generated by a simple context free grammer which generates anbn. We were guided by the assumption that

this choice would drastically restrict the set of possible solutions to be explored and allow our hill-climbing

RAAM to build upon existing structure as it navigated the space of decoder weights.

For the hill-climbing, both the initial random weights and the random noise added to each weight came

from a Gaussian distribution with zero mean and a standard deviation of 5.0. Starting with 12 random

decoder weights, we explored the space of weights by adding random noise to each weight and using the

resulting weights to generate trees on a 64-by- 64 fractal RAAM. That is, the attractor was generated at

that resolution and the initial starting point space was also sampled at that resolution. The terminals of

these trees were addressed with an a or a b, using the scheme described in the section above. We used 10

trees representing strings from anbn and an+1bn with n = 1, 2, 3, 4, and 5 which had subpart relationships

(e.g., the tree for a2b2 is a subpart of the a3b3 tree) for our learning set.

About a third of the trials were able to mutate successfully into patterns that \covered" the training set,

yielding all ten tree structures, as well as trees of the form anbn+1, plus additional, ill-formed trees. Though

we were able to generate many di�erent weight set solutions to cover the training data, �gure 2 shows that

all the solutions had a dramatic "striping" pattern of tree equivalence classes, in which members of a single

class were located in bands across the unit square. (Recall that any point not on the attractor represents

a tree.) So, for example, the wide gray band occupying most of the top of the image at right represents

the equivalence class for the tree (ab). Furthermore (and less noticeable in the �gure), the attractor for

these hill-climbed weights was located on or toward the edge of the unit square. In the �gure below, the b

attractor points are the white squares on the right side of the image at left.

Figure 2: The equivalence classes of two solutions to anbn found by hill-climbing.

Beyond the 64-by-64 resolution for training the RAAM did not generalize deeply. However, the dramatic

consistency in the solution patterns led us to wonder whether there was an underlying formal solution

toward which our anbn hill-climbing RAAM was striving. As we discuss in the next section, the answer to

this question turned out to be positive.

4 Competence model and proof

We claim that the RAAM evolved by our hill-climbing experiment is indicitive of a class of RAAM competence

models which generate anbn+1 and an+1bn languages. We justify our claim by demonstrating how an analysis

of the speci�c RAAM dynamics garners the principles to design a parameterized class ofanbn+1 and an+1bn

RAAMs, some of which, in the in�nite case generate the whole languages.

The dynamics of our RAAM can be examined by an arrow diagram. Starting from an initial point, we

apply both transformations, and plot arrows to designate the new points thus generated. This process is

continued until all new points are on the terminal set.

Figure 3: An arrow dia-

gram of a tree starting at

(0.7,0.3).

1
0

1
0

1
0

0

Figure 4: A typical tree

generated by a zigzag

RAAM.

ε

ε 1−ε

1−ε

Figure 5: The line that di-

vides the space of points

that go to the upper right

and lower left

In �gure 3 we see a typical example of an arrow diagram from our evolved RAAM. The initial point is

marked by a circle. The terminal points on the left side are the 0 terminals and the terminals on the right

side are the 1 terminals. The solid line corresponds to the right transform, and the dashed lines correspond

to the left transform. By examining the dynamics we can discern a few speci�c properties:

1. The top right and bottom left corners are both terminals. From any initial starting point, at least one

of the transforms goes to a corner terminal.

2. The left transform always takes us to the left side. The right transform always takes us to the right

side.

3. On the left side, the left transform takes us to the bottom left corner terminal. On the right side the

right transform takes us to the upper right corner terminal.

The e�ect of these properties is to generate a very speci�c variety of trees. By property 1, we see that

from any initial point our tree will immediately have one of its branches terminate. By property 2 we see

that the continuing branch will hit one of the sides. But by property 3 we see that this branch will also lose

one of its sub-branches, only continuing the tree across one branch.

We can characterize this behavior as follows: The tree dynamics consist of a zigzag line which goes

between the left side and right side. At each side one of the transforms goes to a terminal, while the other

continues the zigzag. This continues until the zigzag hits a terminal on one of the sides.

The e�ect of these zigzag dynamics is that at each successive tree level we get an alternating 0 or 1. In

�gure 4 we see what such a tree might look like.

It is apparent that any set of transforms which obey properties 1,2 and 3 will generate trees of this sort.

In order to demonstrate the existence of a competence model we need to show that such transforms exist

for any resolution, and that they can generate arbitrarily sized trees.

Let " > 0 be the width of a terminal point. Properties 1 and 2 mandate a parameter dependency on "

. This is due to the transform being composed of a sigmoid function, hence it can never quite reach 0 or 1,

but can be made arbitrarily small, so no single transform can ful�ll properties 1 and 2 for any ".

By property 3, in the rectangular region de�ned by the coordinates (0; 0)� ("; 1) the left transform goes

to the bottom left corner (x; y � ") and in the rectangular region (1� "; 0)� (1; 1) the right transform goes

to the upper right corner (x; y � 1� "). Therefore to ful�ll property 1 as well we can divide the space into

two regions, de�ned by the line that connects ("; 1) and (1 � "; 0). On the upper half of the line the right

transform will go to the upper right corner, and on the bottom half of the line the left transform will go to

the bottom left corner. See �gure 5.

The equations that de�ne the RAAM are given in �gure 1. Since the X-transforms always take us to

their respective sides, we can make them constant by setting wLXX = wLXY = wRXX = wRXY = 0,

wLX = � log 1�"
"

and wRX = � log "
1�"

. Thus the left x-transform will always take us to " and the right

x-transform will always take us to 1� ".

The line from ("; 1) to (1 � "; 0) can be parameterized by cx + c(1 � 2")y � c(1 � ") = 0, where c is

a constant. If we set c > 0, then we can plug these values directly into our transforms. We need to set

wLYX = wRY X = c, wLY Y = wRY Y = c(1� 2") and to adjust the constants to wLY = �c(1� ")� log 1�"
"

and wRY = �c(1� "))� log "
1�"

. These weights guarantee the right transform takes all points above the line

to the upper right terminal and vice-versa for the left transform. These weight are dependent on ", thus we

have demonstrated the existence of weights which obey all three properties for any resolution.

To show the existence of arbitrarily sized trees we need to examine the terminal set locations and the

speci�c dynamics of the zigzag line. In �gure 6 you see an arrow diagram for the points on the terminal set

for a particular setting of c and ". This diagram shows what points on the attractor go to what other points

on the attractor. We see a few interesting characteristics of the terminal set: Initially, we see that out of the

two terminal corners we get a zigzag line which seems to generate the terminal set points for the upper and

lower part of the space. Both of these zigzags terminate before intersecting. Since these zigzags always go to

the corners on their respective sides, they are in fact orbits of di�erent lengths which include a corner. The

only other terminals are a pair of points somewhere in between the termination of the two zigzags. These

points just go back and forth between themselves.

Figure 6: A terminal point arrow

diagram for " = 1=64 and c =

5:703.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c=6.3
c=7

Figure 7: A one-dimensional

map diagram of the zigzag line

for two values of c.

We can analyze these di�erent properties by treating the zigzag as a one-dimensional map. From every

point on the left side the application of the right and then left transform brings us to a new point on the

left side. In �gure 7 we see two one dimensional maps which both have an " value of 1=256 but two values

of c, 6.3 and 7. By drawing the line of slope 1 through these maps we see that they have 3 �xed points.

Two of these are stable, attractive �xed points (this can be shown by linearizing about the �xed points). We

can see that the attractor zigzags which emanate out of the corner terminals go towards these �xed points

and terminate on them. The third �xed point in the center, is unstable, so zigzag trees above it will head

towards the upper half of the space and zigzags below it will head towards the bottom half of the space.

As can be seen in 7 the location of this unstable �xed point is dependent on c. Since this dependence

is continuous, and between c = 6:3 and 7 the location of the �xed point moved by more than 1=256, then

by the mean value theorem we know that there exists a c such that the location of the unstable �xed point

is at an integer multiple of " . Assume that we are discretizing by ooring to the nearest integer multiple

of ", then since the unstable �xed point is at an integer multiple of ", we can pick an intial tree starting

point on the left side, below it, which is arbitrarily close to it. The unstable �xed point represents an orbit

which never reaches the other terminal points. If it were not a terminal it would correspond to an in�nite

tree. By coming from below it we are guranteed not to hit it. But by coming arbitrarily close to it we can

generate arbitrarily long zigzag trees, which hover in its vicinity for an arbitrary number of iterations before

heading towards the attractive �xed point below it. Thus we can create trees of any size, and this model

can generate the whole language in an in�nite resolution sense.

5 Discussion

By examining the underlying dynamics, we have presented a new approach to understanding RAAM. This

approach allows us to describe the \natural terminal test" of a RAAM decoder as well as represent trees in

accordance with the intrinsic dynamics. The most serious problems of the original RAAM are solved by this

new reformulation, allowing a RAAM decoder to provably terminate for any input and potentially generate

an in�nite grammar.

Speci�cally, based on initial weights generated by a evolved decoder, we have generalized and proven

that there exist a set of 12 weights for a RAAM decoder which not only exclusively generate words from

the an(+1)bn(+1) language, but are capable of generating the whole language. In fact in the region of the

unstable �xed point, the RAAM exhibits a monotonic behavior. As we approach the �xed point, the size

of the generated trees increases divergently. The signi�cance of this is not only in the context of RAAM

but in the context of connectionist processing in general, since we have demonstrated how a monotonically

increasing continuously varying input (initial starting point) can incrementally generate the members of a

context free grammar, within the con�nes of a neural substrate. Thus we have shown how a smooth mapping

could exist between the tonicly varying outputs of a single neuron and the generativity of a context free

grammar.

With this reformulation of RAAM, we have a new and deeper connection between connectionist and

symbolic representational and generative theories. In the future we expect to examine the fuller potential of

this model, including the expressiveness of other grammars and modes of lexical assignment, as well as more

informed learning methods.

[1] M.F. Barnsley. Fractals everywhere. Academic Press, New York, 1993.

[2] D.S. Blank, L.A. Meeden, and J.B. Marshall. Exploring the symbolic/subsymbolic continuum: A case

study of raam. Technical Report TR332, Computer Science Department, University of Indiana, 1991.

[3] L. Chrisman. Learning recursive distributed representations for holistic computation. Connection Sci-

ence, 3(4):354{366, 1991.

[4] J.F. Kolen. Exploring the Computational Capabilities of Recurrent Neural Networks. PhD thesis, Ohio

State, 1994.

[5] S.C. Kwasny, B.L. Kalman, and A. Abella. Decomposing input patterns to facilitate training. In

Proceedings of the World Congress on Neural Networks, volume 3, pages 503{506, Portland, Oregon,

1993.

[6] O. Melnik and J.B. Pollack. A gradient descent method for a neural fractal memory. In WCCI 98.

International Joint Conference on Neural Networks, IEEE, 1998.

[7] D.D. Moreland. An investigation of input encodings for recursive auto associative neural networks.

Master's thesis, Ohio-State, 1989.

[8] J.B. Pollack. Recursive distributed representations. Arti�cal Intelligence, 36:77{105, 1990.

[9] J.B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227{252, 1991.

[10] P. Rodriguez, J. Wiles, and J.L. Elman. A recurrent neural network that learns to count. Connection

Science, 11:5{40, 1999.

[11] A. Sperduti and A. Starita. An example of neural code: Neural trees implemented by lraam. In

International Conference on Neural Networks and Genetic Algorithms, pages 33{39, Innsbruck, 1993.

