
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Chapter 4

Limits of Connectionism
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

4.1. Introduction

Let us distinguish two parts of a programming language. First, its framework,
which gives the overall rules of the system, and second, its changable parts,
whose existence is anticipated by the framework but whose particular behavior
is not specified by it.1

The connectionist paradigm is much like a programming language, in that it pro-

vides a framework for constructing computational models which anticipates various

changeable parts. This chapter examines the connectionist framework and its underlying

assumptions, and focuses on certain limitations which recur frequently in connectionist

modeling efforts. Based on the elements used to construct a Turing Machine within this

framework, it is argued that some of the default assumptions need to be rethought.

4.2. The Connectionist Framework

Feldman and Ballard (1982) provide a particularly concise framework for connec-

tionism, which anticipates both logical and numeric computation within the same
hhhhhhhhhhhhhhh
1 (Backus, 1978) p. 617.



2 Chapter 4

models:

A unit is a computational entity comprising:

{q} - a set of discrete states, < 10
p - a continuous value in [-10,10], called potential

(accuracy of several digits)
v - an output value, integers 0≤v≤9

i - a vector of inputs i1, . . . in

and functions from old to new values of these

p = f(i,p,q)
q = g(i,p,q)
v = h(i,p,q)

which we assume to compute continuously. The form of the f, g, and h func-
tions will vary, but will generally be restricted to conditionals and simple func-
tions.2

These units are arranged into networks, where the input vectors for units consist of

previous output values of other units. Particular functions that Feldman & Ballard men-

tion include linear combinations of the inputs with weights, and sums of products.

A similar framework is described by Rumelhart, Hinton & McClelland (1986).

According to them, there are eight major aspects of a Parallel Distributed Processing

(PDP) model:

hhhhhhhhhhhhhhh
2 (Feldman & Ballard, 1982) p. 250.



Limits of Connectionism 3

g A set of processing units

g A state of activation

g An output function for each unit

g A pattern of connectivity among units

g A propagation rule for propagating patterns of activity through the network

of connectivities

g An activation rule for combining the inputs impinging on a unit with the

current state of that unit to produce a new level of activation.

g A learning rule whereby patterns of connectivity are modified by

experience.

g An environment within which the system must operate3

There are many assumptions underlying these connectionist frameworks, leading to

constraints which are often violated, but, nonetheless, operate as a normative force on a

rapidly changing field. For example:

(1) Neurons are not born: The number of units in a connectionist network is fixed, and

they are not dynamically created.

(2) Synapses change slowly: The weights in a connectionist network change slowly

over time, modified by experience.

(3) Connectivity is limited: Units have multiple inputs but only a single output, which

may be used as input to multiple neighbors.

(4) Computation is simple: Units perform a simple (constant-time) function on their

inputs, rather than an involved computation. Furthermore, units do not get to exam-

ine all their inputs individually, rather they see some kind of sum or average of

them.

(5) Communication is local and limited: Units only see the outputs of their immediate

neighbors. There is no global memory or blackboard, with inherent synchronization

problems. Furthermore, the information circulated is limited in its complexity;

numeric values rather than complex messages are passed around.
hhhhhhhhhhhhhhh
3 (Rumelhart et al., 1986a), p. 46.



4 Chapter 4

(6) 100 Cycles to Intelligence: Since the quickest neural reaction time is on the order

of 10 milliseconds, ‘‘intelligent’’ functions need to be computed in 10’s to 100’s of

cycles.

These assumptions and constraints, which have something of a religious flavor, ori-

ginate from a confluence of what is almost known about the actual architecture of the

brain, along with a hearty dose of computational, philosophical and psychological con-

cerns. For example, (1) through (3) are essentially architectural assumptions which arise

from knowledge of the structure of real neural networks: Neurons are not dynamically

created as needed (at least for adults), synapses do change slowly, and neurons have mul-

tiple inputs (synapses on dendrites) but only a single output (an axon), which can serve as

inputs to many other neurons. Assumption (4) is a computational-philosophical con-

straint, for who would want to imagine that a single neuron is capable of complex infor-

mation processing -- i.e., can a sponge think? Number (5) is a deferral to computational

reality: By insisting on strict locality, parallelism is possible. Feldman and Ballard

(1982) are responsible for (6), which is very compelling, but is a functional assumption,

which spans levels and fields from neurons, to cycle time, to reaction time.

The connectionist framework is not as fixed as the framework of a programming

language, and the rules can be easily broken. The usual attack on heretics is that what

they’ve done is not ‘‘neurally plausible.’’ Neuro-fundamentalism aside, there are severe

computational and cognitive issues which are stressed by blind faith to architectural

assumptions. The sections below examine some of the pros and cons of connectionism,

in an attempt to understand how the limiting assumptions need to be reformed.

4.3. The Promises of Connectionist Models

Much of the current interest in these models arises because of their potential for as a

good substrate for both cognitive modeling and advanced computational applications.

The heralded promises of connectionist networks include:

Effective Use of Parallel Computers



Limits of Connectionism 5

Given that a connectionist network strictly adheres to a principle of local computa-

tion, then it is possible to implement such networks on the new generation of parallel

computers which are now becoming available. In fact, there have already been several

successful efforts in this direction (Blelloch & Rosenberg, 1987; Plate, 1987; Pomerleau

et al., 1988).

Soft Constraints

When logic is continuous instead of discrete, decisions can be made ‘‘smoothly’’

over time, rather than through serialized backtracking. One use of activation levels is as

confidence values, and the collective input to a unit, either positive or negative, is used as

evidence to increase or decrease confidence respectively. If many knowledge sources

communicate in the same language (i.e., numbers), then the problem of translating infor-

mation between different knowledge domains goes away.

Graceful Degradation

This feature is usually associated with distributed representations (Hinton, 1984). If

the elements of a representational system are ‘‘coarsely coded,’’ whereby each represen-

tational element is represented by a population of units, and each unit represents a partic-

ular set of elements, then the incapacitation of individual units will have little impact on

a system’s effectiveness.

Learning

One of the dreams of connectionism is that systems can be built with mostly random

connections, and that powerful, local learning algorithms can adjust the connections

resulting in powerful dedicated machines. The earliest approach to this was the percep-

tron convergence procedure (Rosenblatt, 1962), but Minsky & Papert (1969) showed that

single-layered perceptron systems (on which this procedure might be successful) were

extremely limited. Recently several techniques have been developed which seem to

overcome the limits of perceptrons by adjusting weights in several layers including the



6 Chapter 4

Boltzmann machine (Ackley et al., 1985) and back-propagation of errors (Rumelhart et

al., 1986b).

4.4. The Pitfalls of Connectionist Models

On the other hand, connectionism introduces some extreme limitations as well.

Many of these problems only arise when connectionism is applied to higher-level cogni-

tive functions such as Natural Language Processing. These problems have been

described in various ways, including: Recursion, variable-binding, and cross-talk, but

they seem to be just variations on older problems, for which entire fields of research have

been established.

Generative Capacity

Despite the promise of connectionism, its paradigmatic assumptions can lead to

language models which are strictly finite-state. Several parsers have been built which

parse context-free grammars of bounded length — i.e., regular grammars. The term

‘‘generative capacity’’ is due to Chomsky, who used it as a measure of the power (capa-

city) of particular classes of formal grammars to generate natural language sentences;

regular grammars are the weakest in this respect. Although the history of science is rid-

dled with paradigm revolutions and counter-revolutions, returning to computational

linguistic systems without generative power is not the kind of counter-revolution one

would consider as progress.

For example, as an adjunct to his model for word-sense disambiguation, Cottrell

(1985b) proposed a fixed-structure local connectionist model for length-bounded syntac-

tic processing.

In a well-circulated report, Fanty (1985) describes the automatic construction of a

connectionist network which parses sentences using a context-free grammar. In what is

essentially a time-for-space tradeoff, his system can rapidly parse bounded-length sen-

tences, when presented all lexical items at once. The number of units needed for his net-

work to parse sentences of length n rises as O(n 3).



Limits of Connectionism 7

Selman (1985) also reports an automatic construction for networks which can parse

sentences using a context-free grammar. His system is stochastic, and based on the

Boltzmann Machine notions of (Ackley et al., 1985). Selman’s system is yet another

machine for parsing sentences of bounded length. Finally, the connectionist constraint of

limited processing cycles is ignored and a parse may take several thousand cycles to

‘‘anneal.’’

And even the newer crop of research in this area suffers from the same fixed-width

problem. For example, (Hanson & Kegl, 1987) use a three-layer back-propagation net-

work to encode sequences of up to 15 lexical categories. Allen (1987) demonstrates

several applications of three-layer back-propagation to such tasks as pronoun resolution

(indicate which word in a 15-word sentence is referred to by a pronoun) and machine

translation (from 10-word english sentences to 11-word spanish sentences). And

McClelland & Kawamoto (1986) assign case-roles, such as agent, object, and instrument,

to three- or four-word sentences.

Representational Adequacy

Closely related to the problem of generative capacity is the problem of representa-

tional adequacy. One must be careful that a model being proposed can actually represent

the elements of the domain being modeled.

Localist network representations, such as the one used in our work in chapter 2, and

throughout the early 1980’s connectionist revival, where each unit has some concept

ascribed to it, are notoriously lacking in this regard. Basically a diminutive form of

semantic networks, local representations are even missing the relational labels on links

which give semantic networks their limited representational power.

Fully distributed representations, such as feature- or microfeature-based systems,

such as the one used by (Kawamoto, 1985), also suffer. If the entire feature system is

needed to represent a single element, then attempting to represent a structure involving

those elements cannot be managed in the same system. For example, if all the features

are needed to represent a Nurse, and all the features are needed to represent an Elephant,

then the attempt to represent a Nurse riding an elephant will result in a common

representation of a white elephant or a rather large nurse with four legs.



8 Chapter 4

One obvious solution to this problem of superimposition versus concatenation

involves using separate ‘‘pools’’ of units to represent elements of propositional triples,

such as Agent, Action, and Object. In each pool would reside a distributed representation

filling these roles, such as ‘‘Nurse,’’ ‘‘Riding,’’ and ‘‘Elephant.’’ Because of the dicho-

tomy between the representation of a structure (by concatenation) and the representation

of an element of the structure (by features), this type of system cannot represent recursive

propositions such as ‘‘John saw the nurse riding an elephant.’’

There are more sophisticated distributed representations than features, but they do

not yet solve the representational adequacy problem. Hinton (1984) set out the notion of

‘‘coarse-coded’’ representations as an alternative to too local or too distributed represen-

tations. The essence of ‘‘post-modern connectionism,’’ his main notion is that instead of

dedicating a single unit to every element of a representation (the ‘‘Unit/Value principle’’

of (Feldman & Ballard, 1982)) one ‘‘coarsely codes’’ these elements by having each

represented by a subset of units and by representing multiple elements with a single unit.

The effect is that the activation value of an element becomes the percentage of its

representing units which are ‘‘on’’ and that each unit is very ambiguous so that its mean-

ing can only be determined by the entire state.

For example, Touretzky devised a coarse-coding of symbolic triples from a finite

alphabet which has been used in a production system (Touretzky & Hinton, 1985), in a

Sisyphean effort to build a connectionist system capable of CONSing (Touretzky,

1986b), and in a combination of the two which implements a phrase-structure transfor-

mation system (Touretzky, 1986a). The coarse-coding is as follows: The 15,625 possible

triples of 25 symbols (A - Y) are represented by the activity pattern of 2000 units. Each

unit has a ‘‘receptive field’’ of 216 triples, generated by the cross product of three groups

of 6 symbols. The semantic interpretation of this system is that a particular triple is con-

sidered on when a majority of the approximately 28 units which represent it are on. This

coding can simultaneously represent a small number of symbolic triples, which can be

interpreted as, say, a binary tree structure.

In their perceptron model for learning the past tenses of verbs, Rumelhart &

McClelland (1986) use an even more complicated distributed representation to represent

a sequence of phonemes. Rather than trying to elucidate their actual scheme, it is

instructive to view it abstractly as follows:



Limits of Connectionism 9

Consider representing a sequence of tokens, (i 0, . . . ,in) as an unordered set of over-

lapping subsequences (each of length k) of tokens,

{(i 0, . . . ,ik),(i 1, . . . ,ik+1), . . . ,(in−k, . . . ,in)}. Call this an implicit sequential representation

of breadth k. Given a distributed representation whose primitive elements are these

subsequences, and the ability to simultaneously represent several of these elements, it is

clear how a well-formed set of overlapping subsequences can be interpreted as a longer

sequence.

It is also clear that the number of representational elements needed for such a sys-

tem is exponential, I k, where I is the number of different possible tokens. Rumelhart &

McClelland used an implicit sequential representation of breadth 3 over 27 possible

tokens. However, through sheer ingenuity, and by taking account of the internal structure

of their tokens, they packed a potential 19,683 elements into a distributed representation

using only 460 units. Each triple is represented by 16 units, and each unit has a receptive

field of about 685 triples.

Each of these systems start with a finite population of representational elements, and

then distribute these elements over a smaller number of processing units. Sequence and

structure are derived from collections of elements under some external interpretation, and

the limits of the representation appear when substructures are duplicated. For example,

fixed coarse-coded systems, such as Touretzky’s, run into limitations when there is too

much overlap between elements. Touretzky pointed out that the memory exhibits a

phenomena, which he called local blurring, ‘‘whereby if we store many closely related

triples such as (F A A), (F A B), and (F A C), etc., it becomes increasingly difficult to

determine whether a related triple such as (F A L) is present’’ (Touretzky, 1986, p. 524).

And Rumelhart & McClelland’s system would not be able to represent words with

duplicate phonetic triples such as Banana; but they did not face this problem for the

verbs used in their model.

Distributed representations are clearly an improvement over local ones, in terms of

the ratio of the number of representation elements to the number of units representing

them, but the notion of a fixed set of representational elements is still in combat with the

infinite generative capacity, and thus, the representational needs of language. The issue

of distributed representations is considered further in Chapter 6.



10 Chapter 4

Task Control

A final problem is that many connectionist models use every allowable mechanism

they have to do a single task. This leaves no facility for changing tasks, or changing the

size of tasks, except massive duplication and modification of resources.

For example, in the Stroop model of Chapter 1, changing the task from color-

naming to word-naming requires some external modification of the network. In the

past-tense model (Rumelhart & McClelland, 1986), there is no obvious means to conju-

gate from, say, past to present tense, without another 200,000 weights. In the Traveling

Salesman network (Hopfield & Tank, 1985), there is no way to add a city to the problem

without configuring an entire new network.

4.5. Towards Effective Connectionist Computation

These recurrent problems stem from the unquestioning acceptance in the neurally-

inspired constraints discussed earlier. In particular, if units cannot be created and if links

cannot be changed during a computation, then such networks are totally static, and can-

not adapt to different tasks. If Feldman & Ballard’s constraint, that units only have a few

possible states, is taken seriously, then such static networks are just fancy finite-state

machines, and so it is not surprising that people keep coming up with parsers for finite-

state languages.

The ability to reconfigure a network dynamically is clearly necessary for modeling

higher level cognitive faculties, such as language. In some current work on making con-

nectionist networks perform symbol-processing types of computation, for example,

Touretzky (1985, 1986) has had to resort to external programs which ‘‘gate’’ various

connections. And in our own previous work we have used ‘‘normal’’ computer programs

such as a chart parser (Kay, 1973) or production systems to hook up our networks on the

fly. However, the use of normal computer procedures leads to the sticky problems of

power discussed at the end of Chapter 2.

In fact, the whole issue of computational power in neural or connectionist models is

somewhat murky. It is usually taken for granted that a connectionist architecture can

compute as effectively as any other machine. This truism dates back to McCullogh &



Limits of Connectionism 11

Pitts (1943). What they actually said was:

One more thing is to be remarked in conclusion. It is easily shown: first, that
every net, if furnished with a tape, scanners connected to afferents and suitable
efferents to perform the necessary motor-operations, can compute only such
numbers as can a Turing machine; second, that each of the latter numbers can
be computed by such a net; and that nets with [feedback] circles can compute,
without scanners and a tape, some of the numbers the machine can, but no oth-
ers, and not all of them.4

In other words, a neural network, when attached to a tape, head, and motor, is a

universal computer. While the primitive computations of modern connectionist models

are more along the general lines of the perceptron, using linear combinations and thres-

holds, their ability to compute general logical functions (such as AND, OR, and NOT) is

still thought to be enough. According to Rumelhart and McClelland:

As we have already seen, one can make an arbitrary computational machine
out of linear threshold units, including, for example, a machine that can carry
out all the operations necessary for implementing a Turing machine; the one
limitation is that real biological systems cannot be Turing machines because
they have finite hardware. In Chapter 14, however, we point out that with
external memory aids (such as paper and pencil and a notational system) such
limitations can be overcome as well.

In other words, after 43 years, connectionism is still in the same place with respect

to computation. They go on to say:

We have not dwelt on PDP implementations of Turing machines and recursive
processing engines because we do not agree with those who would argue that
such capabilities are of the essence of human computation...5

The last paragraph distinguishes our computational approach from the more psycho-

logical PDP school. We believe that, besides being of the essence of intelligence, effec-

tive computation and recursion are crucial features for any sophisticated application of

connectionism.

Since biological systems (i.e., humans) do not need paper and pencil to understand

language, it would seem that examining a connectionist construction of a Turing

Machine would yield some useful insights for overcoming the 4 limitations discussed
hhhhhhhhhhhhhhh
4 (McCulloch & Pitts, 1943), p. 129.
5 (Rumelhart & McClelland, 1986b), p. 119.



12 Chapter 4

earlier.

The Neuring Machine

NEW STATECURRENT STATE

OUTPUTINPUT

DIRECTIONFINITE STATE CONTROLLERCURRENT SYMBOL

NEW SYMBOL

TAPE MECHANISM

Figure 1. Block diagram of a Turing Machine, consisting of a finite state
controller and a tape mechanism. The tape mechanism produces an input
symbol for the controller, which outputs a symbol to write on the tape and a
direction to move, as well as a new state for itself.

A Turing machine consists of a potentially unbounded linear memory called a

‘‘tape,’’ and a finite-state controller which can move, read, and write symbols on the

tape. The symbols are elements of a finite alphabet, which for simplicity we will assume

to just contain the two symbols 0 and 1.6

A block diagram of a Turing Machine as two interacting ’’black boxes’’ is shown in

Figure 1. At any time, the controller is in a particular state and receives a symbol from

the tape. It produces its own next state, a new symbol to write on the tape, and a direction

(either left or right) to move the tape, which then produces the next symbol for the con-

troller, and so on, until the controller reaches a distinguished ‘‘halting’’ state.
hhhhhhhhhhhhhhh
6 Although a TM is usually defined with any finite set of symbols, it is easily shown that 2 are
enough.



Limits of Connectionism 13

Implementing the finite-state controller is particularly trivial in almost any computa-

tional medium. A simple network of linear threshold units is sufficient, and will not be

detailed here. The real problem involves getting a tape into the machine. Since no physi-

cal system can actually have the unbounded memory of a Turing machine, that

unbounded memory becomes just a theoretical device, a ‘‘tape factory’’ which can create

memory as needed. But because the units in a connectionist model represent hypotheti-

cal neurons, and because neurons are not born, but only die, it is a very un-connectionist

idea to have a ‘‘neuron factory.’’7

Once the idea of manufacturing new units is eliminated, the only place left to store

the tape is in the states of a finite set of units. Indeed, in proofs of the power of stored-

program register machines, the assumption is made that registers can hold arbitrarily

large integers8. Similarly, in order to build a ‘‘Neuring Machine’’ it will be assumed that

the output of a unit can be a fraction, between 0 and 1, with arbitrary resolution.

This idea is in clear violation of at least two of the fundamental constraints on con-

nectionist models. As mentioned earlier, Feldman & Ballard (1982) constrained the

number of states a unit could have to 10, but we are assuming a potentially infinite

number of states. Furthermore, sending an unbounded amount of information across a

link clearly violates the constraint on limited communication. But because our purpose

is to find a sufficient set of connectionist primitives for effective computation, this

assumption should not be considered from a practical perspective.

To implement the tape mechanism, we use two tricks. Unbounded resolution frac-

tions, and true analog gating. To represent the tape, we use two stacks of bits. Consider

that a stack of bits, (s 1,s 2, . . . ), can be represented as a fraction, S, between 0 and 1:

S =
i
Σsi2

−i

To ‘‘pop’’ a bit off this stack, simply compare it to 0.5 (using a threshold logic unit) and

subtract the result from twice the original value. To ‘‘push’’ a bit, add half the stack and

half the new bit (using a linear combination). Figure 2 shows these two operations.

hhhhhhhhhhhhhhh
7 Since a neuron includes both memory and control, a neuron factory would manufacture control
as well as memory, which is quite different from a tape factory.
8 For a detailed construction of this sort see (Minsky, 1972), especially chapters 10 & 11.



14 Chapter 4

PUSHPOP

STACK

.5
.5

BITSTACK

RESTTOP

-1

2
1

.5

STACK

Figure 2. Simple mechanisms for a stack of bits represented as binary-coded
fractions between 0 and 1. The diamonds are linear combination units, and the
circles are threshold logic units, which return 0 or 1 depending on whether the
inputs are greater or equal to the labeled threshold.

The tape can be represented by two such stacks, representing its left and right por-

tions. The controller emits two signals to the tape mechanism, a new symbol to write,

and a direction to move. If the direction is LEFT, the symbol must be pushed onto the

right stack, and the top bit of the left stack is output to the controller; if the direction is

RIGHT, the symbol must be pushed onto the left stack, and the top bit of the right stack

is output to the controller.

Both the new representations for the stacks and the next input symbol to the con-

troller are gated by the direction signal. The next input symbol, being just a bit, can be

gated using threshold logic. However, the new stacks are fractions, which cannot be

gated accurately using thresholds, except through an interactive procedure. The

‘‘numeric’’ way to accomplish this gating is through multiplication, by generalizing the

the sum of products from logic to arithmetic.9

Figure 3 shows the entire tape mechanism, which uses 6 linear combination units

(diamonds) and 5 threshold units (labeled circles). The previous push and pop mechan-

isms are in the bottom of the figure, used by both left and right portions, to get the top

bits and to push the new symbol into the stacks. Given two direction signals, threshold
hhhhhhhhhhhhhhh
9 Logically, gating bits A or B by C can be done by the sum of products AC+BC

hh
; when A and B are

rational numbers between 0 and 1, the logical product must be replaced with an arithmetic
product.



Limits of Connectionism 15

TAPE MECHANISM

STATE
FINITE

CONTROL

.5.5

.5

1.51.5

1
1

111111

-1 -1

1
2

.5.5.5
.521

RIGHTLEFT

INPUT SYMBOL

MOVE LEFT

MOVE RIGHT

NEW SYMBOL

Figure 3. A tape mechanism which uses two bit-stacks to represent the left and
right portion of a TM tape. Depending on the direction to move, the stacks are
either popped or have the new symbol pushed, and this action is selected by
multiplicatively gated connections shown as small diamonds.

logic is used to select the input symbol for the next move of the machine. These two sig-

nals are also used to multiplicatively gate (shown by small diamonds) the representations

of the left and right stacks.

4.6. Multiplicative Connections

The purpose of the the exercise was to find a set of ‘‘changeable parts’’ which could

achieve effective computation in the connectionist framework. Taken together, fractional

values, linear combinations, thresholds, and multiplicative connections are sufficient for

computing. The first three elements are quite standard connectionist fare, but the multi-

plicative connections are a rarely used element in such models.

The need for these multiplicative connections, arises because of a Turing machine’s

ability to move both left and right on the tape -- Turing machines which move in only

one direction are only finite-state transducers.

Finally, it should be noted that arbitrarily resolved fractional values are not very

practical. It is not suggested that such precise numbers, or the particular single-bit stack



16 Chapter 4

mechanism, be widely adopted in connectionist models. We believe, however, that even

when a more reasonable bound on analog values is imposed, multiplicative connections

remain a critical, and underappreciated, component for neurally-inspired computing.

In simple terms, a normal connectionist network may be thought of as having a state

vector Vi(t) which evolves over time as a function of the fixed weights in the system, Wji:

Vi(t+1) = f(WijVj(t))

A multiplicative system uses a three-dimensional array of weights, and involves multi-

plying the state vector together:

Vi(t+1) = f(WijkVk(t)Vj(t))

which can be rewritten as a system whose configuration (weights) change dynamically

over time:

Wij(t) = WijkVk(t)

Vi(t+1) = f(Wij(t)Vj(t))

So multiplicative, or higher-order, connections are useful both for the gating of ana-

log values, and for getting a form of dynamic reconfiguration into a connectionist model.

Various researchers have proposed that the state of one unit can be used to continuously

modify the weight between another pair of units. For example, (Hinton, 1981b) proposed

using multiplicative connections in a system for object recognition independent of size or

rotation; (Feldman & Ballard, 1982) described them as variable mappings which reduce

the number of conjunctive connections in certain models; (McClelland, 1985) proposed

such a system for reducing the amount of resource duplication in a model of letter per-

ception; and (Lapedes & Farber, 1985) have applied them to a master-slave topology of

Hopfield networks.

Unfortunately, the complexity of programming or controlling such a network is very

difficult. In a simple, static network of n units, one only has to ‘‘program’’ or ‘‘learn’’ at

most n 2 weights. But in a system where the states of the n units can contribute to the n 2

weights, one has to deal with n 3 weights. This is perhaps why many researchers have

given up on using multiplicative connections (McClelland, Personal Communication).

We believe that the current state of connectionist architectures is akin to the first

general-purpose computers of the 1940’s. Because programs were developed on



Limits of Connectionism 17

patchboards, there was no connection between ‘‘program space’’ and ‘‘data space’’ so

languages, interpreters, and compilers could not exist. The major breakthrough came

with the advent of stored-program computers, where the program could be stored in the

same memory as data, and thus could be manipulated.

Multiplicative connections add this element to connectionist architectures, a short-

circuit between the program space of weights and the data space of (activation) states.

This analogy can be extended further. The effective power10 that this merging of

spaces allowed was immediately subject to the abuses of self-modifying code and

branching into data; practices that led to unstable systems. Connectionist networks using

multiplicative connections are also unstable, because it is difficult to relax when your

environment is dynamically changing.

The abuse of power ultimately creates restrictions on its use. In the stored program

computer, languages were developed which both restricted branching by allowing only

structured programming, and removed the possibility of self-modification. These crucial

powers are only granted to operating systems, interpreted languages (such as LISP and

APL), and loaders. Similarly, restrictions on the use of multiplicative connections will

be necessary in order to build powerful, but stable, general purpose connectionist sys-

tems.

The next chapter describes experiments with one such ‘‘programming convention.’’

Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. (1985). A learning algorithm for

Boltzmann Machines. Cognitive Science, 9, 147-169.

Allen, R. (1987). Several Studies on Natural Language and Back Propagation. In

Institute of Electrical and Electronics Engineers First International Conference on

Neural Networks. San Diego, II-335-342.

Backus, J. (1978). Can programming be liberated from the von Neumann style? A

functional style and its algebra of programs.. Communications of the Association

for Computing Machinery, 21, 613-641.

Blelloch, G. & Rosenberg, C. (1987). Network Learning on the Connection Machine.

In Proceedings of the Tenth International Joint Conference on Artificial
hhhhhhhhhhhhhhh
10 We use the term ‘‘effective power’’ since a non-stored-program machine is just as
theoretically powerful as a stored program machine.



18 Chapter 4

Intelligence. Milan, 323-326.

Cottrell, G. W. (1985). Connectionist Parsing. In Proceedings of the Seventh Annual

Conference of the Cognitive Science Society. Irvine, CA.

Cottrell, G. W. (1985). A Connectionist Approach to Word-Sense Disambiguation.

TR154, Rochester: University of Rochester, Computer Science Department.

Fanty, M. (1985). Context-free parsing in Connectionist Networks. TR174, Rochester,

N.Y.: University of Rochester, Computer Science Department.

Feldman, J. A. & Ballard, D. H. (1982). Connectionist models and their properties.

Cognitive Science, 6, 205-254.

Hanson, S. J. & Kegl, J. (1987). PARSNIP: A connectionist network that learns natural

language grammar from exposure to natural language sentences. In Proceedings of

the Ninth Conference of the Cognitive Science Society. Seattle, 106-119.

Hinton, G. E. (1981). Implementing semantic networks in parallel hardware. In G. E.

Hinton & J. A. Anderson, (Eds.), Parallel models of associative memory. Hillsdale:

Lawrence Erlbaum Associates.

Hinton, G. E. (1981). A Parallel Computation that Assigns Canonical Object-Based

Frames of Reference. In Proceedings of the Seventh International Joint Conference

on Artificial Intelligence. Vancouver, B.C., 683-685.

Hinton, G. E. (1984). Distributed Representations. CMU-CS-84-157, Pittsburgh, PA:

Carnegie-Mellon University, Computer Science Department.

Kawamoto, A. H. (1985). Dynamic Processes in the (Re)Solution of Lexical Ambiguity.

Doctoral Dissertation, Providence: Department of Psychology, Brown University.

Kay, M. (1973). The MIND System. In Rustin, (Ed.), Natural Language Processing.

New York: Algorithmics Press.

Lapedes, A. S. & Farber, R. M. (1985). A self-optimizing, nonsymmetrical neural net

for content-addressable memory and pattern recognition. LA-UR-85-4037: Los

Alamos National Laboratory.

McClelland, J. L. (1985). Putting Knowledge in its Place. Cognitive Science, 9, 113-

146.

McClelland, J. & Kawamoto, A. (1986). Mechanisms of Sentence Processing:

Assigning Roles to Constituents. In J. L. McClelland, D. E. Rumelhart & the PDP



Limits of Connectionism 19

research Group, (Eds.), Parallel Distributed Processing: Experiments in the

Microstructure of Cognition, Vol. 2. Cambridge: MIT Press.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Minsky, M. (1972). Computation: Finite and Infinite Machines. Cambridge, MA: MIT

Press.

Minsky, M. & Papert, S. (1988). Perceptrons. Cambridge, MA: MIT Press.

Plate, T. (1987). A design for the simulation of Connectionist models on coarse-grained

parallel computers. MCCS-87-106, Las Cruces: Computing Research Laboratory,

New Mexico State University.

Pomerleau, D. A, Gusciora, G. l., Touretzky, D. S. & Kung, H. T. (1988). Neural

Network Simulation at Warp Speed. In Proceeedings of the Institute of Electrical

and Electronics Engineers 1988 Conference on Neural Networks. San Diego.

Rosenblatt, F. (1962). Principles of Neurodynamics. New York: Spartan.

Rumelhart, D. E., Hinton, G. E. & McClelland, J. L. (1986). A General Framework for

Parallel Distributed Processing. In D. E. Rumelhart, J. L. McClelland & the PDP

research Group, (Eds.), Parallel Distributed Processing: Experiments in the

Microstructure of Cognition, Vol. 1. Cambridge: MIT Press.

Rumelhart, D. E., Hinton, G. & Williams, R. (1986). Learning Internal Representations

through Error Propagation. In D. E. Rumelhart, J. L. McClelland & the PDP

research Group, (Eds.), Parallel Distributed Processing: Experiments in the

Microstructure of Cognition, Vol. 1. Cambridge: MIT Press.

Rumelhart, D. E. & McClelland, J. L. (1986). On Learning the Past Tenses of English

Verbs. In J. L. McClelland, D. E. Rumelhart & the PDP research Group, (Eds.),

Parallel Distributed Processing: Experiments in the Microstructure of Cognition,

Vol. 2. Cambridge: MIT Press.

Rumelhart, D. E. & McClelland, J. L. (1986). PDP Models and General Issues in

Cognitive Science. In D. E. Rumelhart, J. L. McClelland & the PDP research

Group, (Eds.), Parallel Distributed Processing: Experiments in the Microstructure

of Cognition, Vol. 1. Cambridge: MIT Press.



20 Chapter 4

Selman, B. (1985). Rule-Based Processing in a Connectionist System for Natural

Language Understanding. CSRI-168, Toronto, Canada: University of Toronto,

Computer Systems Research Institute.

Touretzky, D. S. & Hinton, G. E. (1985). Symbols among the neurons: details of a

connectionist inference architecture. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence. Los Angeles, CA.

Touretzky, D. S. (1986). Representing and transforming recursive objects in a neural

network, or ‘‘trees do grow on Boltzmann machines’’. In Proceedings of the 1986

Institute of Electrical and Electronics Engineers International Conference on

Systems, Man, and Cybernetics. Atlanta, GA.

Touretzky, D. S. (1986). BoltzCONS: Reconciling connectionism with the recursive

nature of stacks and trees. In Proceedings of the 8th Annual Conference of the

Cognitive Science Society. Amherst, MA, 522-530.


