
Abstract

We address the fundamental issue of fully automated
design (FAD) and construction of inexpensive robots and
their controllers. Rather than seek an intelligent general
purpose robot — the humanoid robot, ubiquitous in
today’s research as the long term goal — we are
developing the information technology that can design
and fabricate special-purpose mechanisms and controllers
to achieve specific short-term objectives. These robots will
be constructed from reusable sensors, effectors, and
computers held together with materials custom “printed”
by rapid prototyping (RP) equipment. By releasing the
goal of designing software controllers for EXISTING
machines in favor of the automated co-design of software
and hardware together, we will be replicating the
principles used by biology in the creation of complex
groups of animals adapted to specific environments.

Programming control software has become so difficult
as more degrees of freedom and task goals are added to
robots, that the most advanced ones do not get past the
stage of teleoperation or choreographed behavior. In other
words, they are puppets, not robots. Our primary
hypothesis is that the reason current approaches to
robotics often fail is because of an underestimation of the
complexity of the software design problem. Traditionally,
engineers will build a complex robot, complete with
powerful motors and sensors, and leave for the control
programmers to write a program to make it run. But if we
look into nature, we see animal brains of very high
complexity, at least as complex as the bodies they inhabit,
which have been precisely selected to be controllable. New
sensor and effector technology — for example, the
micromotor, the optical position sensor, memory wire,
FPGA’s, biomimetic materials, biologically inspired
retinas, and lately, MEMS, despite radical claims, cannot
produce the desired breakthroughs. True robot success is
task specific, not general purpose, and would be
recognizable even if built of old electromechanical
components.

In nature, the body and brain of a horse are tightly
coupled, the fruit of a long series of small mutual
adaptations — neither one was first. Today’s horse brain
was lifted, 99.9% complete, from the animal that preceded
it. There is never a situation in which the hardware has no
software, or where a growth or mutation — beyond the
adaptive ability of a brain — survives. This chicken-egg
problem of body-brain development is best understood as
a form of co-evolution — agents learning in environments
that respond to the agents by creating more challenging
and diverse tasks.

By using a combination of commercial off-the-shelf
(COTS) CAD/CAM simulation software and our own
physical simulators constrained to correspond to real
physical devices, we have been developing the technology
for the coevolution of body and brains: adaptive learning
in body simulations, and the migration of “brains” from
simpler to more complex simulated bodies until the virtual
robot steps into reality using extensions of today’s rapid
prototyping technology. Finally, the robot’s brains must be
robust enough to learn how to bridge the transition from
virtual to actual reality.

1 Introduction

The field of Robotics today faces a practical problem:
flexible machines with minds cost much more than manual
machines, human operators included. Few would spend
$2k on an automatic vacuum cleaner when a manual one is
$200, or $500k on a driverless car when a regular car is
$20k. The high costs associated with designing,
manufacturing and controlling robots has led to the current
stasis, where robots are only applied to simple and highly
repetitive industrial tasks.

The central issue we begin to address is how to get a
higher level of complex physicality under control with less
human design cost. We seek more controlled and moving
mechanical parts, more sensors, more nonlinear
interacting degrees of freedom— without entailing both
the huge fixed costs of human design and programming
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and the variable costs in manufacture and operation. We
suggest that this can be achieved only when robot design
and construction are fully automatic such that the results
are inexpensive enough to be disposable.

The focus of our research is how to automate the
integrated design of bodies and brains using a
coevolutionary learning approach. The key is to evolve
both the brain and the body,simultaneously and
continuously, from a simple controllable mechanism to
one of sufficient complexity for a task. Within a decade we
see three technologies which are maturing past threshold
to make this possible. One is the increasing fidelity of
“silicon foundries,” advanced mechanical design
simulation, stimulated by profits from successful software
competition. The second is rapid, one-off prototyping and
manufacture, which is proceeding from 3d plastic layering
to stronger composite and metal (sintering) technology.
The third is our understanding of coevolutionary machine
learning in design and intelligent control of complex
systems.

2 Coevolution

Coevolutionary Learning is about capturing the open-
world generative nature of biological evolution in
software, to create systems of great complexity and
flexibility without human design and engineering. It is
different from ordinary genetic algorithms in that the
“fitness function” is non-stationary, and these changing
goals are created by the learning system itself, rather than
being fully specified. There are many claims in the
literature about the discovery of “arms races” and
“coevolutionary feedforward loops,” but in our opinion,
there are only a few successful pieces of work to date on
open-ended strategic discovery systems. Thomas Ray’s
TIERRA eco-system of artificial assembly language
programs made the first strong claims, but are difficult to
evaluate, while Hillis’ work on coevolving sorting
networks and difficult sequences pointed out several
interesting heuristics. There is a line of robotic
coevolution work using predator/prey differential games
e.g., at Sussex University. However the best exemplars of
the power of coevolution are Tesauro’s work on TD-
Gammon, which is one of the best backgammon players in
the world, and Karl Sims’ virtual Robots.

Karl Sims’ work is particularly relevant. He developed
a computer graphics simulator of the physics of robots
composed of rectangular solids and several controlled
joints, then simultaneously evolved the morphology of the
robots and patterns of control using high-level neurally-
inspired control constructs. As a form of “genetic art,”
some of his work was to evolve walking or swimming
animats for movies. But by matching pairs of robots in a
competition to take possession of a single target, he was
able to observe a sequence of coevolutionary attack/

defend stages in the evolved designs of his simulated
robots.

In TD-Gammon, Tesauro used temporal difference
learning in a neural network architecture as the basis for
an evaluation function for backgammon (Tesauro, 1992),
which under further development became one of the best
players in the world (Tesauro, 1995). Although TD-
Gammon may be seen as a success of Neural Networks or
Reinforcement Learning, we suspected it was really the
biggest success of a co-evolution strategy where a learner
is embedded in an appropriately changing environment to
enable continuous improvement. Many people have tried
the idea of a computer learning-by-playing-itself before,
beginning with Samuel’s checker player, but without such
notable and surprising success. Following a hunch, we
basically replicated the effect of Tesauro’s work using the
much simpler learning method ofhill-climbing (Pollack
and Blair, 1998). In this work, we used the same
feedforward network with 4000 weights as Tesauro, but
trained with a very naive method. Given the current
champion, we create a challenger by adding Gaussian
noise and playing a small tournament between the current
champion and challenger, and changing the weights of the
champion if the challenger won. Analysis of why a naive
method like hill-climbing could work for self-learning of
backgammon strategy led to a deep insight about
mediocrity in training and educational systems.

In games, in particular, the “setup” enables players in a
population to compete against each other, and the fitness
of a player is defined relative to the rest of the population.
In theory, improvements in some learners’ abilities trigger
further improvements in others. In practice, this turns out
to be a difficult goal to achieve. Players, especially in
deterministic situations, often figure out how to narrow the
scope of play, and how to draw each other, and thus stop
the learning process, resulting in strategies which are not
robust. These collusive “Mediocre Stable States” (MSS)
are prevalent in co-evolution; Backgammon’s instability
in final outcomes— its reversability— helped prevent
MSS’s, and thus was a key feature which lead to the
success in learning.

We have been evaluating ways of making other
problems more like backgammon, and in heuristics for
preventing mediocre stability and keeping co-evolutionary
arms-races going. We have been able to scale up to harder
combinatorial problems, like the design of sorting
networks and functional cellular automata rules (Juille and
Pollack, 1998).

Co-evolution, when successful, dynamically creates a
series of learning environments each slightly more
complex than the last, and a series of learners which are
tuned to adapt in those environments. Sims’ work
demonstrated that the neural controllers and simulated
bodies could be co-evolved. Unfortunately, his simulator
has not been released, his robots are not constrained to be



buildable, and no one has been able to replicate or extend
the work. The goal of our research in coevolutionary
robotics is to replicate and extend results from virtual
simulations like these to the reality of computer designed
and constructed special-purpose machines that can adapt
to real environments.

We are working on coevolutionary algorithms to
develop control programs operating realistic physical
device simulators, both COTS and our own custom
simulators, where we finish the evolution inside real
embodied robots. We are ultimately interested in
mechanical structures which have complex physicality of
more degrees of freedom than anything that has ever been
controlled by human designed algorithms, with lower
engineering costs than currently possible because of
minimal human design involvement in the product.

It is not feasible that controllers for complete structures
could be evolved (in simulation or otherwise) without first
evolving controllers for simpler constructions. Compared
to the traditional form of evolutionary robotics, which
serially downloads controllers into a piece of hardware, it
is relatively easy to explore the space of body
constructions in simulation. Realistic simulation is also
crucial for providing a rich and nonlinear universe.
However, while simulation creates the ability to explore
the space of constructions far faster than real-world
building and evaluation could, transfer to real
constructions is often problematic. Because of the
complex emergent interactions between a machine and its
environment, final learning must occur in “embodied”
form.

3  Research Thrusts
We thus have three major thrusts in achieving fully

automated design of high-parts-count autonomous robots.
The first is evolution inside simulation, but in
simulations more and more realistic so the results are not
simply visually believable, as in Sims work, but also tie
into manufacturing processes. Indeed, interfacing
evolutionary computation systems to COTS CAD/CAM
systems through developer interfaces to commercial off-
the-shelf mechanical simulation programs seems as
restrictive as developing programming languages for 8K
memory microcomputers in the middle 1970’s. However,
even though the current mechanical simulation packages
are “advisory” rather than blue-print generating, and are
less efficient than research code, as computer power grows
and computer-integrated-manufacturing expands, these
highly capitalized software products will absorb and
surpass research code, and moreover will stay current with
the emerging interfaces to future digital factories. The
second thrust is toevolve buildable machines, using
custom simulation programs. Here, we are willing to
reduce the universe of mechanisms we are working with in
order to increase the fidelity and efficiency of the

simulators and reduce the cost of building resulting
machines. The third is to performevolution directly
inside real hardware, which escapes the known
limitations of simulation and defines a technology
supporting the final learning in embodied form. This is
perhaps the hardest task because of the power,
communication and reality constraints.

We have preliminary and promising results in each of
these three areas, which will be sketched out below.

3.1  Evolution in Simulation
We have been doing evolution of neural-network

controllers inside realistic CAD simulations as a prelude
to doing body deformation and coevolution. Our Lab has
acquired a short term license to a state of the art CAD/
CAM software package, which comprises a feature based
solid-modeling system. Widely used in industry, it
includes a mechanical simulation component that can
simulate the function of real-world mechanisms, including
gears, latches, cams and stops. This program has a fully
articulated development interface to the C programming
language, which we have mastered in order to interface its
models to our evolutionary recurrent neural network
software.

 To date, we have used this system with evolved
recurrent neural controllers for one and two segment
inverted pendulums and for Luxo (an animated lamp
creature, Figure 1). Many researchers have evolved such
controllers in simulation, but no one has continuously
deformed the simulation and brought the evolved
controllers along, and no one else has achieved neural
control inside COTS simulations. We believe this should
lead to easy replication, extension, and transfer of our
work.

FIGURE 1. COTS CAD models for which we
evolved RNN controllers; two segment inverted
pendulum and Luxo.



Some of the ways to achieve continuous body
deformation are:

• New links can be introduced with “no-op” control ele-
ments.

• The mass of new links can initially be very small and
then incremented.

• The range of a joint can be small and then given greater
freedom.

• A spring can be simulated at a joint and the spring con-
stant relaxed.

• Gravity and other external load forces can be simulated
lightly and then increased.

We have successful initial experiments consisting of
evolving recurrent neural network controllers for the
double-pole balancing problem, where we slowly
“morphed” the body simulator by simulating a stiff spring
at the joint connecting the two poles and relaxing its
stiffness.

3.2  Buildable Simulation
These COTS CAD models are in fact not constrained

enough to be buildable, because they assume a human
provides numerous reality constraints. In order to evolve
both the morphology and behavior of autonomous
mechanical devices that can be built, one must have a
simulator that operates under many constraints, and a
resultant controller that is adaptive enough to cover the
gap between the simulated and real world. Features of a
simulator for evolving morphology are:

• Universal— the simulator should cover an infi-
nite general space of mechanisms.

• Conservative— because simulation is never per-
fect, it should preserve a margin of safety.

• Efficient— it should be quicker to test in simula-
tion than through physical production and test.

• Buildable— results should be convertible from a
simulation to a real object.

One approach is to custom-build a simulator for
modular robotic components, and then evolve either
centralized or distributed controllers for them. In advance
of a modular simulator with dynamics, we recently built a
simulator for (static) lego bricks, and used very simple
evolutionary algorithms to create complex lego structures,
which were then manually constructed (Funes & Pollack,
1999)

Our model considers the union between two bricks as a
rigid joint between the centers of mass of each one,
located at the center of the actual area of contact between
them. This joint has a measurable torque capacity. That is,
more than a certain amount of force applied at a certain

distance from the joint will break the two bricks apart. The
fundamental assumption of our model is this idealization
of the union of two Lego bricks together.

The genetic algorithm reliably builds structures which
meet simple fitness goals, exploiting physical properties
implicit in the simulation. Building the results of the
evolutionary simulation (by hand) demonstrated the power
and possibility of fully automated design The long bridge
of Figure 2 shows that our simple system discovered the
cantilever, while the weight-carrying crane shows it
discovered the basic triangular support.

The next step is to add dynamics to modular buildable
physical components. Lego bricks are also not optimized
for automatic assembly, but for young human hands. We
are currently developing simulation and modeling
software for coevolution in a universe of 3-d “living truss”
structures of 2-d shapes controlled by linear motors, as
seen in Figure 3.

The simulated universe is based on quasi-static motion,
where dynamics are approximated as a series of frames,
each in full static equilibrium. We have focused on this
kind of motion as it is simple and fast to simulate, yet still

FIGURE 2. Photographs of the FAD Lego
Bridge (Cantilever) and Crane (Triangle)
Photographs copyright Pablo Funes & Jordan
Pollack, used by permission.



provides an environment sufficiently rich for enabling
tasks such as locomotion and other dynamic behaviors.
Moreover, it is easier to induce physically since real-time
control issues are eliminated. The simulator handles
arbitrary compositions of bars, connectors, actuators and
controlling neurons, giving rise to arbitrary structures with
natural hierarchy as bars aggregate into larger rigid
components. The simulation involves internal forces,
elasticity and displacements, as well as external effects
such as collision, gravity, floor contact, friction, material
failure, and energy consumption. Some examples are
shown in Figure 4.

3.3  Embodied Evolution
Once a robot is built, learning must proceed in the real

world. Anticipating robots composed of many smaller and
simpler robots, our work on evolution in real robotic has
focused technologically on two of the main problems —
reprogramming and long-term power (Watson, Ficici, and
Pollack, 1999). Many robots’ batteries last only for a few
hours, and in order to change programs, they have to be
attached to a PC and the new program has to be
downloaded. In order to do large group robot learning
experiments, we have designed a continuous power floor
system, and the ability to transfer programs between
robots via IR communications. We are thus able to run a
population of learning robots battery-free and wire-free

FIGURE 3. Prototype “living truss” robot and detail of
linear motor assembly

for days at a time (Figure 5). Evolution is not run by a
central controller that installs new programs to try out, but
is distributed into the behavior of all the robots. The robots
exchange data and program specifications with each other
and this “culture” is used to ‘reproduce’ the more
successful behavior and achievement of local goals.

The control architecture is a simple neural network and
the specifications for it are evolved on-line. That is, each
robot tries parameters for the network and evaluates its
own success. The more successful a robot is at the task,
the more frequently it will broadcast its network
specifications via the local IR communications channel. If
another robot happens to be in range of the broadcast, it
will adopt the broadcast value with a probability inversely
related to its own success rate. Thus, successful robots
attempt to influence others, and resist the influence of
others, more frequently than less successful robots.

We have shown this paradigm to be robust in both
simulation and in real robots, allowing for parallel
asynchronous evolution of large populations of robots
with automatically developed controllers. These
controllers compare favorably to human designs, and often
surpass them when human designs fail to take all
important environmental factors into account. The graph

FIGURE 4. Simulated “living truss” robots: (a) hand
designed, (b) random structure



below (Figure 6) shows averaged runs of the robots in a
“light gathering” task, comparing a random controller to a
human designed controller, to the robots learning
themselves.

Our research goals in this area involve group
interactive tasks based on multi-agent systems, such as
group pursuer evader models. We are planning to build
another generation of throwaway powered robots which
can hold larger programs. Embodied evolution is a
necessary skill to enable the final step in our plan for fully
automatic design, adapting the rapidly manufactured body
to its real environment.

4  Related Research
The automatic design idea is perhaps the most

challenging, as it entails imitation of one of humanity’s
most prominent acts of intelligence:creativity. Current

FIGURE 5. Our 4” diameter robot picks up power from
its environment and learns while on-line.

engineering practice advocates that design is primarily
experience related, and various prescriptive design
methodologies have been developed and taught (for
examples, see Pahl & Beitz, 1996; French, 1994). These
methodologies try to cover general purpose complex
design tasks; however, at the base of these approaches is
the human engineer who makes the critical decisions and
spans the base of solution variety. Indeed, more recent
approaches seek a more computational basis for
engineering design, thereby relieving some of its
dependency on experience, and relating it to foundations
of information theory (Suh, 1990) and set theory
(Yoshikawa, 1985). At the core of these methods too,
however, lies a human engineer or a human-generated
knowledge base, and hence they can never be fully
automated by definition.

While engineering design methodologies try to cover
general-purpose practical design, a more limited arena of
design research has emerged under the field of robotics.
This field tries to develop controlled mechanisms that
exhibit properties that, to a large extent, are inspired from
biological creatures; properties such as locomotion, social
behavior and autonomy are especially prevalent. This
narrower focus has enabled robotic design to endeavor
more closely to the goal of full automation, and will
remain the focus of the following discussion.

In general, robotic design is a process that attempts to
generate a set of physically embodied solutions. The set of
solutions is required to meet a specification while residing
within the scope of certain constraints. Both the
specification and constraints can be thought of as
assigning solutions a general attribute of merit, applied
with a positive and negative stimulus, respectively. All
three of these aspects — the specification, the constraints
and the solution generating process — are crucial to the
success of the design. Traditional robotic design has

FIGURE 6. Averaged runs of the T1 robots in
a “light gathering” task, with various controllers



(wrongfully, in our opinion) addressed theseby discipline
in two separate efforts, that of designing the hardware
components (the body), and that of designing the software
controller (the brain).

Most research effort in automatic design in robotics has
been focused on the evolutionary design of controllers
(Husbands and Meyer, 1998). Several researchers have
attempted to bypass the difficulties of hand coding the
control architecture of mobile robots that have to perform
given tasks in unknown and changing environments.
Because of the impossibility of foreseeing the problems
the robot will have to solve, because of the lack of basic
design principles and because the scope of solution cannot
(should not) be specified by a designer, a robot’s controller
is progressively adapted to a specific environment and task
through an artificial selection process that eliminates ill-
behaving individuals in a population while favoring the
reproduction of better adapted individuals. Numerous
aspects of evolutionary design of robotic controllers have
been tested both in simulation and on real robots. A major
candidate robot platform for evaluation of evolved
controllers is the Khepera robot (Mondada et al, 1993),
which is a circular mobile robot with 2 to 4 wheels and
two dimensional motion. Various obstacle avoiding and
light seeking behaviors were evolved, some in simulation
only, some in simulation later embodied in the robot
(Jakobi et al, 1997; Miglino et al, 1995, Nolfi et al, 1997;
Salomon, 1996; Naito et al, 1997), and some directly in
the robot (Floreano and Mondada. 1994). Other interesting
attempts were carried out with different robot types, such
as a visual-tracking gantry robot (Harvey et al, 1994), a
NOMAD 200 mobile robot with 50 sensors (Grefensette
and Schultz, 1994), six-legged robots (Gallagher et al,
1996) and eight-legged robot (Galt et al, 1997; Gomi et al
1997, and Gruau and Quatramaran, 1997). Another
attempt to evolve controllers is Thompson’s work (1997)
to evolve hardware circuits as on-board controllers. In
contrast with other work, Thompson tried to evolve the
controller directly as an electronic circuit using Field
Programmable Gate Arrays (FPGA’s). Thompson’s work,
while basically a software controller, illustrates how
evolutionary computation can take advantage of emergent
physical effects.

However, evolution of controllers in robots can be very
time consuming. Even evolving simple controllers for
simple simulated robots takes hundreds and thousands of
trials: (Gritz and Hahn, 1997) needed 7500 evaluations for
Luxo; Moriarty & Miikulainen required 4000 evaluations
for a robot arm; evolving controllers for more complex
robots will take even longer. In serialized evolution
embodied in real robots, the time problem is more acute.
Mondada and Floreano spent 100 generations at 39
minutes a generation to evolve a controller to get a
Khepera to grasp a ball. This took about 65 hours. In many
cases the simulation requirements conflict; for example,

efficiency contradicts feasibility. Several approaches to
addressing this conflict have been proposed, such as the
minimal simulation (Jakobi, 1998). However, this may not
be enough. As Mataric and Cliff note (1996), the cost and
errors in simulation may have grave implication to the
prospects of traditional evolutionary robotics.

At the other end of the spectrum, there have been
several attempts to generate robots whose actual physical
body plan is variable. Here too we distinguish between
pure simulations and physical attempts, as well as between
simply reconfigurable robots and those that are
continuously evolvable. Starting with physically
reconfigurable robots, Chirikjian at John Hopkins
University employs a Metamorphic Robotic System
(Chirikjian, 1994), which is a collection of self-
assembling two dimensional hexagonal and square units
that are independently controlled mechatronic modules,
each of which has the ability to connect, disconnect and
climb over adjacent modules. At the California Institute of
Technology, Chen (1994) studies task optimal
configurations, the kinematics and dynamics of
reconfigurable robots, and evolutionary approaches to
determine task optimal modular robot configurations. Yim
(1994) developed at Stanford a reconfigurable robot
composed of multiple components of two types. This
robot has been shown to be able to attain eight different
forms in three dimensions, corresponding to different
locomotion gates. Fukuda at Nagoya University is
developing the cellular robotic system (CEBOT) for
cooperating autonomous self-organizing cells (Fukuda,
1991). The above works, however, are directly
programmed and do not involve an evolutionary or other
general optimization process to derive the actual physical
configuration and its corresponding controller.

Research onevolving the physical body planin
conjunction with a corresponding controller is rarer. Of
particular relevance are Sims’ simulations (1994)
discussed earlier. There have been other attempts to evolve
feasible hardware configurations; Lund, Hallam and Lee
have evolved in simulation both a robot control program
and some parameters of its physical body such as number
of sensors and their positions, body size, turret radius, etc.
(Lund et al., 1997b, Lund et al., 1997a). However, this
evolution is parametric in the sense that it is limited only
to parameters foreseen by the designer, and hence is not
open-ended, and will not be able to adapt to unforeseen
situations or provide new ‘creative’ designs. A recent
work by Dittrich et al (1998) describes a Random
Morphology Robot, which is an arbitrary two-dimensional
structure composed of links and motors; the controller of
this robot is evolved, and then manual changes are applied
to the robot to test its behavior with an impaired or
mutated body. However, an evolutionary design of the
robot’s configuration was not attempted. Recent work by
Chocron and Bidaud (1997) describes an attempt to evolve



both the morphology and the inverse kinematics of a
modular manipulator composed of prismatic and revolute
joints. A genetic algorithm searches for suitable
configuration for a task given as a set of required effector
configurations. We consider this attempt as being in the
right direction. Again, however, the simple serial
construction precludes spontaneous emergence of any
innovative ‘interesting’ or unforeseen solutions.

5  Conclusion
Our work has both a theoretical and practical potential;

we aim to understand and to innovate in software as well
as in hardware. Our long-term vision is that both the
morphology and control programs for self-assembling
robots arise directly through hardware and software co-
evolution: primitive active structures that crawl over each
other, attach and detach, and accept temporary
employment as supportive elements in “corporate” beings
can accomplish a variety of tasks, if enough design
intelligence is captured to allow true self-configuration
rather than human redeployment and reprogramming.
When tasks cannot be solved with current parts, new
elements are created through fully automatic design and
rapid prototype manufacturing. Once FAD and RP
descend into the MEMS world, it is possible to
contemplate a new “bootstrap,” similar to the achievement
of precision in machine tools, where artificial life gains
control of its own means of production and assembly and
is able to grow both in power, complexity, and precision.

This vision is easy to imagine, as it indeed was by both
NASA scientists and by SF novelists of the 1960’s(e.g.,
Dick, 1960), but quite difficult to work out in practice.
There are many problems that need interactive solutions
where the primary problem is the relationship between
software and physical devices: this vision cannot be
achieved either fully in simulation or fully in hardware. It
is not a problem for engineers to solve once, but a problem
of having machines learn how to automatically engineer
physical systems along with their controllers. It is not a
situation where a gee-whiz new sensor or effector (with
“software-to-follow”) can help.

We see several exciting research problems that are
addressed by our recent work in this area: one problem is
that global configurations of elements are dependent on
local interaction, and simple processors inside each
element will not suffice to calculate and control the overall
configuration. That is why we first focus and develop the
conventional algorithms for conservatively simulating
structures, and then parallelize into agents, rather than
hoping some simple pre-programmed behavior primitives
will scale. A second problem is that computer aided design
and manufacturing systems, where human designers work
in teams to design mass manufactured products, is too
expensive a system for a robot to call upon whenever it
needs help. That is why we have to make state-of-the-art

CAD/CAM subservient to our coevolutionary body-brain
simulations rather than to their own human interface. A
third problem is power distribution under changing
configuration. Plugging and unplugging wires will not
suffice. That is why we focus on the problems of power
distribution for reconfiguring embodied evolutionary
systems.

Our current research moves towards the overall goal
down multiple interacting paths, where what we learn in
one thrust aids the others. We envision the improvement of
our hardware-based evolution structures, expanding focus
from static buildable structures and unconnected groups to
reconfigurable active systems governed by a central
controller, and then the subsequent parallelization of the
control concepts. We see a path from evolution inside
CAD/CAM and buildable simulation, to rapid automatic
construction of novel controlled mechanisms, from control
in simulation to control in real systems, and finally from
embodied evolution of individuals to the evolution of
heterogenous groups that learn by working together
symbiotically. We believe such a broad program is the best
way to ultimately construct complex autonomous robots
who are self-organizing and self-configuring corporate
assemblages of simpler automatically manufactured parts.
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