Theory and scope of exact representation
extraction from feed-forward networks

Ofer Melnik *

DIMACS Center
Rutgers University, Piscataway, NJ, USA

Jordan B. Pollack

Volen Center for Compler Systems
Brandeis University, Waltham, MA, USA

Abstract

An algorithm to extract representations from feed-forward threshold networks is
outlined. The representation is based on polytopic decision regions in the input
space— and is exact not an approximation. Using this exact representation we ex-
plore scope questions, such as when and where do networks form artifacts, or what
can we tell about network generalization from its representation. The exact nature
of the algorithm also lends itself to theoretical questions about representation ex-
traction in general, such as what is the relationship between factors such as input
dimensionality, number of hidden units, number of hidden layers, how the network
output is interpreted to the potential complexity of the network’s function.

Key words:
artificial neural networks, feed-forward networks, multi layer perceptrons, rule
extraction, hyperplane arrangement, polytopes, generalization, artifacts

1 Introduction

There are important reasons to analyze trained neural networks: For networks
deployed in real-world applications, which must be predictable, we want to use

* Work was conducted at Brandeis University
Email addresses: melnik@cs.brandeis.edu (Ofer Melnik),

pollack@cs.brandeis.edu (Jordan B. Pollack).

Preprint submitted to Elsevier Science 21st December 2001

network analysis as a verification tool to gauge network performance under
all conditions. In Data Mining applications, where networks are trained in
the hope that they may successfully generalize, and in so doing capture some
underlying properties of the data, we want to use network analysis to extract
what the network has learned about the data. Or conversely, when a network
fails to generalize, we want to use network analysis to find the causes of its
failure.

However, despite being prolific models, feed-forward neural networks have
been ubiquitously criticized for being difficult to analyze. There are multi-
ple reasons for this difficulty: First, since neural networks consist of a large
quantity of interconnected processing units that continuously pass information
between them, there is a high degree of interdependence in the model. This
implies a lack of locality, where small perturbations in one location can affect
the complete network. Therefore, it is not possible to modularize a network’s
functionality directly with respect to its architecture, rather it has to be an-
alyzed as a whole. Second, the input dimensionality of the network implicitly
limits its comprehensibility. Most people’s intuition resides in two or three di-
mensions. Higher dimensionality impedes our ability to comprehend complex
relationships between variables. Third, the processing units are non-linear. As
such, they are not easily attacked with standard mathematical tools.

Different approaches have been proposed to analyze and extract represen-
tations from neural networks (covered in the next section). But other than
Golea’s (Golea, 1996) proof of the NP-hardness of discrete network analysis,
little work has been done to address questions of theory and scope for represen-
tation extraction in general. Some of these general questions relate directly to
the previously discussed reasons for network analysis, including: How does the
computational cost of verifying a real-world neural network scale? What are
the common properties of networks that generalize well and those that do not?
The focus of this paper is to address these and other questions. Specifically,
on the theory front we are interested in the following questions:

(1) How does the potential complexity of a neural network change as a func-
tion of the number of its input dimensions and its hidden units? This
relationship acts as a lower bound on the computational complexity of
any representation extraction algorithm.

(2) What are the computational costs of calculating the exact error between
an approximate representation and the actual function that a neural net-
work is computing? These costs act as a bound on the difficulty of veri-
fying the correctness of an extracted representation.

(3) How does the number of hidden layers, and the interpretation of the
network outputs affect what a network can do? This correspondence is
related to how the quality of a representation might change across differ-
ent network models.

The questions of scope address what aspects of a network’s function can be
inferred from an extracted representation. Some questions we address are:

(1) How can we gauge the potential generalization properties of a network
by examining its extracted representation? In general, what properties
might a network with good generalization exhibit that can be detected
in its representation?

(2) Where can we expect the network to exhibit unpredictable behavior or
artifacts? What is the form of these artifacts that can be detected in an
extracted representation?

The tool that we use to address these fundamental questions of theory and
scope is a new algorithm able to extract exact and concise representations
from feed-forward neural networks. By being an exact algorithm its proper-
ties reflect directly on all other representation extraction algorithms. Since
any properties it exhibits or illustrates are inherently related to properties of
the underlying networks it analyzes, and as such delimit the performance of
representation extraction in general. Such an algorithm will help address the
theory questions in the following ways:

(1) The computational complexity of the representation extraction algorithm
is related to the potential complexity of the network. Thus, how the
resource usage of the algorithm changes with variations in the number
of network inputs or hidden layers is indicative of underlying network
complexity.

(2) The computational cost of performing measurements on the exact repre-
sentation is related to the cost of estimating how well other representa-
tions capture a networks function.

(3) How the computational complexity of the algorithm changes when hidden
layers are added, or how this computational complexity changes when the
network output is interpreted differently, are both directly related to how
these variations affect the network’s potential complexity.

The questions of scope require that the representation will allow us to under-
stand what features of a network’s function are conducive or detrimental to
good performance and generalization. Only by having an exact representation
can we be sure that we are examining all the relevant aspects of a network’s
function, and not missing information. The scope questions are approached by
example— by examining the representations of different networks. Specifically,
these questions are addressed in the following ways:

(1) By having a trustworthy representation, and some intuition about what
generalization entails, we can compare and contrast the representations of
networks with good and poor generalization to elucidate common prop-
erties of both.

(2) By scrutinizing the representations of networks we can determine the
form that deviations from desired function or artifacts take on. Ideally
we would like to be able to predict what network situations are more
likely to introduce artifacts.

This paper is structured into three main parts: a description of the algorithm,
an examination of the scope questions through example, and a discussion of
the theoretical results. We start by presenting the goals of the algorithm and
contrast those with other network analysis methods, leading to an examination
of the principles of network computation on which the algorithm are based.
The algorithm is then described in its basic form for single hidden-layer, single
output threshold multi-layer perceptrons.

The example sections begin with examples that serve to introduce the repre-
sentation while addressing the kind of artifacts present in multi-dimensional
networks. We then give examples that contrast representations of networks
that do generalize well to those that do not.

The theoretical discussion first addresses the complexity of the basic algorithm
and the relationship to potential network complexity. This complexity discus-
sion is continued by describing how the algorithm can be extended to multi-
layer multi-output networks and its computational implications, and also by
examining complexity from the perspective of representation validation. We
then discuss the differences between threshold and sigmoidal networks, where
we examine what effect this change of activation function has on their repre-
sentational ability. We conclude the discussion by tackling the issue of whether
learning algorithms can successfully exploit all the potential complexity avail-
able in these networks.

2 Network Analysis Methods

To address the questions asked above we seek a way to extract from a network’s
parameters an alternative representation of its function, a direct representa-
tion, one without interdependence between parameters. The representation
should be exact, matching the network’s function fully, but concise, not intro-
ducing redundancy. Only if all three properties are met can the algorithm truly
reflect the full underlying computation of these networks and their complex-
ity. Thus, in examining the different approaches to neural network analysis
proposed in the literature we need to focus on whether they exhibit these
properties of being exact, concise and direct. There are different ways to cat-
egorize approaches to network analysis, of these we choose to examine them
by the form of their results or representation.

The rule extraction approaches (Andrews et al., 1995; Bologna, 1998; Craven
and Shavlik, 1995; Setino, 1997; Thrun, 1993) extract a set of symbolic “rules”
to describe network behavior. These algorithms can be divided into two broad
categories by their treatment of the network, decompositional and pedagogi-
cal. The decompositional approaches try to find satisfiability expressions for
each of the network units with respect to its inputs. Depending on the al-
gorithm, this is achieved by first applying discretization, large scale pruning
or placing structural limitations on the networks and then performing an ex-
haustive search on the inputs of all the units. To their credit, by performing
an exhaustive search on all the network’s constituent units, the decomposi-
tional approaches offer a complete alternative representation to the network’s
function. Nonetheless, except for the cases where the network structure is ex-
plicitly limited to facilitate rule-extraction, the rules extracted are not exact,
as in most cases the network’s function can only be approximated by rules.
This representation is also not independent as the rules represent individual
network units and as such maintain their distributed representation depen-
dence.

The pedagogical and hybrid approaches to rule extraction do not decompose
a network unit by unit, rather they construct rules by sampling the network’s
response to different parts of the input space, using varying degrees of network
introspection to refine their regimes. Sampling makes these algorithms com-
putationally feasible, and depending on the algorithm at times independent,
but the algorithms fail to examine the full space of possibilities of network
behaviors, so their rules are typically greater approximation than the decom-
positional approaches.

Weight-state clustering (Gorman and Sejnowski, 1988), contribution analysis
(Sanger, 1989; Shultz et al., 1995), and sensitivity analysis (Intrator and In-
trator, 1993, 1997), which do use the network’s parameters directly in their
analysis, unlike rule extraction do not generate an alternative representation,
rather they try to ascertain the regularity in the effect that different inputs
have on a network’s hidden and output units. That being the case, these meth-
ods do not explain global properties of the network, but are limited to specific
inputs and like the pedagogical approaches, do not meet our criteria of being
exact.

Hyperplane analysis (Pratt and Christensen, 1994; Sharkey and Sharkey, 1993)
is a technique by which the underlying hyperplanes of neural network’s units
are visualized. As such, it is global and uses the network’s parameters in its
analysis. However, it does not remove interdependence, and does not scale
since it is based on understanding the network interdependencies by direct
visualization.

Network inversion (Linden, 1997; Maire, 1999) is a technique where locations

in the input are sought which generate a specific output. Maire’s work is
promising in that it approaches the problem by back-propagating polyhedra
through the network and thus generates an exact direct representation. How-
ever its main shortcoming is its lack of conciseness, each stage of inversion can
generate an exponential number of sub-polyhedra.

Ideally we would like to construct an algorithm that extracts exact, direct
and concise representations from any arbitrary neural network. This is not
feasible, however. The main impediment is that the functional form of the al-
ternative representation is dependent on the type of activation function used.
That means that for different activation functions we would need to use dif-
ferent types of representations, breaking our notion of a unified algorithm.
Nevertheless, with different monotonic activation functions the basic meth-
ods of network generalization remain the same. Therefore, the approach taken
in this paper is to construct an algorithm for a specific activation function
(threshold) to address the questions as they pertain to this activation func-
tion, and then discuss what effects varying the activation function would have.
The concept behind the algorithm is to find the limitations or constraints on
how the network output can change under differing input conditions. Stated
another way: How does the network architecture govern its decision regions?

3 Decision Regions

The output of a network, interpreted as a classifier, partitions the space of its
inputs into separate decision regions. For each possible network output value,
there exists a corresponding regions in the input space such that all points in
those regions give the same network output. Hence the name decision region,
since a region reflects the network’s output or decision.

The decision regions encompass the full function that a network computes.
They describe the complete mapping between the input and the output of
the network. Unlike the original network, which does this mapping through
the interdependent computation of many units, the decision regions map the
input and output directly.

Decision regions can have different shapes and other geometric properties.
These properties are directly related to the network architecture used. The
Decision Intersection Boundary Algorithm (DIBA) is designed to extract de-
cision regions from multi-layer perceptron networks, a feed-forward network
with threshold activation functions. The decision regions for this type of net-
work are polyhedra, the n-dimensional extension of polygons. The algorithm
is based on a few principal observations about how multi-layer perceptrons
compute.

Output

Input
Figure 1. A 3-layer perceptron neural network.

Consider a three layer perceptron neural network, with each layer fully con-
nected to the successive layer as in figure 1, where the output of each of the
units is 1 if Y-, weight;input; > 0 and 0 otherwise. The first observation is the
independence of the output units. There is no information flow or connectivity
between any of the output units. This is due to the strictly feed-forward na-
ture of the network. Effectively, each output unit is computing its own value
irrespective of the other output units. As such, for now, we can treat each
output unit separately in our analysis of the network, generating separate de-
cision regions for each output unit. Since this is a perceptron network with
threshold activation functions, an output unit can have either a value of 0 or
1. Therefore we can choose to build decision regions corresponding to either
an output value of 0 or 1.

An output unit value is dependent on the activation values at the hidden
layer, which are dependent on the values at the input layer. Since the hidden
layer units’ output can only take on a value of 0 or 1 as well, their effect on
the output unit’s weighted sum is discrete. In fact, the output unit’s weighted
sum is just a partial sum of its weights. The full value of each weight is either
included in the sum or completely left out.

Any location in input space where an output unit switches values is a decision
boundary. Such a switch corresponds to a transition in the output unit’s partial
sum, either going above threshold when it was previously below or vice-versa.
Since the partial sum is a function of which hidden units are active, this
threshold transition must be coordinated with a state change in one or more
hidden units. This means that a decision boundary must correspond to a region
in the input space where at least one hidden unit undergoes a state change.

Each hidden unit divides the input space into two regions, a region where its
output is 0 and a region where its output is 1, in effect generating its own
decision regions. In this context, each location in input space has associated
with it a hidden state, a binary number corresponding to the output values of
all the hidden units when given that input location. The hidden state corre-

sponds directly to the output unit’s partial sum and hence the output unit’s
value. This leads to the important observation that the only locations in in-
put space where this hidden state can change are across the hidden units’ own
decision regions, or across the intersection of multiple decision regions. This
implies that the basic building blocks of output unit decision regions are the
decision boundaries between the intersections of hidden unit decision regions.
As such the output unit decision regions are composed of parts of the hidden
units’ division of the input space.

In the multi-layer perceptron the hidden units divide the input space using
hyperplanes. Therefore, the output unit decision regions are composed of high-
dimensional faces generated by the intersection of hyperplanes, making them
polyhedra. If we want to explicitly describe these faces, we need to specify their
individual boundaries. As the intersection of hyperplanes, these boundaries are
just lower dimensional faces. Assuming the space is bounded, we can repeat
this process recursively, describing each face using its lower dimensional faces,
until we reach zero dimensional faces or points. Consequentially, the output
unit decision regions can be described by the vertices which delineate them.

4 The Decision Intersection Boundary Algorithm

The basic Decision Intersection Boundary Algorithm is designed to extract
the polytopic decision regions of a single output of a three layer perceptron
network. Later sections explain the simple modifications necessary to extend
it to multiple hidden layers and multiple outputs and discuss the difference
between threshold and sigmoid activation functions. The algorithm’s inputs
are the weights of the hidden layer and output unit, and boundary conditions
on the input space. Using boundary conditions guarantees that the decision
regions are compact, and can be described by vertices. Its output consists of
the vertex pairs, or line segment edges, which describe the decision regions in
input space.

As described in the previous section, decision region boundaries are at the
intersections of the hidden unit hyperplanes. Thus the algorithm consists of
two parts, a part which generates all the possible vertices and connecting line
segments by finding the hyperplane intersections, and a part which evaluates
whether these basic elements form the boundaries of decision regions. In figures
2 and 3 we see an illustration of these two parts of the algorithm.

% . .t

Figure 2. The generative portion of the DIBA algorithm recursively projects the
hidden layer hyperplanes down till they are one-dimensional, in order to generate
all the intersections of the hyperplanes. Here we see an illustration of two stages of
projection from three dimensions to two and from two to one.

Figure 3. The boundary testing portion of the DIBA algorithm evaluates individual
vertices and line segments, that were generated by the recursion, in order to test
whether they form corners or edges of decision regions. Here we see the edges and
corners of two decision regions the algorithm would recognize in an arrangement of
hidden unit hyperplanes.

4.1 Generative Recursion

The generative part of the algorithm is recursive. For each hidden unit hyper-
plane of dimension n, the algorithm finds the intersections with all the other
hyperplanes. These intersections, that are hyperplanes of dimension d-1. This
procedure is performed recursively until one dimensional hyperplanes, or lines
are reached— lines are the basic unit of boundary evaluation in this algorithm.

function extract(hidden, out, borders): Return Representation
Input Hidden Units’ weights, Output Unit’s weights, Borders
Output Representation containing vertices and line segments

if hyperplane _dimension(hidden) > 1
for base_ hyperplane in hidden

for hyperplane in hidden
if hyperplane # base_ hyperplane
new_ hyperplane =
find intersection of hyperplane with base_ hyperplane
if hyperplane is parallel to base hyperplane then
store state of hyperplane with respect to base hyperplane

else
add new_hyperplane to new_hidden
endif
endif
endfor
call extract(new_hidden, out)
endfor

else execute the traversing-the-line routine (appendix A)

4.2 Boundary Test

Along the line, the locations of output unit value changes are at the intersec-
tions with the remaining one-dimensional hidden unit hyperplanes. At each
such location the algorithm needs to test whether the intersection, a vertex,
forms a corner boundary— and if the intervening line segment forms a line
boundary.

In order to understand the boundary test we need to examine the concept of a
boundary in a d-dimensional input space. We start our examination by look-
ing at one hidden unit. If a single hyperplane acts as an output unit border, it
implies that at least for a portion of the hyperplane, in a neighborhood on one
side of the hyperplane there is one output unit value and in the corresponding
neighborhood on the other side of the hyperplane there is a different output
unit value. For example, (see figure 4) if we take our input space to be two
dimensional and use a line as our hyperplane, the line acts as a boundary if
the output unit value on one side of the line is 1 and the output unit value
is 0 on the other side of the line. One can think of the hyperplane as forming
the boundary. Inversely, one can think of the boundary taking on the form
of a hyperplane in that particular region in space. That is, the location in
input space where we have an output value transition can be described by a
hyperplane. This is the functional view of the boundary. To functionally de-
scribe a boundary at that part of the space we need a hyperplane. Taking this
view, a boundary is composed of various geometric entities which demarcate
output value transitions in input space— and the corner test becomes: do we
need a lower dimensional geometric entity to describe the boundary at the
intersection of multiple hyperplanes?

10

Input Space

[0 Output of 1
] Output of 0

Figure 4. The decision region formed by the division of a two dimensional space
by a hyperplane line. The line could be said to be partitioning the space. Or, in a
complementary, functional fashion it could be said that the form of the boundary in
the space is in the shape of a line.

Take two non-parallel hyperplanes which act as boundaries. Around each of
these hyperplanes the boundary takes the form of a (d-1)-dimensional mani-
fold. If at their intersection both hyperplanes still act as boundaries, then the
functional geometric form of the location with this output value transition
across both hyperplanes is the (d-2)-dimensional hyperplane formed by the
intersection of the two hyperplanes. One can say that the corner formed at the
intersection is the description of the location of a complex boundary across
multiple hyperplanes.

To illustrate this, let us examine under what circumstances an intersection of
lines (2-dimensional hyperplanes) forms a complex boundary. Two lines inter-
sect at a vertex, this vertex could be a corner, a zero-dimensional boundary, or
not. In figure 5 we see different boundary configurations at this vertex. Two of
the configurations form corners, while the others do not. The two that do form
corners have one element in common, both of the hyperplanes that make up
the corner are still boundaries in their own right. That is, in the vicinity of the
corner both hyperplanes have a part of them that engenders one output unit
value on one side of the hyperplane, and another on the other side. As stated
before, this corner marks a location in input space where a complex transition
takes place, a transition across multiple hyperplanes. This corner test can be
naturally generalized to higher dimensions. In general, what we seek in an
intersection that forms a boundary, is that all hyperplanes making
up the intersection have at least one face that is a boundary in its
vicinity.

How do we practically check for this intersection boundary condition? In a d-
dimensional input space, an intersection of n < d hyperplanes partitions the
space into 2" regions (see figure 6). If we consider our hidden units as these
hyperplanes, then the space is partitioned into the 2" possible hidden states.
Each possible hidden state with respect to these hidden units is represented

11

Input Space

[0 Output of 1
] Output of 0

Figure 5. Some possible decision regions formed at the intersection of two lines.
Corners are only formed if both lines are boundaries.

3-Dimensions 2-Dimensions

Figure 6. The partitioning of a 2 and 3 dimensional space around the intersection of
hyperplanes.

in our input space around the intersection. A hidden unit hyperplane has
a boundary face within the input space partitioning of the intersection, if
within these 2" hidden states there exist two hidden states that differ only by
the bit corresponding to the hidden unit hyperplane being tested, such that
one hidden state induces one value at the output unit and the other state
induces another value. This basically says that at least in one location of the
partitioning, if we cross the hyperplane we will get two different output unit
values. Thus algorithmically the corner test is to go through all possible hidden
states at the intersection and check that each hidden unit acts as a boundary.

In the 3-layer single output network case, where the output unit just com-
putes a partial sum of its weights, the test simplifies to finding whether the
hyperplane corresponding to the smallest absolute valued weight has a bound-
ary in the intersection. Of course, this is a necessary condition, but it is also
sufficient, since if the hyperplane of the smallest absolute valued weight has
a boundary then all other hyperplanes making up the intersection must also
have boundaries. This is shown mathematically in appendix B.

The boundary test for line segments and corners is the same, since both lines

12

Figure 7. Unlike two dimensional spaces, a corner in a three dimensional space can
be in the middle of multiple line segments.

and vertices are just intersections of hyperplanes. Lines are the intersection of
d-1 hyperplanes and vertices are the intersection of d hyperplanes.

4.8 Traversing the Line

When do we perform the boundary test? In two-dimensional input spaces, a
corner always either starts or ends a line segment; a corner can not be in the
middle of two line segments. In contrast, in higher dimensional spaces, corners
can be in the middle of line segments. Figure 7 demonstrates how a three-
dimensional corner can be in the middle of multiple line segments. However,
even in high dimensional spaces a line segment can only start and terminate
at the corners which delineate it. Therefore in traversing a line, we need to
check corners at all hidden unit intersections, and check for line segments only
between corners which start and end them.

For the intersection boundary test there are two kinds of hidden unit hyper-
planes: hyperplanes that make up the intersection and hyperplanes that do
not, but whose state does affect the output unit value by projecting over the
intersection. Before performing the boundary test on a line segment or vertex,
we need to assess the contribution of these additional hyperplanes to the out-
put unit partial sum in the intersection vicinity. It is possible to simply sample
the hidden state of these hidden units in the vicinity of the intersection. But
on the line there is a more economical solution. On the line we are traversing,
the projection of these additional hyperplanes is a point. These hyperplanes
each divide the line into a half where their hidden state value is 1 and a half
where their hidden state value is 0. This gives a directionality to each hy-
perplane. That is, if we traverse the line from one end to the other, some of
the hyperplanes will be in our direction, meaning that as we pass them their
hidden value state will become 1, and the others will be in the other direction,
their hidden value state changing to 0 as we pass them (see figure 8.) We can

13

Partial sum of W3 W1+W3 W1+W2+W3 W1+W2 W1+W2+W4
output unit weights

Direction of hidden
units on the line

Output unit weight w1 w2 w3 w4

of each hidden unit
Figure 8. The bi-directionality of hyperplane intersections on a line suggests a two
pass algorithm to calculate the partial sums of the output unit weights.

use this property to incrementally quantify the contribution of these units to
the hidden state/partial sum.

The bi-directionality suggests a two pass algorithm. Initially, we arbitrarily
label the two ends of our line, left and right. The forward pass starts with
the leftmost hyperplane and scans right, hyperplane by hyperplane. We are
interested in finding the partial sum contribution for each line segment between
hyperplanes. So, as each hyperplane is encountered it is checked for right
directionality, and its weight is tallied to a running sum of the weights. This
sum is assigned to the current line segment, accounting for the contribution
of all the right directed hyperplanes on this line segment. The backwards pass
is identical, except it starts from the rightmost hyperplane and scans left,
adjusting its running sum with left directed hyperplanes, and adding its sum
to the values already generated in the forward pass. Thus, completion of both
passes calculates the partial sum contribution of all left and right directed
hyperplanes for all the line segments on the line. The actual boundary tests
can be conducted during the backwards pass, since the full contribution to the
partial sum has been tabulated at that stage. Appendix A contains a pseudo
code description of the “Traversing the Line” portion of the algorithm.

5 Examples

The following are examples of applying the Decision Intersection Boundary Al-
gorithm on trained three layer perceptron networks. The training consisted of a
mixture of momentum back-propagation and weight mutation hill-climbing*.
However the units were always treated as threshold for the purposes of the
DIBA algorithm. The examples are used to demonstrate the kind of decision
region descriptions that can be extracted using the DIBA algorithm and how

1 We do not go into the specifics of these generic training methods, as the focus of
the paper is on the trained networks, not how they were trained. For further reading,
see (Bishop, 1995) on these and other training methods.

14

they can be interpreted. In parallel, by examining the representations of mul-
tiple networks we address the questions of scope: What is the form of network
artifacts? And what can we learn about how networks generalize from their
representation?

5.1 Sphere Networks

Networks construct decision regions to enclose data on which they are trained.
Artifacts or noise appears as decision region structure that is unrelated to the
training data. By looking at similar networks with different dimensionality, the
following three examples demonstrate the relationship between a network’s
input dimensionality and propensity to noise.

5.1.1 Two-Dimensions: The Circle

Using back-propagation an 80 hidden unit sigmoidal neural network was trained
to classify 300 points inside and outside of a circle of radius 1 around the ori-
gin. Treating the activation functions as threshold, the DIBA algorithm was
then applied to the weights of the network. In figure 9 we see the decision
region extracted at the origin, and the points corresponding to the training
sample. The decision region allows us to directly view what the network does—
exactly where it succeeds and where it fails. The representation is concise,
since all the vertices used are necessary to completely describe the decision
region. With this exact representation we can make out the nuances of the net-
work’s function, for example, note the small protrusion on the bottom right
part of the decision region that covers two extremal points.

The DIBA algorithm also allows us to examine other aspects of this network.
By zooming out from the area in the immediate vicinity of the origin we
can see the network’s performance, or generalization ability, in areas of the
input space that it was not explicitly trained for. In figure 10 we recognize
large artifactual decision regions at a distance of at least 50 from the decision
region at the origin. Thus, in this area of the input space where there was no
actual training data, a few decision regions formed as artifacts of the network
weights that were learned.

5.1.2 Three-Dimensions: The Sphere
A 100 hidden unit network was trained to differentiate between points inside
and outside of a sphere centered at the origin. In figure 11 we see the rather

successful decision region encapsulating the network’s internal representation
of the sphere from different angles. Figure 12 illustrates the same phenomena

15

Figure 9. A decision boundary of a network which classifies points inside and outside
of a circle.

80
| Circle
o} \D il
-80 .
-100 0 20

Figure 10. A zoom out of the network illustrated in figure 9 illustrates the existence
of artifactual decision regions.

of additional artifact decision regions we saw in the circle for the sphere— the
miniature sphere appears amid a backdrop of a large cliff-face like decision
region. Note that the artifacts are more complex in the three-dimensional
case. As the higher dimensionality of the input space implies the existence
of exponentially more hyperplane intersections (vertices) than in the two-
dimensional case and with that potentially more artifactual decision boundary
corners.

16

1.5

1.
0 0
1.5
1.5
1.5
-2 -
2
0 2
1.5 2% o

Figure 11. A decision boundary of a network which classifies points inside and outside
of a sphere.

Sphere

50 200

Figure 12. The artifacts around the sphere decision boundary.

5.1.8 Four-Dimensions: The Hyper-Sphere

Another 100 hidden unit network was trained to recognize points inside and
outside of a 4-dimensional hyper-sphere centered around the origin. Due to
human limitations it is difficult for most people to visualize objects in more
than three dimensions (even three can be a challenge at times.) One way to
gather information from our high dimensional polytopic decision regions is to
describe them in terms of rules. That is, we bound each polytope inside of a
hyper-rectangle, and examine the rectangles’ coordinates. At this first approx-
imation we can elucidate how many decision regions there are, their location in
input space and a coarse approximation of their volume. The rectangles can
later be incrementally refined to enclose parts of polytopes, thereby giving
higher resolution rules, refining our perception of their structure and volume.
In this case the hyper-rectangle which covers the polytopes representing the

17

\\/0/1
2

< 0 9 -1

Figure 13. Projections of the four dimensional hyper-sphere polytope across z4 =0
and z4 = 1.

hyper-sphere has the following minimum and maximum coordinates:

Min: (-4.45 -5.79 -3.90 -7.93)
Max: (6.47 6.01 7.39 6.07)

Another way to examine the high dimensional space is to examine projections
on to lower dimensional spaces. In figure 13 we see projections of the four
dimensional polytope with the fourth component set to zero and one respec-
tively. Needless to say, the four dimensional hyper-sphere looks less and less
like a sphere. As before, increasing the number of input dimensions increases
the potential for more artifactual boundaries. But this is also coupled with
the curse of dimensionality (Bishop, 1995), which says that as we increase the
input dimension while keeping the number of training samples constant, our
problem (the decision region we are trying to learn) becomes exponentially
less specified. Thus, artifacts appear not only at a distance from the train-
ing samples, but in higher-dimensional spaces, might appear on our actual
decision regions in the form of unwanted complexity.

5.2 Ball Throwing Network

A networks generalization ability is directly related to its decision region struc-
ture as defined by the underlying training data. Good generalization can occur
if by structuring the data into decision regions, the network uncovers clear un-
derlying properties of how the data is fundamentally organized in the input
space.

As a positive example consider a 15 hidden unit network that was trained
to predict whether a thrown ball will hit a target. As input, it received the

18

v Initial Velocity 0-100

e

5 Meter Target 3 Angle 0-90 A
-

X Throwing Distance 0-100

Figure 14. The network is supposed to predict whether the ball will hit the target
given throwing angle 3, initial velocity v and target distance x.

throwing angle, initial velocity and the target distance (see figure 14.) After
training it achieved an 87% success rate on the training data.

This is a simple non-linear system which when solved analytically gives us the
following relationship:

T

2 an 9
g
29

Figure 15 contrasts the decision region generated from the 15 hidden unit
neural network with the analytical solution. It is apparent that the network
managed to encapsulate the gist of the model, its decision region approximates
the analytically derived decision region fairly well. The decision region pos-
sesses properties which suggest good network generalization, independently of
knowing the actual solution. The decision region clearly defines a specific sub-
manifold of the space. It consists of 4 main sub-decision regions, that are each
highly convex but distinct from each other, suggesting that those locations in
input space were clearly individually defined in the training set. In addition,
the region of input space not in the decision region (the “misses the target”
area) is also clearly defined and separated, consisting of a few large convex
regions.

5.8 Predicting the SE&P 500 Movement

Contrast the previous network with a neural network containing 40 hidden
units that was trained to predict the average direction of movement (up or
down) for the following month’s Standard and Poor’s 500 Index. It was trained
on monthly macro economic data from 1953 to 1994 from Standard & Poor’s
DRI BASIC Economics Database. The network’s inputs were the percentage
change in the S&P 500 from the past month, the differential between the
10 year and 3 month Treasury Bill interest rates, and the corporate bond
differential for AAA and BAA rates, indicators used in non-linear economic

19

100 100
: ;
g %0 g 50
2 %)
a fa
0 0
100 100
100 100
50 50 50
Angle 00 Velocity Angle 00 Velocity
100 y 100
g 3
£ 50 g 50
ks b}
a a
0 0l
0 0"
100 100
50 50 50 50
100 0 Angle Velocity 100 0 Angle

Velocity

Figure 15. The decision region of the ball throwing neural network (left) contrasted
with the decision region of the actual analytical solution (right). Two different per-
spectives are shown.

forecasting (Campbell et al., 1997). After training, the network achieved a
better than 80% success rate on the in-sample data. Figure 16 shows the
network’s decision regions. from it we can surmise that the network would
probably not generalize very well to out of sample data. We can see that
rather than learning some underlying regularity, the network tended to highly
partition the space to try and enclose all the sporadic data points.

We can use the rule method outlined before to quantify some of these parti-
tioning effects. In the region of input space where the training data resides the
network has 28 different decision regions. Of these all but five have a bounding
rectangle with a volume of less than one. One decision region has a bounding
rectangle which encompasses the whole input space. We can refine the rule for
this large decision region by slicing the decision region using another hyper-
plane and examining the bounding rectangles for the resultant sub-decision
regions. If we simultaneously slice this polytope using three hyperplanes, each
bisecting the input space across a different dimension, then if the polytope
were completely convex, we would expect, at most, to get eight sub-polytopes.

20

15 15

S&P 500 Percentage Change
S&P 500 Percentage Change

0 0]

-15 -15

5 -1
-1 0

Interest Differentia Bond Differential

5 g3 Bond Differentia® 5 |nterest Differential

Figure 16. The decision regions of the S&P 500 prediction network.

However for this decision region, this refinement procedure generated 23 sep-
arate sub polytopes, implying that the polytope has concavity and probably
has some form of irregular branching structure needed to partition the space.
A simple analogy would be to contrast an orange with a comb. Both are solid
objects. No matter how we slice the orange we will always be left with two
pieces. However if we slice the comb across its teeth, it will decompose into
many pieces.

5.4 Vowel Recognition

As another example of comparing generalization, this time looking at the ef-
fects of dimensionality, two neural networks were trained on the vowel data
available at the CMU neural network benchmark repository. This data consists
of 10 log area parameters of the reflection coefficients of 11 different steady
state vowel sounds. Our interest in this example was to gauge the effect of
using different dimensioned input spaces. The reflection coefficients are par-
ticularly suited for this test (Makhoul, 1975) because of their mathematical
properties: they are orthogonal, the coefficients do not change when larger sets
are generated, and using their log area parameters confers a greater spectral
sensitivity. Both networks were trained to recognize the vowel sound in the
word had within the background of the other 10 vowel sounds.

The first network received as input the first two coefficients. After training,
it achieved a better than 86% success rate on the training data. Its decision
regions and the training data are shown in figure 17. In the input region of
[—3.2,—2.3] x [0.7,1.2] we see a relatively high degree of partitioning, in that
many decision regions are used to secure a perfect classification, implying
possibly problematic generalization in that region.

21

Figure 17. The decision regions of the two input vowel recognition network with the
training data in the background. The X’s are positive test cases.

The second network received the first four coefficients as inputs, and enjoyed a
success rate of over 91% on the training data. It also achieved perfect classifi-
cation within the input region described. However, it appears to have done so
with less partitioning of the space. We can see this using the rule refinement
procedure described in the previous example. If we extract the decision regions
in this part of input space we get only one rectangle which spans it completely.
Conducting the same kind of concavity test we previously used, that is slicing
the space using four hyperplanes, each bisecting an input dimension of the
region, we get only 10 sub polytopes suggesting a small degree of concavity
(less than the 2* for a perfectly convex shape). In addition these sub-decision
regions are mostly delimited in the third and fourth dimensions with the first
two dimensions left to span the whole area of the sub-space. Therefore it ap-
pears that the network makes use of these added dimensions to form a more
regular decision region in that difficult region of the input space. This must be
qualified, since by the curse of dimensionality the increase in the dimension-
ality made the problem less specified, and as such it became easier to enclose
the data points within one, more convex decision region. But the fact that the
decision region makes exclusive use of the added dimensions to discriminate,
significantly strengthens the claim of potentially better generalization.

22

6 Discussion
6.1 Algorithm and Network Complezity

The Decision Intersection Boundary Algorithm’s complexity stems from its
transversal of the hyperplane arrangement in the first layer of hidden units.
As such, that part of its complexity is equivalent to similar algorithms, such
as arrangement construction (Edelsbrunner, 1987), which are O(n¢), where n
is the number of hyperplanes and d is the input dimension. Another aspect
of complexity stems from the corner test, which is O(2¢). Even the partial
sum case is of similar complexity, since the question of asking whether the
lowest magnitude weight acts as a border is equivalent to the knapsack prob-
lem (Schrijver, 1987) which is N P-complete.

Do we really need to examine every vertex though? Perhaps the network can
only use a small number of decision regions, or it is limited with respect to
the complexity of the decision regions. In this section we prove that this is

d
not the case by hand constructing a network with 2 ((3)) different decision

regions, where each decision region has 2¢ vertices, concluding that networks
are capable of having exponential complexity.

We begin with a one dimensional construction of a three layer, single output
perceptron network. Start with k£ hidden units with the same directionality,
and assign to them alternating +1 and —1 weights. In figure 18a we see such
a construction with £ = 4 hyperplanes. If we set the output unit threshold to
0.5, we see that the hyperplanes partition the input space into three decision
regions, a decision region for each line segment with a weight sum of zero.

Let us extend this construction to a two dimensional input space. First we
extend the one-dimensional hyperplanes, points, to two-dimensional hyper-
planes (lines). We do this by making them parallel in the added dimension.
Next we add an additional & hyperplanes that are orthogonal to the origi-
nal hyperplanes, and again assign to them alternating —1 and +1 weights.
Figure 18b illustrates this. We see that the additional hyperplanes continue
each zero term in a checkerboard pattern in the added dimension, but above
zero terms remain above zero in the added dimension. Thus, by adding a di-
mension, each lower dimensional decision region multiplies to become either
(k+1)/2 or k/2 + 1 different decision regions, depending on whether £ is odd
or even.

This construction can be extended to any number of dimensions, so by induc-

n

d
d)) decision regions. Since

tion we can see that this construction has 2 ((

23

a)
Weights +1 -1 +1 -1

Weight Sum 0 ’—»1 ’—»0 ’—»1 ’—»0

b)
Weights +1 -1 +1 -1

0 1 0 1 0

0 1 0 1 0

Figure 18. A hand constructed neural network which demonstrates the potential
number of decision regions a network can have.

each decision region is a hypercube in d dimensions, it has 2¢ vertices. Another

n

d
regions. This example uses parallel lines, the complexity is obviously higher
with non-parallel lines in which all hyperplanes intersect with each other.

d—1
point to note is that each hyperplane contributes a face in €2 (()) decision

The result of this construction extends Golea’s proof (Golea, 1996) of the NP-
hardness of discrete network analysis to the continuous input case, by showing
that it is necessary for the algorithm to be exponential as the complexity of
the network may also be exponential in its decision regions structure. This
complexity result addresses our first theoretical question as it applies not only
to this algorithm, but to any algorithm which on some level tries to describe
a neural network by enumerating its functions, i.e. listing its decision regions
(e.g., rule extraction). Any algorithm that deals with network function on the
level of decision regions will need space exponential in the input dimension to
fully describe an arbitrary network.

6.2 Extensions to the Algorithm

The formulation of the DIBA algorithm given previously was for a three layer,
single output network. Now we address on of the theoretical questions posed
earlier: How does the complexity of the network and algorithm change when
we allow more hidden layers and multiple outputs?

24

6.2.1 Additional Hidden Layers

Fundamentally, the addition of more layers to a perceptron neural network
does not change the underlying possible locations and shapes of the decision
regions. Consider adding an additional layer to our previous three-layer net-
work. We already know that the units in the first hidden layer divided the
input space into half-spaces, the units in the second hidden layer (previously
the output units) form decision regions composed of the intersections of the
divisions in the first layer, so what does the next layer do? Like the units in
the second layer, the output values in the third hidden layer can only change
across a boundary in the previous layer (another partial sum). And since the
values in the second layer can only change across the boundaries of the first
hidden layer’s hyperplanes, then the boundaries of the third hidden layer are
still only composed of the intersections of the first layer’s hyperplanes. This
argument holds for any additional layers. So in essence the first layer funda-
mentally defines what possible decision regions the network can express.

In terms of the algorithm itself, the modification is straight forward. The
potential locations of the polytope vertices are still the same, we just need to
adjust the corner test. Rather than doing the partial sum test for the smallest
absolute valued weight, we perform the general corner test. We check for a
transition across all the intersection hyperplanes at a vertex, but with respect
to an output unit at a higher level. Specifically, we form all the possible hidden
states at the vertex, feed them to the rest of the network, and see if they
qualify as a corner boundary with respect to the output unit. That is, each
hyperplane acts as a boundary at least once in the vicinity of the vertex. Thus,
the algorithm complexity does not change with the introduction of multiple
hidden layers.

6.2.2 Multiple Output Units

Multiple output units can be handled in much the same way as additional
hidden layers, using the generalized corner test. Instead of checking for an
output transition with respect to one output unit (either on or off), we can
check for an output transition with respect to a combination of output units.
For example we might be interested in extracting the decision regions described
by having exactly six output units on. Then in order to check if a vertex forms
part of such a decision region we check the value of all the output units with
respect to the possible hidden states at the vertex. If there is a transition
across all hyperplanes forming the intersection, that is, in the vicinity of the
intersection across each hyperplane there is a location where the number of
activated output units is six on one side and different from six on the other
side, then it is a corner of the decision region. This can be applied to any
output interpretation regiment that is applied to the output units. Therefore,

25

the algorithm complexity stays the same for different output interpretations.

6.3 Rule Egxtraction and Network Validation

Polytopic decision regions offer us a direct representation of the underlying
neural network. However, high dimensional polytopes are not immediately
fathomable to most people either. The interdependence in the polytopic case
is limited to understanding the linear relationships governed by the vertices
which delineate the faces.

As proposed earlier, one way to generate more comprehensible descriptions
is to generate independent rules in the form of minimum bounding hyper-
rectangles (MBR). That is, for each polytope we find the minimum hyper-
rectangle which completely encloses it. This is a trivial operation, and it gives
us a zeroth order approximation for the location and size of the network’s
decision regions.

We can improve this rule approximation to an arbitrary degree by dividing
the polytopic decision regions into sub-polytopes. In the previous section we
saw one approach to this, which was to systematically bisect the polytopes
across its dimensions. This incrementally refines each rule into sub-rules each
time it is applied.

It is feasible to imagine a more intelligent method to divide the polytopes. For
example, we could only divide those polytopes for which the MBR is a bad
approximation. It would seem that our geometric analogy would also give us
the tools to exactly calculate the efficacy of the approximation, since all we
would need to do is compare the volume of the hyper-rectangle with the volume
of polytope it was enclosing to get an exact error measure. However, volume
computation of n-dimensional polytopes is #P-hard in the exact case (worse
than N P-hard) and of high complexity for approximate cases (Khachiyan,
1993). This is a general property of the comparison of different models with
perceptron neural networks, not just symbolic approximations-to get an exact
error measure we have to compute the volume of the polytopic decision regions.
This addresses another of the theoretical questions: The cost of validating the
accuracy of alternative representations of network function is computationally

hard.

6.4 Sigmoidal Activation Functions

Since the sigmoid is a smooth transition, it is not possible to model the un-
derlying decision regions of a sigmoidal neural network using only vertices

26

Figure 19. The activation function used in single-hidden-layer network affects the
borders formed at hyperplane intersections. While for threshold activation functions
(right) the border is a sharp corner whose position is at the exact threshold boundary
location, for sigmoidal activation functions the corner becomes rounded and the
border is shifted within the width of the sigmoidal transition.

and lines. Thus the basic representational type used by the DIBA algorithm,
polytopes, can not capture a sigmoidal network’s function exactly. However, by
examining the effects that sigmoidal outputs have on the formation of decision
boundaries we can get an idea of where the DIBA extracted polytopes reflect
and differ from the actual smooth decision regions of a sigmoidal network.

Consider a single hidden-layer network with one output given by the fol-
lowing equation: output = A(Y,; 0;A(w;T) — ¢). If the activation function is
threshold then as it is non-continuous its decision boundary is described by
> 0,T(W;T) ~ c, the area in the input space where the sum passes above or
below c. If the activation function is sigmoidal then we can define the boundary
as 0(>; 0;0(w;z) — ¢) = 0.5, which can be rewritten as >, 0,0 (w;z) = c.

If the magnitude of the weights, ||[@;||, is high then o(w;Z) approximates the
threshold response, T'(w;T), arbitrarily closely, implying a close fit between the
threshold network’s extracted decision regions and the sigmoidal network’s. At
the other end of the spectrum if the magnitude of the weights is significantly
small (with respect to the relevant input space) then by Taylor expansion it
can be shown that the sigmoidal function acts almost linearly. In such a case
the DIBA algorithm will not give a good estimate of the decision boundaries,
as now the boundary equation approximates a linear equation. Thus, the rel-
evancy of an extracted representation is dependent on the interplay of these
two polarities in sigmoid behavior as they address individual boundaries.

Consider first the case of an isolated intersection of hyperplanes. Figure 19
shows how different activation functions affect the boundary formed at the
intersection of two hyperplanes. There are two main visible differences between
threshold and sigmoidal: first, the corner changes to a curve that transitions
between the directions of the hyperplanes; second, while the orientation of the
hyperplane boundaries stay the same, their location shifts.

27

a) Normal Border b) Width Adjustment

Figure 20. Approximating a sigmoidal corner with thresholds can be done in two
ways: a) The regular DIBA approach considers the border as appearing at the center
of the sigmoid. b) Compensating for the width effects allows the threshold boundary
to be at a tangent to the sigmoidal boundary.

Unlike the threshold activation function unit hyperplanes, where an output
transition is completely localized, taking place only where w;z = 0, the transi-
tions in sigmoidal activation function units are gradual and can take place any-
where within the width (non-asymptotic region) of the sigmoidal hyperplane.
How does the actual location shift? For hidden unit j, a hyperplane bound-
ary exists when the boundary equation simplifies to o(W;T) + Xean;j 0i = ¢,
where M contains some of the units. That is, when we move sufficiently away
from the widths of the other units, and allow their output to asymptoti-
cally converge to either 0 or 1, the boundary equation takes on the form
of the hidden unit hyperplane. Thus the equation for the border becomes
w;T =0 " (c — YieM\j oz-). Contrasted with the location of the hyperplane in
the threshold case, w;T = 0, implies that the shift in the hyperplane location
is directly governed by the difference between the output unit constant, ¢, and
the partial sum of output weights in that boundary location. A difference of
0.5 will not move the location, while other values will adjust it monotonically.
From a practical perspective, we can use this measure to gauge how far off
a threshold corner is from the boundary location in the sigmoid case. Given
a corner, for each hyperplane at its intersection we can calculate its location
offsets (there may be more than one if the dimensionality is greater than two.)
What this tells us is how far the corner would have to be moved along the
offset axis of each hidden unit hyperplane, for its threshold boundaries to be
tangent to the actual sigmoidal boundary. Thus these values are an indication
of the effect that the sigmoidal output has on shifting the basic location of
the boundary. In figure 20 we see an example of how this compensation can
be applied to a 2-dimensional corner, moving it to more closely match the
sigmoidal effects.

Whereas for isolated intersections we can calculate the hyperplane shift di-

28

rectly, in the general case we also need to consider hidden units that are not
part of the intersection. In the threshold case these units are either on or off,
depending on their directionality with respect to the intersection. For the sig-
moid case, while these projecting units are not at the center of their linear
region (not part of the intersection) their behavior may not be sufficiently
asymptotic to be described as on or off. This difference can effect by how
much the output threshold is passed, relating to the previous discussion of
hyperplane shifting, or in the more extreme case if the boundary exists or not.
Thus, any potential confidence measure for the validity of a threshold bound-
ary in a sigmoid context would need to consider how close to saturation these
additional units were and how sensitive the actual boundary unit would be
to these variations in the partial sum of output weights. When these effects
combine to place the boundary in a region distant from the linear portion of
its sigmoid, that is, it is a boundary by only a small margin, then the existence
and location of the threshold boundary would be questionable.

To better account for these two regimes of the sigmoid, asymptotic and linear,
a potential future enhancement of the algorithm would be to model the sig-
moid by approximating them with piecewise linear units. Figure 21 contrasts a
piecewise linear function with the sigmoid it is approximating, and in figure 22
we see the form of a typical intersection between two border piecewise linear
hyperplanes. When multiple linear regions overlap they form a composite lin-
ear region. As the figure illustrates, the boundary in this region has the effect
of filing down the edge or corner by defining a sub-face between the faces of
the intersecting hyperplanes, approximating the sigmoidal units completely
smooth boundary. The advantage here is that we are still using the same geo-
metric representation of decision regions, high-dimensional polytopes. But we
are coming closer to modeling the sigmoidal effects.

These potential enhancements to the algorithm are not without significant
cost, as the intersection of multiple piecewise linear hyperplanes generates
a potentially exponential number of different linear regions in its vicinity.
Any of these regions could potentially house a border face. The test for
whether a border passes through such a region is trivial (check the small-
est and largest corners.) However, finding the exact face of the border is a
hard problem (Khachiyan, 1993).

The previous discussion was referring to a single hidden layer network. The
addition of more hidden layers may substantially change the possible under-
lying decision regions, depending on the extent of the sigmoidal effects. In the
completely general case it becomes hard to make the connection to threshold
units, as by the universal approximation properties of sigmoidal networks the
additional layers could be sensitized to minute differences in the outputs of the
lower layers, and thus hypothetically generate decision regions that are uncor-
related with the shape of the first layer hyperplanes. The threshold analogy

29

-8 0 8

Figure 21. A sigmoidal activation function and its piecewise linear counterpart.

0

Figure 22. The intersection of two piecewise linear border hyperplanes forms an
intermediate border face.

holds stronger when the additional layers have relatively large weights and
they engender large margin responses at the borders.

6.5 Generalization and Learning (Prozimity and Face Sharing)

Generalization is the ability of the network to correctly classify points in the
input space for which it was not explicitly trained. In a semi-parametric model
like a neural network, generalization is the ability to describe the correct out-
put for groups of points without explicitly accounting for each point individ-
ually. Thus, the model must employ some underlying mechanisms to classify
a large number of points from a smaller set of parameters.

In our feed-forward neural network model we can characterize the possible
forms of generalization into two mechanisms. The first is by proximity: nearby
points in the same decision region are classified the same way. The second
is by face sharing: the same hyperplane is used as a face in either multiple
decision regions or multiple times in a decision region. An analogy for this
type of generalization would be Manhattan streets, where each street forms

30

0.5

N L

U L]
I_\ 0.5

a b c

i

Figure 23. The decision regions of back-propagation networks trained on the decision
regions of figure 18b.

the boundary of many different blocks.

Changing the network architecture does not radically affect the kind of gen-
eralization possible. Instead of hyperplanes another shape could be used or
the non-linear activation functions could be modified in a locally continuous
fashion. Fundamentally we would still have just two kinds of generalization,
proximity and face sharing, in these types of feed-forward network architec-
tures.

Given these two mechanisms, how well do learning algorithms exploit them?
Proximity mandates the ability to enclose regions in space with similar out-
puts. It is intuitive that learning algorithms which pull borders (Hyperplanes
in this case) towards similar output points and push borders away from differ-
ent output points, should be geared to do some form of proximity generaliza-
tion by forming decision regions around similar points. However, face sharing
generalization is more combinatorial in nature, and might not be as amenable
to continuous deformation of parameters as found in many algorithms.

To illustrate this point a group of neural networks with 8 hidden units were
trained on the decision regions illustrated in figure 18b, a problem requir-
ing face sharing to solve. One thousand data points were taken as a training
sample. Two hundred different networks were used. Each was initialized with
random weights in the range of —2 to 2, and trained for 300 online epochs
of back-propagation with momentum. Of the 200 networks, none managed to
learn the desired 9 decision regions. The network with the best performance
generated only six decision regions (figure 23a). In examining its output unit’s
weights, we saw that only one weight changed sign, the weight initially closest
to zero, indicating a predisposition to this configuration in the initial con-
ditions with respect to the learning algorithm. Or stated more directly, the
learning algorithm did not cause sufficient combinatorial modifications to fa-
cilitate face sharing. Figures 23b and ¢ show the decision regions for some of
the other, more successful networks.

This issue brings up some potential research questions. How do direct network

31

construction algorithms contrast or coexist with training algorithms with re-
spect to the decision regions they generate? Can we employ geometric reg-
ularization in learning algorithms to generate decision regions with specific
properties?

7 Conclusion

We started the paper by asking what factors affect the complexity of neural
network representation extraction in general. We further asked, what can be
learned about a network’s success from its representation, especially in terms
of generalization and artifacts? The tool we developed for the task is the
Decision Intersection Boundary Algorithm. An algorithm that can be used
to extract exact, concise and direct representations of the decision regions of
threshold multi-layered perceptron networks.

The scope questions were addressed by analyzing multiple example networks
to see where they introduce noise, when they generalize, and what forms their
computation can take on. Using the examples of sphere networks at different
dimensionality we explored the relationship between the input dimension, the
location of the training data and the appearance of artifacts, clearly demon-
strating that artifacts are not only not uncommon but become quickly preva-
lent in higher dimensional input spaces. We then explored generalization for
three different networks by examining the properties of their decision regions,
looking at: convexity, concavity, the quantity of decision regions, their loca-
tion, and their orientation. In general, how the decision regions partition the
input space was seen as an indicator of generalization. Over partitioning in the
form of many or highly concave decision regions in relatively lower dimensional
input spaces with dense training data, or overly simplified and convex regions
in high-dimensional sparse cases, was seen as indicating suspicious general-
ization. In addition, for higher-dimensional spaces where the decision regions
can not be directly visualized we explained how using hyper-rectangles and
slicing the decision regions can be analyzed for these different properties at
any desired resolution.

We started addressing the theory questions by analyzing the complexity of the
algorithm, proving that even though the algorithm’s complexity is exponential,
it is unavoidable, since networks are capable of generating an exponential
number of decision regions, where each decision region’s complexity is also
exponential. By explaining how the algorithm can be extended to additional
hidden layers, and multiple output units, we showed that these modifications
do not fundamentally impact the kind of processing the network is capable
of, or their complexity, as the arrangement of hyperplanes in the first layer of
hidden units fundamentally defines what possible decision regions the network

32

can express.

Next, we discussed the computational cost of finding the exact error between
a network and any approximate representation, showing the cost to be ex-
ponential due to the complexity of volume calculations in high-dimensional
spaces. Then, we explored the ramifications of examining networks with sig-
moidal activation functions, showing where they are similar and different from
their threshold counterpart. This lead to a discussion of what factors in the
network weight structure impact the relationship between the sigmoidal and
threshold boundaries.

We concluded by asking how well can learning algorithms use the two forms
of generalization, proximity and face sharing. Is it possible for these networks
to exploit all their potential complexity? Even though back-prop did not show
promising results for face sharing, this remains an open question and a di-
rection for further exploration of future learning and network construction
algorithms.

Beyond our questions, the DIBA algorithm can also be used as an applied tool.
As an exact, direct and concise representation extraction algorithm, the DIBA
algorithm can easily be used to analyze reasonably sized threshold networks, 2
where knowing the exact representation is essential to validate them for real-
world deployment. Or, using the concepts and methods presented in this paper,
it can be used to shed light on how any such network generalizes. DIBA
can also be used to study learning, in the simple case to visualize decision
regions changing during learning, or as we have done in other experiments,
to explore how well learning algorithms form specific decision regions. For
examples and source code implementing the basic algorithm, please look at
http: //www.demo.cs.brandeis.edu/pr/DIBA.

References

Andrews, R., Cable, R., Diederich, J., Geva, S., Golea, M., Hayward, R.,
Ho-Stuart, C., and Tickle, A. (1995). An evaluation and comparison of
techniques for extracting and refining rules from artifical neural networks.
Knowledge-Based Systems Journal, 8(6).

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford Univer-
sity Press.

Bologna, G. (1998). Symbolic rule extraction from the dimlp neural network.
In Wermter, S. and Sun, R., editors, Hybrid Neural Systems, pages 240-254.
Springer-Verlag.

2 A five dimensional, 100 hidden unit network takes less than 10 seconds to analyze
on a Pentium II.

33

Campbell, J., Andrew, W., and Mackinlay, A. (1997). The Econometrics of
Financial Markets. Princeton University Press.

Craven, M. and Shavlik, J. (1995). Extracting comprehensible concept repre-
sentations from trained neural networks. In IJCAI 95 Workshop on Com-
prehensibilty in Machine Learning.

Edelsbrunner, H. (1987). Algorithms in Combinatorial Geometry. Springer-
Verlag.

Golea, M. (1996). On the complexity of rule-extraction from neural networks
and network-querying. In Proceedings of the Rule Extraction from Trained
Artificial Neu ral Networks Workshop, AISB’96, pages 51-59.

Gorman, R. and Sejnowski, T. (1988). Analysis of hidden units in a layered
network trained to classify sonar targets. Neural Networks, 1:75-809.

Intrator, N. and Intrator, O. (1993). Interpreting neural-network models. In
Proceedings of the 10th Israeli Conference on AICV, pages 257-264. Else-
vier.

Intrator, O. and Intrator, N. (1997). Robust interpretation of neural-network
models. In Proceedings of the VI International Workshop on Artificial In-
telligence and Statistics.

Khachiyan, L. (1993). Complexity of polytope volume computation. In
New Trends in Discrete and Computational Geometry, chapter 4. Springer-
Verlag.

Linden, A. (1997). Iterative Inversion of Neural Networks and its Applications,
chapter B5.2. Oxford University Press.

Maire, F. (1999). Rule-extraction by backpropagation of polyhedra. Neural
Networks, pages T17-725.

Makhoul, J. (1975). Linear Prediction in Automatic Speech Recognition, chap-
ter 2. Academic Press Inc., New York, New York.

Pratt, L. and Christensen, A. (1994). Relaxing the hyperplane assumption
in the analysis and modification of back-propagation neural networks. In
Cybernetics and Systems 94, pages 1711-1718. World Scientific.

Sanger, D. (1989). Contribution analysis: A technique for assigning respon-
sibilities to hidden units in connectionist networks. Connection Science,
1:115-138.

Schrijver, A. (1987). Theory of Linear and Integer Programming. Wiley-
Interscience.

Setino, R. (1997). Extracting rules from neural networks by pruning and
hidden-unit splitting. Neural Computation, 9(1):205-225.

Sharkey, N. and Sharkey, A. (1993). Adaptive generalization. Artificial Intel-
ligence Review, 7:313-328.

Shultz, T., Oshina-Takane, Y., and Takane, Y. (1995). Analysis of unstan-
dardized contributions in cross connected networks. In Advances in Neural
Information Processing Systems 7. MIT Press.

Thrun, S. (1993). Extracting provably correct rules from artificial neural
networks. Technical report, University of Bonn.

34

Appendix A: Pseudo Code of Traversing the Line

In this appendix a pseudo code description of the Traversing the Line portion
of the Decision Intersection Boundary Algorithm (DIBA) is outlined. It is
the termination step of the recursion described in the Generative Recursion
portion of the algorithm.

It calculates the contribution of the different hyperplanes to each potential
line segment, and then finds the corners and actual line segments.

else { hidden hyperplane dimension <1 }
sort the hidden by their position on the line

Forward pass.

running _sum := 0
clear array segments
current_ segment := 1
for hyperplane = leftmost hyperplane to rightmost hyperplane
if hyperplane not a border then
if hyperplane is forward directed then
Add weight out(hyperplane) to running _sum
endif
segment(current_ segment) := running_ sum
current_ segment+-+
endif
endfor

Backward pass.

running _sum := 0
in_line := false
current segment——
for hyperplane = rightmost hyperplane to leftmost hyperplane
if beginning of border delimited region and check line(current_ segment) then
in_line := true
Add the node to the representation
elseif hyperplane not a border then
current__ segment——
if hyperplane is backward directed then
Add weight out(hyperplane) to running sum
endif
segment(current_ segment) := segment(current_ segment) + running _sum
if in the border delimited region then

35

new_in_line := check line(current segment)
if in_line and new in_ line then
if check corner(current_segment, out(hyperplane)) then
Add the vertex to the representation
Connect current vertex to last corner
endif
elseif in_line and not new_in_ line then
Add the vertex to the representation
Connect current vertex to last corner
elseif not in_line and new in_line then
Add the vertex to the representation
endif
endif (in border region)
endif (not border)
endfor
if in_ line then
Add the vertex to the representation
Connect current vertex to last corner
endif
endif

Appendix B: Proof of partial sum corner test

For a 3-layer network with one output unit (partial sum case) it is sufficient
to test whether the hidden unit with smallest absolute valued weight has a
boundary in the intersection. If it does, then all the other hyperplanes which
make up the intersection also have boundaries.

Let W = {w ... wy,} be the set of partial weights corresponding to the hyper-
planes making up the intersection. Define S C W, as a hidden state. Let 7" be
the threshold, such that if }°, g w > T then the output value is 1, otherwise
the output value is 0.

Assume that there exists a wy,, such that for all w € W, |w,,| < |w|, and there
exists a hidden state, S, which does not contain w,,, such that if w,, > 0 then
Ywesw < T and wy, + X ,esw > T, or if w,, < 0 then >, csw > T and
Wy + ZwES w<T.

If « € W, and « is not w,,, we need to demonstrate that there exists a hidden
state such that o acts as a boundary.

o fw,>0,a>0and a ¢S, then 3, csw<Tand ¥, csw+a>T.

36

Ifw, >0,aa>0andw € S, then) cgw+w, > T and), cs w+w,—a <
T.

Ifw, >0,a<0and o ¢ S, then 3, cqw+wy, > T and ., cqW+w,+ao <
T.

If w, >0,a<0and a €S, then > ,cow <T and > cqw—a>T.
fw, <0,0a>0and o &S, then 3, cqgw+w, <T and), cq w+wn+a >
T.

Ifw, <0,a>0and a €S, then 3 cow>Tand) cqw—a<T.
fw,<0,a<0and a ¢S, then > cqsw>Tand ¥ ,c5w+a<T.
Ifw, <0,a<0and a € S, then ¥, cqw+w, <T and ¥ ,cqW+w,—a >
T.

Therefore all hyperplanes have a boundary in the vicinity of the intersection.

37

