On therobustness achievable with stochastic development processes

Shivakumar Viswanathan
DEMO Lab, Computer Science dept.
Brandeis University, Waltham, MA-02454,USA
shiva@cs.brandeis.edu

Abstract

Manufacturing processes are a key source of faults in
complex hardware systems. Minimizing this impact of
manufacturing uncertainties is one way towards achiev-
ing fault tolerant systems. By treating manufacturing as
a stochastic development process, we characterize some of
the constraints limiting the levels of robustness that can be
achieved with evolution. The analysis is by introducing a
novel abstraction of development as a strategic decision-
making process. Using this abstraction to analyze a toy-
system that simulates a process of noisy assembly, we com-
pare the maximum robustness achievable with adaptive and
non-adaptive developmental strategies. Even in this highly
simplified setup, the optimal adaptive and non-adaptive
genotypes reveals a significant empirical difference in their
robustness characteristics. This suggests that the choice of
developmental strategy and the properties of the setup are
major constraints on the robustness achievable, even prior
to evolution-related considerations.

1 Motivation

The evolution of fault tolerance and robustness in com-
plex electronic and electro-mechanical systems has been
an actively studied issue in Evolvable Hardware research
[9, 4]. While the dominant focus has been on the behav-
ior of systems in the presence of faults, a critical concern
is the origin of faults themselves. A key source of faults
in complex hardware systems is the manufacturing process.
This is a major factor responsible for the familiar "bath-tub™
shape of the plot of hardware failure rates over a system’s
life-span, in particular, for the high failure rate in the initial
burn-in stage (or "infant mortality™).

Variability in material properties, components, environ-
mental conditions and processes is ubiquitous during man-
ufacturing. So, two systems manufactured based on the
same design could still differ significantly in their behav-
ioral properties depending on the characteristics of the man-

Jordan B. Pollack
DEMO Lab, Computer Science dept
Brandeis University, Waltham, MA-02454,USA
pollack@cs.brandeis.edu

ufacturing process used. This is particularly problematic
when the behavior of the system is the result of the interac-
tion of a large number of interacting components and fea-
tures, as with evolved designs. Given the recent interest in
interfacing evolutionary design with automated manufactur-
ing [6] and the development of technologies for autonomous
construction [5], faults having a manufacturing origin are of
critical consequence to the scalability and reliable function-
ing of automatically evolved and manufactured hardware
systems.

This suggests the need for an explicit strategy to mini-
mize (to the extent possible) the impact of manufacturing
uncertainties on the reliable functioning of the constructed
systems, as a way to achieve fault tolerant systems. While
there are several possible approaches to this issue, our broad
motivation has been the question of how this process di-
mension of fault tolerance can be integrated and addressed
within the bottom-up, low-inductive bias methodology of
evolutionary design. To this end, our approach of choice has
been to consider hardware manufacture as being analogous
to biological development and therefore a process amenable
to evolutionary modification.

In the context of manufacturing, developmental robust-
ness can be considered as a measure of the ability of a
process to withstand persistent stochastic variations occur-
ring over the duration of the process without resulting a
change in the desired function of the constructed systems.
As processes can vary in their developmental robustness,
identifying a robust process defines an evolutionary search
problem[10, 7, 11]. While evolution can result in a devel-
opmental process that is relatively more robust than oth-
ers in the chosen search space, it leaves open the issue of
whether such evolved process can meet levels of robustness
required to be acceptable for non-trivial real-world applica-
tions. This is an important meta-consideration, prior to the
algorithmic decisions about the evolutionary techniques to
be used.

In our earlier empirical work, we observed that the capa-
bilities provided the manufacturing setup that enabled pro-
cesses to detect variation by explicit “measurement” made

a notable difference in the quality of robustness obtained
by evolution[11]. Here, we present a more comprehen-
sive analysis of this initial observation by viewing devel-
opment as a decision-making process. This abstraction en-
ables a clear conceptual differentiation between adaptive
developmental strategies (that explicitly detect variation and
change behavior accordingly) and non-adaptive develop-
mental strategies (Section 2). To illustrate the difference
in robustness with these strategies, a toy-system that simu-
lates a process of noisy assembly[11] is introduced (Section
3). The optimally robust adaptive genotype for this toy-
system is exactly computed by treating development as a
Markov Decision Problem (MDP). Even in this highly sim-
plified setup, an empirical comparison of the optimal adap-
tive and (hand-constructed) non-adaptive genotypes reveals
a significant difference in the absolute quality of the pro-
cesses achievable in each case (Section 4).

2 Decision making in development
2.1 Ontogenic trajectories

Evolutionary search is typically defined on a phenotype
set P with an associated fitness functione : 7 — R. Ina
design setting, P is treated is the set of possible designs with
the fitness function providing a measure of suitability for a
chosen task. So, the search problem is to find the pheno-
types in P that maximize the value of e, given the available
resources.

A developmental phase separates the entities on which
the search problem is defined (i.e. 7P) from the entities
on which search occurs (i.e. the set of genotypes G)[2].
In a deterministic setting, these entities are related via the
genotype-phenotype map ¢ : G — P. A genotype here
can be treated as being a "recipe” for the construction of
the phenotype. It is in this sense that we will speak of the
relationship of the genotype to the construction process.

Let an ontogenic step take the form ¢, 1 = pug¢(¢¢)
where p, ¢ is the ontogenic function for a given g € G.
So, a developmental process can be seen as being an itera-
tive application of the ontogenic function to the phenotype
produced at each time step till some stopping condition is
reached. This temporally ordered sequence of phenotypic
states o — ...¢; = @j... = Psina IS referred to as an
ontogenic trajectory, where ¢t = 0, ...£f;n/[1]. Function-
ally, the only change to the genotype-phenotype relation
would be in taking the expanded form ¢’ : G — (Py — P),
where Py C P is the set of initial phenotype states' and
every triple (g, ¢o, ¢) € 9" is associated with a single onto-
genic trajectory T,.

1To maintain consistency with the published work on development, P

is assumed to have exactly one element Py = {¢o }. With Py being fi xed,

the equivalence to v is straightforward aswfz)o 1G> P.

Figure 1. Ontogenic structure induced on P

Each ontogenic trajectory can be represented as a di-
rected graph where T, = (P, E) where P C P are the
vertices, and E is the set of directed edges where an edge
exists between ¢, and ¢y (g, ¢y € P) iff ¢, immediately
precedes ¢y in the ontogenic process. For simplicity, we
will assume that these trajectories are acyclic.

As can be seen, the cumulative effect of all the possible
ontogenic processes is to induce significant structure on the
phenotype set as shown in Figure 1, where an edge exists
between two phenotypes ¢, and ¢; (shown by their labels
a and b) iff ¢, immediately precedes ¢; for some trajec-
tory T, (g9 € G). The edges have a labeling relative to the
vertices. This additional structure allows us to introduce a
decision-making abstraction based on the notion of a graph
game.

2.2 Ontogenic graph game

Consider a simple 1-player graph game defined as fol-
lows. We are given a finite connected directed graph G =
(V, E) with a special vertex designated as the start vertex
v and where there is a path from the v to every vertex in
V. There is a payoff function e : V' — R that assigns a real
valued payoff to each vertex.

The rules of the game are defined as follows, a token is
placed at vg and the player picks an outgoing edge along
which the token is to be moved. The token is then deter-
ministically moved along this edge to the next vertex, and
once there the player can pick another edge to move and so
on. The game ends when the player cannot make any fur-
ther moves or declares a halt. The value e(v) at the stopping
vertex v is the payoff obtained by the player. The objective
of the game is for the player to move the token to a vertex
Umaz associated with the highest payoff.

Now, the game defines a sequence of decision points at
each vertex, where the player is faced with a set of alterna-
tives which are the outgoing edges from that vertex, and a
particular choice needs to be made. So this leads to the is-
sue of what strategy the player is implementing. A strategy
is a prescription of the choices that a player makes given
the available information. This is critical as the net effect of

implementing a strategy manifests itself as a play.

Here we will restrict our discussion to two representative
types of strategies. A stationary strategy exhaustively spec-
ifies the choice to be taken at each vertex and is defined as
7wV — EU{halt}. So, if the player moves to a particular
vertex v, where (v, e,) € 7 and e, is an outgoing edge of
vz, then the player always makes the same choice e,.? As
a play has to halt for the player to collect a payoff atleast
one of the vertices is necessarily associated with a choice
to halt. The other strategy of interest is a ballistic strategy
7y : N = E U {halt} where the choices made at each ver-
tex are entirely based on the time-stamp irrespective of the
specific vertex that the token is at.

This game provides an abstract interpretive framework
for development. The set of vertices V' can be seen as
equivalent to the set of phenotypes P, with each phenotype
having a fitness value associated with it. The sequence of
transitions made through P under the control of a particular
genotype g € G resulting in an ontogenic trajectory can be
described as a play. So, a genotype g’ € G that halts at v, 4,
(i.e. the phenotype having the highest fitness) is the optimal
genotype as it effects a “winning play”.

The notion of a strategy as used here provides a high-
level description of the ontogenic behavior. However, at the
mechanistic level, there is no notion of a global choice as
the genotypes only specify local actions. When the actions
deterministically result in a particular outcome, this split be-
tween actions and the choices is effectively indistinguish-
able. However, this is not true in real-world construction
where the relation between an action and the corresponding
outcome can be non-deterministic.

This non-deterministic element of the graph game can
be thought of as a player having a “trembling hand” [8].
Consider the example in Figure 1 where the edges have a
labeling relative to the vertices. Consider a ballistic strat-
egy g1 = {(1,e3),(2,e1),(3,e1)}. Even though the choice
prescribed by the strategy is given, with a player having a
“trembling hand” there is a chance that the token is moved
along a different edge. At vertex vg even though the choice
is ey, the probability of the token being moved along ey
could be 0.33 (rather than 1) and the same along e, and
e3 (rather than 0). Suppose that this is true at all the ver-
tices. As a result, rather than the vertex vg being the de-
terministic outcome of the play with g;, the outcome on
a given instance could be either one of wvg, v5,v9 OF v1g,
each possibly having very different payoffs and occurring
with different probabilities. Furthermore the ballistic strat-
egy g2 = {(1,e1),(2,€e1),(3,e1)}, which results in vg in
the deterministic case, can now produce the same outcomes

2A non-stationary strategy is one where the choices are indexed by a
timestamp 7 : V X N — E U {halt} i.e. the choice made at a particular
vertex depends both on the specifi ¢ vertex as well as the point in time
during the play at which the vertex is reached.

as g1 namely vg, vs, vg and vyg.

The refinement of the notion of a strategy for a non-
deterministic development process can be described as fol-
lows. Let A be the finite set of actual actions. The actual
strategy can be considered to be 7 : V' — A U {halt} in
the stationary case and along similar lines 77, : N — A4 U
{halt}. The key difference as compared to the deterministic
case is the probabilistic nature of the state-transition func-
tion. The state transition function is definedas 7 : Vx. A —
TI(V) giving for each phenotype/vertex and action a proba-
bility distribution over the possible choices (7 (v, a,v') is
the probability that the outcome of action a when in state v
results in the state v').

Here, we can see that the stationary strategy possesses
an adaptive capability in that it can respond differently de-
pending on the specific phenotypic state at each point in
time. However, the ballistic strategy is non-adaptive in this
sense as it has a hardwired set of actions that are performed
independent of the situation. What is the impact of this dif-
ference on the robustness characteristics achievable? An
experimental setup to evaluate this question is described
next.

3 Experimental setup
3.1 System description

The toy system described in this section instantiates a
version of the “trembling hand” conception of development
as described in the previous section.

The system is a tiling machine modeled as a gantry robot
that is restricted to movement along the X -axis as shown
in Figure 2. The machine has a head that can be moved
under programmable control to locations in the workspace
identified by it’s X coordinate. The atomic operations (i.e.
the genetic “actions”) performed at the head are a release
operation to release tiles individually. The workspace is a
square partition of a two dimensional plane such that it can
perfectly accommodate M x M identical square tiles with-
out any gaps. The machine has an explicit spatial existence
so it cannot move through tiles. A finite number of tiles are
available to the machine which can be released individually
at the head under programmable control.

Here, the set of actions A = {1,...M}, where each z €
A implies the action of releasing a tile at coordinate . The
set of all legal tile configurations in the workspace is treated
as being the phenotype set . So the configuration of tiles
in the workspace at time ¢, is the equivalent of the state of
the embryo ¢;. With the execution of the strategy g, the tile
configurations also change resulting in a walk through the
ontogenic fitness landscape.

The physics governing the behavior of a tile on being re-
leased at the tile-head is similar to the Tetris game. There is

X —
YL |
Tile-head

Tile
] assembly

M

Figure 2. Tiling machine in workspace

Dropping I—T_I I—T_I
tile
Toat i
1

Probable }
next
locations

Figure 3. Tile interference physics

a constant velocity “diffusion” acting downward along the
Y+ direction such that a tile released at a particular loca-
tion moves at the rate of one tile length per time step. The
stochasticity arises from the interference when a released
tile comes in contact with other tiles or with the edges of
the workspace and continues till the tile comes to rest.

The interference is modeled as occurring as defined in
Figure 3. The possible positions of a descending tile at the
next time step are shown as squares with dotted outlines
and the numbers indicate the probability of moving to that
position. The particular values chosen are arbitrary. The
dark line indicates a tile or a wall at that periphery and the
tile cannot move through it.

3.2 The fitness function

A behavior evaluation function e : P — R is defined as
e(¢) = 1, (d(Ti, A) + (d(T:, B))2, where ¢ € P, T;
is the location of the i*” tile in ¢, and d(p, q) is the non-
linearized version of the Manhattan distance between two
points p and ¢ in the workspace where d(p, q) = |z, — 24|+
lyp—Yyq! if |zp—aq| < M/2;and d(p,q) = M/3+|yp,—y,|
otherwise.

In words, the value e(¢) is the sum of the distances (as
defined by d) of every tile in a tile-configuration ¢ from two
pre-chosen points A and B in the workspace. The points
chosen here are A = (1, M) and B = (M, M) where M
is the length of each side of the workspace. These points

correspond to the lower left and lower right corners of the
workspace in Figure 2.

The fitness of a configuration is related to the presence
of specific features of the configuration. Configurations that
have tiles concentrated close to X = M /2 axis, and away
fromthe Y = M edge (i.e. having a “T” shape) would tend
to have higher values as compared to one where the tiles are
randomly distributed around the workspace.

4 Comparison of strategy properties
4.1 Results

In this system, a ballistic strategy is equivalent to a list of
X -coordinates that are executed in sequence by releasing a
tile at those locations. A stationary strategy takes the form
7 : P — AU {halt}, where there is an action specified for
every phenotype state that can occur.

Each strategy g, whether ballistic or stationary, is associ-
ated with TI(P), where P C P is the set of final phenotypes
produced by the strategy and II(P) is the probability distri-
bution over P obtained as a result of the strategy. In order to
compare their robustness properties, the expected fitness® of
the outcomes is used as a combined measure of robustness
and fitness. The comparison is of the optimal stationary
strategy and the optimal ballistic strategy that can produce
the highest fitness phenotype in P.

The problem of finding the optimal stationary strategy
for this formulation is similar to that of finding the optimal
stationary policy for a Markov Decision Problem (MDP).
An MDP can be described as a tuple (P, A, T, R) where T
is the state transition function, and R is the value function
R : S x AU {halt} — R which specifies the expected
immediate “reward” gained by taking each action in each
state (R(s, a) is the expected reward for taking action a in
state s)[3].

Here we use the value-function iteration algorithm to ob-
tain the optimal policy for an MDP. Value function iteration
determines the optimal value function for the problem by
repeatedly iterating through the phenotype states and up-
dating the value function till it converges. As it involves an
enumeration of the entire set P, we focus on a tractable case
where M = 5 and the number of tiles available N = 10.
With these settings, |P| = 80915.

On running the value iteration algorithm, the optimal
stationary strategy 7optimai (i.€. policy in the context of
MDPs) was obtained by identifying the actions at each
step that corresponds to the highest expected reward as
specified by the value function. Due to the small size

3The expected fi tness of astrategy g isgiven by F; = Ef\;o pie(d;),
where ¢; € P and p; isthe probability with which ¢; is produced as the
outcome.

350

3001

2501

2001

Number of instances

50 100 150 200 250 300 350 400 450
Fitness

Figure 4. Fitness of phenotypes constructed
With 7 optimer (1000 runs)

of the problem,the ballistic strategy #y—optimaer Was con-
structed by hand and the sequential list of actions is
[3,3,3,3,4,3,2,1,4, 5, halt].

Figures 4 and 5 show histograms of the fitness values of
the final phenotypes produced over 1000 instances of exe-
cuting strategies 7 optimar ANd Tp_optimar resSpectively. Over
these 1000 instances, the range of fitness values obtained
With T optimar Was [88.440, 410.889] and [77.000, 311.222]
With 7p—optimar, With the expected fitness being 225.870
and 129.450 respectively.

While the ballistic sequence performs the same set of ac-
tions independent of the intermediate phenotypes obtained,
the stationary strategy is sensitive to these differences. As
compared to the single fixed action sequence of the ballistic
strategy @p—optimat, OVEr these 1000 runs there were a total
of 469 different sequences of actions with 7,ptimqr. This
suggests that a key reason explaining this observed differ-
ence in robustness characteristics is related to the adaptive
capability of the stationary strategy.

4.2 Discussion

So in this simplistic example, we can see that the re-
sults of evolution through a space G where every strategy
is strictly ballistic (as in [7]) could be both qualitatively and
quantitatively different in their robustness characteristics as
compared to evolution through a space of adaptive strate-
gies for the same problem. In general, it provides us with
the intuition that an adaptive capability i.e. (a) the ability
to extract relevant information from the current state, and
(b) to allow this informative to inform the choice of action,
can play a fundamental role in obtaining construction pro-
cesses that are acceptably robust. However, implementing
an adaptive strategy comes with several challenges.

The stationary strategy is idealized with respect to a key
issue, namely, that the player has full information about the

350

300

250

200

Number of instances

50 100 150 200 250 300 350 400 450
Fitness

Figure 5. Fitness of phenotypes constructed
With 7p_optimar (1000 runs)

current state. In the context of the graph-game, full informa-
tion means that the player knows exactly which vertex the
token is on at every step. In contrast, a scenario of partial
information would arise if the player cannot unambiguously
distinguish whether the token is on vertex v, or vertex v,.
If the graph was such that each vertex is colored with ei-
ther one of two colors in C' where C' = {black, white}
then when a token is moved to a particular vertex, rather
than it’s unique label, the only information available to the
player is the color of the vertex. In this case, a station-
ary policy is drastically reduced in size taking the form
Tipartial : C — A U {halt}. Rather than being able to
uniquely identify each vertex, the granularity of the infor-
mation is now limited to identifying whether a vertex be-
Iongs to the partition ‘/black or thite (V = ‘/black: U thite
and Viiaer N Vinite = 0), and hence it can perform a total
of only two possible actions independent of the number of
possible actions available.

One of the most critical constraints in real-world con-
struction is that the current phenotypic state is only partially
observable due to limits on the sensory capabilities avail-
able to uniquely identify the phenotype state at a given time.
In the tiling machine, we assumed that each of the 80915
possible states could be uniquely identified enabling the
strategy to perform a unique action in each case. If we were
to consider how this identification of state could be achieved
mechanistically say with a sensor attached to the tile-head,
it would involve being able to determine whether a tile ex-
ists at each of the 10 x 10 = 100 positions in the entire
workspace at each step as it is not known a priori which po-
sitions could be occupied and which may never be occupied.
Furthermore, from an information theoretic standpoint, be-
ing able to achieve this distinction using the bare minimum
of log2(|P|) ~ 17 measurements would involve substantial
knowledge — both about the structure of the workspace and
the structural properties of the possible phenotypes in order

to make only relevant measurements. Added to this problem
of state identification, the constraints on whether the tiling
head could move would greatly limit the measurements that
could be performed, making a unique identification of every
phenotype physically impossible in this system.

Furthermore, even though adaptive developmental
strategies hold the promise of achieving increased levels of
robustness, in order that this can scale with the increasing
complexity of the systems to be constructed firstly requires
a manufacturing setup that can enable such an adaptive ca-
pability to be achieved. As the dimensions of variability
that are relevant to the functioning of a system can change
from one system to another, the problems of measurements
are not fixed. In the absence of a manufacturing system that
could possibly itself be reconfigured and retrofitted to meet
these changing requirements, could limit the scalability of
robustness with increasing design complexity achievable in
a fixed setup.

5 Conclusions

We have presented a conceptual framework to engage a
class of engineering issues associated with the evolution of
reliable construction processes. The conception of develop-
ment as a process of strategic interactions involves a num-
ber of simplifying assumptions neglecting issues such as the
impact of simulation fidelity, and also does not address how
such strategies may be implemented and evolved. However,
the contribution is in providing a principled body of engi-
neering intuitions to integrate the manufacturing issues into
the evolutionary design of functional, fault tolerant systems.
By framing the issue in terms of decision making under un-
certainty, we have identified a number of issues that need to
be addressed in developing the system capability for reliable
construction. A key aspect of this capability is the ability
to extract state information to reduce the uncertainty in the
outcomes of construction. This raises a number of challeng-
ing questions that need to be addressed toward achieving a
fully autonomous design and construction capability.

References

[1] P. Alberch, S.J. Gould, G. F. Oster, and D. B. Wake.
Size and shape in ontogeny and phylogeny. Paleobi-
ology, 5(3):296 — 317, 1979.

[2] PJ. Angeline. Morphogenic evolutionary computa-
tions: Introduction, issues and example. In John R.
McDonnell, Robert G. Reynolds, and David B. Fogel,
editors, Evolutionary Programming 1V: Proceedings
of the Fourth Annual Conference on Evolutionary Pro-
gramming, pages 387-401. MIT Press, March 1995.

[3] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artifcial Intelligence, 101:1-45, 1998.

[4] D. Keymeulen, A. Stoica, R. Zebulum, and V. Duong.
Results on the fitness and population based fault tol-
erant approaches using a reconfigurable electronic de-
vice. In Proc. of the 2000 Congress on Evolutionary
Computation, pages 537-544, Piscataway, NJ, 2000.
IEEE Service Center.

[5] E. Malone and H. Lipson. Functional freeform fabri-
cation for physical artificial life. In Proceedings of the
Ninth Int. Conference on Artificial Life (ALIFE 1X),
pages 100-105, 2004.

[6] J. B. Pollack, H. Lipson, G. Hornby, and P. Funes.
Three generations of automatically designed robots.
Artificial Life, 7(3):215-223, 2001.

[7] J. Rieffel and J. Pollack. The emergence of ontogenic
scaffolding in a stochastic development environment.
In Proceedings of the 2004 Genetic and Evolutionary
Computation Conference. Springer Verlag, 2004.

[8] R. Selten. Re-examination of the perfectness concept
for equilibrium points in extensive games. Interna-
tional Journal of Game Theory, 4:22-55, 1975.

[9] A. Thompson. Evolutionary techniques for fault
tolerance. In Proc. UKACC Int. Conf. on Control
1996 (CONTROL’96), pages 693-698. IEE Confer-
ence Publication No. 427, 1996.

[10] P. Van Remortel, T. Lenaerts, and B. Manderick. The
robustness of small developed SBlock circuits using
different clocking schemes. In The Third NASA/DoD
Conference on Evolvable Hardware, pages 26-35. Jet
Propulsion Laboratory, California Institute of Tech-
nology, IEEE Computer Society, 15-18 July 2002.

[11] S. Viswanathan and J. Pollack. Towards an
evolutionary-developmental approach for real-world
substrates. In Proceedings of the ninth international
conference on the simulation and synthesis of living
systems (Artificial Life 1X), pages 45-50. MIT Press,
2004,

