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Abstract

We propose a linguistic prediction game with competitive and
cooperative variants, and a model of game players based on
finite state automata. We present a complexity metric for
these automata, and study the coevolutionary dynamics of
complexity growth in a variety of multi-species simulations.
We present quantitative results using this complexity metric
and analyze the causes of varying rates of complexity growth
across different types of interactions. We find that while
both purely competitive and purely cooperative coevolution
are able to drive complexity growth above the rate of genetic
drift, mixed systems with both competitive and cooperative
interactions achieve significantly higher evolved complexity.

Introduction
Explaining the causes and mechanisms of the evolution of
increasing complexity in biological systems, and reproduc-
ing those mechanisms in silico remains an open problem for
the field of artificial life (Bedau et al., 2000; Taylor et al.,
2016). A variety of hypotheses have been proposed in both
the biological literature at large, and within the evolutionary
computation community. In his book Full House (Gould,
2011), biologist Stephen J. Gould suggests that the appar-
ent increase in biological complexity over evolutionary time
is explained by the process of random mutation perform-
ing a drunkard’s walk through the space of possible phe-
notypes. Because there is a lower bound of complexity at
zero, this random walk will, over time, reach higher and
higher maxima. On the other hand, Richard Dawkins has
offered co-evolutionary “arms races” to explain the develop-
ment of ever-higher complexity (Dawkins and Krebs, 1979).
In this hypothesis, co-evolutionary competition drives a pos-
tive feedback cycle of complexity growth, in which each
new innovation by one competitor drives selection for fur-
ther innovation in the other.

There are a variety of challenges when examining this sort
of question, but perhaps chief among them is the challenge
of satisfactorily defining complexity. The literature contains
a wide variety of definitions in use across computer sci-
ence (Wolfram et al., 1984; Adami, 1998; Dorin and Korb,
2010), biology (Adami et al., 2000; Dawkins, 2010), and in

other fields. A common thread in many of these definitions
(though certainly not all), is the notion of incompressibility
- that is, that things are complex when they cannot be suc-
cintly described. In particular, the concept of algorithmic
complexity developed by Kolmogorov and Chaitin defines
the complexity of a string as the length of the shortest pro-
gram on a universal Turing machine which generates that
string (Kolmogorov, 1968; Rissanen, 1978). Unfortunately,
this measure is difficult to use in practice, as it cannot be
computed in the general case. In the field of automata the-
ory, the state complexity of a regular language is defined as
the size of the smallest finite automaton which can recognize
that language (Yu, 2001). This measure is conceptually sim-
ilar to that of Kolmogorov and Chaitin, but can be calculated
by a straightforward algorithm. We will present a variant of
this metric, and use it to evaluate the complexity our evolved
phenotypes.

In this work, we propose a simple model to serve as a
testbed for these and other hypotheses. This model con-
sists of a co-evolutionary game between multiple species, a
representation of strategies for this game, and a complexity
measure over that representation. The game is a two-player,
iterated game in which each individual generates a binary
string, and receive fitness points depending on whether their
string matches or differs from their opponent’s string at each
index. This game has both a competitive form, in which
the two players have opposing goals (that is, one seeks to
match and the other seeks to differ), and a cooperative form,
in which the two players share a goal (that is, both seek to
match, or both seek to differ). We model players of this
game as finite state machines, which have been extended to
label each state with an output symbol. We then calculate the
state complexity of a strategy by applying a minimization al-
gorithm to find the smallest machine which can produce that
strategy. Further details on each of these component can be
found in their corresponding sections.

Using this model, we can construct a variety of ecological
networks, in which we define either competitive or cooper-
ative pair-wise relationships between multiple species. In
networks with more than two species, a single species may

Carole Knibbe et al, eds., Proceedings of the ECAL 2017,  Lyon, France, 4-8 September 2017,  
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).  
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives 
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

298

Oral presentation



have multiple such relationships, some competitive and oth-
ers cooperative, and will derive fitness from all of them. We
then compare the growth of complexity of various network
topologies in order to determine which, if any, promote com-
plexity, and to which degree.

Model
Linguistic Prediction Game
We present a simple prediction game which we term the
Linguistic Prediction Game. In this game, two players it-
eratively generate symbols (in this work, 0 or 1) and are re-
warded points each round depending on their symbol and the
symbol of the other player. Symbol generation in each round
is done simultaneously - neither player may know what sym-
bol the other has chosen to produce. However, players may
condition their next symbol on the history of symbols played
so far by both players in the current game.

Many different payoff matrices can be defined, but we
concern ourselves with a few simple matrices which model
cooperation and competition. In these games, each player
either seeks to produce a symbol which matches that of the
other (in other words, both produce zero or both produce
one), or seeks to produce a symbol which mismatches that
of their opponent (in other words, one player produces zero
and the other produces one)1. If the goals of both players are
aligned, meaning they both wish to match or both wish to
mismatch, then we say the game is cooperative, and if their
goals are opposed, then we say the game is competitive.

In each round, a player receives one point if their goal
(match or mismatch) succeeds, and zero points otherwise.
In this work, we consider a game which is played over an in-
finite number of rounds (similar to the formulation of an in-
finite iterated prisoner’s dilemma in (Lindgren, 1992)), and
we define the score of a particular player via a limit:

S(p) = lim
r→∞

∑r
i=0 reward(p, i)

r

Where S(p) indicates the total score of player p, r the
number of rounds played, and reward(p, i) indicates the re-
ward received by player p in round i.

We consider two specific types of game matrices, as
shown in Figure 1, which we term COOP and COMP. COOP
is a cooperative game in which both players receive a point
if they output the same symbol. In this game, players must
learn to coordinate their outputs to receive a maximal score.
Players seek to establish a shared convention (a language)
to which they can both adhere. COMP, on the other hand, is
a competitive game in which one player receives a point if
they output the same symbol, and the other receives a point
if they output different symbols. Here both players must try

1These games may be viewed as variants of the iterated penny-
matching game described in (Gibbons, 1992) and further explored
in (Mookherjee and Sopher, 1994)
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Figure 1: Cooperative and competitive game matrices. Sym-
bols output by the first player are on the left axis, and those
output by the second player along the top axis. Each cell is
labeled with the payoffs received by the first player and the
second player.

to predict the pattern of their opponent while simultaneously
preventing prediction of their own pattern.

Note that there are two additional isomorphic formula-
tions of each game - COOP also occurs when both play-
ers seek to output different symbols, and COMP also occurs
when the roles of the two players are swapped. In our ex-
periments, the choice of which form of each game to use has
had no effect on the results.

Multi-game Ecosystems

We extend this linguistic prediction game model by em-
bedding multiple instances of it in a network of interacting
species, which we term an ecosystem. An ecosystem con-
sists of a set of species, and a set of pairwise connections
between them. Each connection is labelled with a game ma-
trix which governs the interaction between members of those
two species. In this way, a single organism may interact with
other organisms of multiple different species, and will po-
tentially play a different version of the game with each of
those species.

We examine several of these ecosystem models here, as
shown in Figure 2. The first is a trivial baseline model
with a single species and no games being played. This
serves as a control datapoint which allows us to understand
the complexity which tends to arise only from a random
walk through mutations. The next two models are a pair
of two-species models which are fully cooperative (playing
the COOP game), and fully competitive (playing the COMP
game). These two models allow us to examine the behavior
that occurs when the players have either aligned or oppos-
ing goals. We also consider an ecosystem which features a
mix of cooperative and competitive games, which we term
“Three-Species Mixed”. This ecosystem consists of three
species, A, B and C. A plays the COOP game against B
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Figure 2: Interactions between species in our six ecosys-
tem models. Connections between species indicate an in-
teraction, which is labeled as either competitive or coopera-
tive. For competitive interactions, the arrow points from the
species which is rewarded for matching to the species which
is rewarded for mismatching. Bidirectional arrows indicate
cooperative interactions.

and the COMP game against C, and there is no direct in-
teraction between B and C. This system is inspired by the
three-player pursuit/evasion game introduced by Ficici (Fi-
cici et al., 1998). For comparison with this three-species
system, we also examine a purely competitive three-species
system in which A competes with B and with C, but with
opposite goals - that is, A attempts to match B but mismatch
C. We term this system “Three-Species Comp”. Finally, we
consider a four-species system extension of Ficici’s game in
which both species A and B compete, and each has a coop-
erative partner, C and D respectively. A and C play COOP
as do B and D. We term this system “Four-Species Mixed”.

Critically, in ecosystems in which one individual may in-
teract with multiple other species, there is no signal or indi-
cation of which such other species is being interacted with.
For example, in the Three-Species Mixed system, individu-
als of species A will not know ahead of time whether they
are interacting with a member of species B, and therefore
playing COMP, or a member of species C, and therefore
playing COOP. To the extent that a member of species A
exhibits different behavior in these two situations, it must

do so by learning to recognize the species of its opponent
based on its opponent’s outputs, and adjust accordingly.

Organism Model
Individual organisms are represented as finite state machines
in which each state is labelled with a symbol to be produced
(either zero or one), and each state has an outgoing transition
link for each symbol. State transitions occur according to the
symbols produced by the other player in game. Additionally,
each finite state machine has a special initial state in which it
will start at the beginning of each game. Thus, an organism
can be represented as a tuple S, T, L, s0, where S is a set
of states, T : S × {0, 1} �→ S defines state transitions for
each state in S for both 0 and 1, L : S �→ {0, 1} defines the
output symbol for each state in S, and s0 indicates the initial
state.

To simulate a game, each player is first set to its initial
state s0 ∈ S. Then, each player produces the symbol in-
dicated by the label on its current state, and performs the
state transition indicated by the symbol produced by the op-
ponent. To calculate the score received by each player, this
process is repeated until the two players enter a loop (note
that players are fully deterministic, and possess a finite num-
ber of internal states, and therefore a pair of players must
enter a finite-length loop after a finite number of rounds).
To detect loops, we track the pairs of states of each player
in each round, and wait for the system to return to the same
pair of states as it has been in before. Each player’s score for
the game is then its average score over the loop. Note that
this means interactions before the loop is entered (i.e. the
transient state of the system prior to its stable cycle) do not
contribute to the score, as they contribute an infinitessimal
amount in the limit of an infinite game.

As an example, consider the two organisms pictured in
Figure 3. Let the first organism be A, with states A0 and
A1, and the second be B with states B0 and B1. A game
between these two players will begin in states {A0, B0}, and
will proceed as {A0, B0} → {A1, B0} → {A1, B1} →
{A0, B1} → {A1, B0}. At this point, the game has entered
a loop, and the score can be calculated using a game matrix.

Mutation We further define a set of mutation operators
which alter the structure of an organism2. These are:

• Add a new state.

• Remove a state.

• Redirect a transition link.

• Change the symbol produced in a state.

2These mutation operators are similar to the class of structural
mutators used in (Angeline et al., 1994) and other network-based
evolutionary algorithms.
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Figure 3: Two examples of organisms. The double circle
represents the initial state, the node labels indicate the sym-
bol to be produced when in that state, and the transition la-
bels indicate which symbol causes that transition to occur.
The first organism will output 0 on the first round, and then
copy the opponent’s last move. The second organism will
also output 0 on the first round, and then produce the oppo-
site of the opponent’s last move.

...

...

A

B

Figure 4: All-vs.-all interactions between two species. Each
member of species A interacts with every member of species
B, but two members of the same species do not interact with
one another.

Adding a new state results in a state with randomly-
assigned outgoing transitions (possibly pointing to itself),
and with a random output symbol. Note that this new state
will not yet be the target of any external transitions - it must
later be linked by redirection mutation. Removing a state
requires randomly selecting new destinations for every link
which previously pointed to the deleted node. Further, if the
deleted node was the initial state, a new initial state is ran-
domly selected from the remaining nodes. If the organism
has only one state, a deletion mutation instead has no effect.
A redirection mutation simply selects a random transition
link and selects for it a new destination. This may result
in making some nodes unreachable, or making some previ-
ously unreachable nodes reachable. Changing the symbol
produced by a state is self-explanatory.

Evolutionary Simulation
An evolutionary simulation consists of the following steps.
First, for each species in an ecosystem, a population of or-
ganisms is intialized with minimal finite state machines - a
single state with a random label, and transition links leading
back to that single state. We then simulate a series of gener-
ations. Each generation consists of an evaluation period, in
which individuals interact according to the games specified
by the ecosystem to accumulate fitness, and a reproduction
period in which individuals produce offspring which form

the populations of the next generation.
In the evaluation period, for each pair of interacting

species, an all-vs.-all set of games are played, as shown in
Figure 4. That is, if species A plays the COOP game with
species B, each member of A will play that game with each
member of B. For each organism, its total fitness across all
interactions is tallied.

In the reproduction stage, for each species, a new popu-
lation is generated using fitness-proportional selection. That
is, a number of offspring are created equal to the popula-
tion size of each species where the parent of each offspring
is chosen at random from the current population of that
species, with probability proportional to each individual’s
fitness accumulated during the evaluation period. Offspring
are then subjected to mutation as described previously. In
this work, we use a constant mutation rate of one mutation
per offspring, with all four types being equally likely. Once
the new population has been generated, the previous gener-
ation is discarded.

Complexity Metric
Our goal in this work is to measure the growth of complexity
of organisms over the course of an evolutionary simulation.
To do so, we require a quantitive metric of complexity. A
simple approach would simply be to count the number of
nodes and transitions in a particular organism, and define
those with more nodes to be more complex. However, con-
sider the example of an organism with a great many nodes,
all of which are labelled to produce the symbol 0. This sim-
ple metric would label this organism as very complex, but
its behavior would be identical to an organism with a single
node! This is clearly unsatisfactory. In order for an organ-
ism with a large network to be truly complex, it seems that
it should be the case that all of its nodes are essential to its
strategy.

We take inspiration from the concept of Kolmogorov
complexity, which (informally) defines the complexity of a
string as the length of the shortest computer program which
generates that string. We define the complexity of an organ-
ism as the size of the smallest organism which produces an
identical strategy. Thus, the large organism in the example
above would have a very small complexity, as its strategy
can be produced by an organism with a single node. Simi-
larly, unreachable nodes will not contribute to the complex-
ity of an organism, as those nodes could be removed without
altering the strategy.

To calculate the minimal organism which produces the
same strategy, we turn to automata theory. A slight modi-
fication of Hopcroft’s algorithm for minimization of deter-
ministic finite state machines (Hopcroft, 1971) allows us to
efficiently compute the smallest equivalent organism. As in
the base algorithm, we begin by removing all disconnected
nodes. We then apply the partition-refinement process, but
instead of starting with an initial partition of accepting and

Carole Knibbe et al, eds., Proceedings of the ECAL 2017,  Lyon, France, 4-8 September 2017,  
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).  
This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives 
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

301

Oral presentation



non-accepting states as in Hopcroft’s algorithm, we begin
with a partition of nodes by output label. From there, a
straightforward application of the standard algorithm pro-
duces a minimal equivalent machine. The total number of
nodes in this minimized machine is then used as our com-
plexity metric for that organism.

Experiments & Results
For each of the five ecosystems described above, we per-
form 20 experiments of 10,000 generations each, with each
species having a population size of 50. For each genera-
tion, the complexity (the size of the minimal equivalent ma-
chine) of each organism is computed, and we record the me-
dian complexity for each population. We use the median
to avoid giving undue influence to a single complex mutant
which does not manage to spread its complexity through-
out the population. We then take the mean of these medians
over the 20 experiments to determine the characteristic tra-
jectory of complexity over time for each ecosystem. To ana-
lyze the trajectory of complexity growth within each species
at the end of the simulation, we compute a line of best fit
over the complexity values for the last 2,500 generations of
each experiment using the least squares method, and report
the slope of this line. Species which sustained complexity
growth through the end of the experiment display a posi-
tive slope, while those whose complexity growth had slowed
show a near-zero slope. We will present results based on this
trajectory, as well as the final level of complexity at the end
of 10,000 generations. Figure 5 shows the trajectories of
average complexity for each ecosystem. Figure 5 summa-
rizes final and maximal average complexity values as well
as complexity trendline slopes for each ecosystem.

Single-Species (Control)
In this ecosystem, we have only a single species which ex-
periences no selective pressure - all organisms are equally
likely to reproduce. Thus, the only driver of increased com-
plexity is the random walk of genetic drift. Because this
walk is bounded below at 1, we should expect a slight up-
ward trend over time. This is indeed what we observe, with
the populations acheiving an average median complexity of
about 12 nodes after 10,000 generations, with a high-water
mark of 14.24 reached after 7,589 generations. By the end of
the simulation, the control species had reached a near-zero
rate of complexity growth. This will serve as a baseline for
comparison to other systems - complexity growth above this
rate should be the result of selective pressure.

Two-Species Cooperative
This ecosystem shows the behavior of two species with a
purely cooperative interaction. Individuals which are able to
consistently match the output of the other species are favored
for reproduction. We find that this system is more amenable
to complexity growth than the control - both in terms of its

final average complexity as well as the rate of growth. The
two species reach final complexities of about 18 nodes after
10,000 generations, with highs of 19.78 and 22.52 reached
after 6,388 and 8,507 generations respectively. By the end
of the simulation, both species showed sustained, although
slow, complexity growth at a rate of around 1.5 additional
nodes per 1,000 generations. In some sense, this growth of
complexity is surprising - the fully cooperative game can be
played perfectly by two organisms with a single state, so it
seems that extra states would be superfluous. From manual
inspection of organism controllers, we observe that there is
pressure towards strategies which are tolerant against muta-
tions of their opponents. For example, consider a population
of single-node organisms which all output 0. In each gen-
eration, there will likely be some offspring that have under-
gone a label-flipping mutation and instead output 1. Interac-
tion with these mutants would result in zero fitness for the
all-0 players. However, a two-state organism which always
copies the last move of its opponent would achieve maxi-
mum fitness against both the original all-0 players and the
all-1 mutants. Similar interactions drive further complexity
development.

Two-Species Competitive

This ecosystem is the mirror of the cooperative environment
above - the two species compete to acheive opposing goals:
one receives fitness for matching output symbols, and the
other for mismatching. Here we observe a very fast ini-
tial growth of complexity, with species reaching an average
complexity of 10 nodes after only about 400 generations.
By comparison, the purely cooperative system took 1,400
generations to reach this level, and the control took over
3,200 generations. However, this fast initial growth is not
sustained. The system reaches final complexity values of
about 16 nodes, with highs of 19.88 and 20.7, all slightly
lower than those acheived by the cooperative model. The fi-
nal complexity trendlines show a modestly increasing trajec-
tory for one species (0.5 additional nodes per 1,000 gener-
ations) and a modestly decreasing trajectory for the other (-
0.8 nodes per 1,000 generations). This system appears to fall
victim to a form of mediocre stable state as described by (Fi-
cici and Pollack, 1998), in which the system ceases to make
progress as measured by an external metric (in our case,
complexity). Instead, the species are driven into a cyclical
pattern of what Ficici terms “convention-chasing”. That is,
species spend all of their available mutational change try-
ing to keep up with the changes of their opponents, rather
than become more complex. In particular, selection seems
to favor cycles of label-changing mutations, which pushes
the populations through variants of the same core strategies
but with different output symbols.
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Figure 5: Mean of medians complexity values for the six ecosystems over 10,000 generations. Vertical axes denote complexity
as measured in nodes in the minimal equivalent strategy, and horizontal axes denote generations.

Three-Species Mixed

This ecosystem contains three species with both coopera-
tive and competitive interactions. Unlike the previously dis-
cussed systems, the roles of the species are not symmetric.
Species A faces both cooperative and competitive interac-
tions, species B faces only a competitive interaction - its
interaction is locally equivalent to those in the two-species
competitive model, and species C faces only a cooperative
interaction - locally equivalent to those in the two-species
cooperative model. We observe significantly higher com-
plexity values in this system than found in any of the two-
species models. Species A reaches a final complexity of
about 26 nodes, with a high of 29.12. Species B reaches
a final complexity of about 20 nodes, with a high of 23.14,
and species C reaches a final complexity of about 41 nodes,
with a high of 41.72. On the other hand, the final complexity
trajectories show that growth has slowed to less than one ad-
ditional node per 1,000 generations for all three species by
the end of the simulation. Species C in particular appears to
suffer a period of regression around the 8,000th generation
that arrests its otherwise consistent complexity growth. The

exact cause of this regression is unclear.
The complexity values for B and C are both higher than

those found in the two-species competitive and coopera-
tive games respectively, although the values for B only
slightly so. The bulk of the increase in complexity seems
to occur from the interaction between A and C, with both
significantly exceeding the complexity levels observed in
the purely cooperative game. The mechanism driving this
growth seems to be similar to that in the cooperative game -
C is driven to develop tolerance against changes in the be-
havior of A. However, the changes in the behavior of A are
no longer merely the result of genetic drift, they’re driven by
selection pressure exerted by B.

Three-Species Comp

It might fairly be asked whether the increase in complex-
ity shown in the previous system was merely due to the in-
troduction of a third species - perhaps more players results
in more complexity. To test this hypothesis, we consider a
system with the same interactions, except that the game be-
tween A and C has changed to COMP. Here we find no in-
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Species Final Max Complexity
Complexity Compleixty Trend

Control A 12.44 14.24 0.006
Coop A 18.28 19.78 1.380
Coop B 18.74 22.52 1.645
Comp A 16.00 19.88 0.483
Comp B 16.02 20.70 -0.865
3-Mix A 26.18 29.12 -0.082
3-Mix B 20.54 23.14 0.718
3-Mix C 41.72 41.72 0.568
3-Comp A 13.76 16.10 0.141
3-Comp B 14.02 16.48 -0.127
3-Comp C 13.08 16.16 -0.259
4-Comp A 26.68 29.92 0.140
4-Comp B 23.82 26.22 1.374
4-Comp C 38.40 39.78 3.089
4-Comp D 36.10 37.98 3.767

Figure 6: Final and maximal complexity values, and fi-
nal complexity growth slopes for each species within each
ecosystem. The largest values for each column are in bold.
Complexity growth values are the rate of growth in com-
plexity per 1,000 generations, and are calculated over the
final 2,500 generations.

crease in complexity above that observed in the two-player
case. In fact, the convergence to mediocre stability is even
stronger, with all three species quickly reaching a point of
stagnant complexity. The three species reach final complex-
ities of 13.7, 14.0 and 13.0 respectively. They reach highs
of 16.1, 16.5 and 16.1, respectively. All of these values are
slightly below those observed in the two-species competitive
case, and well below the levels observed in the three-species
mixed system. Further, all three species display final trajec-
tory trendlines with slopes very close to zero. We therefore
conclude that the interaction of competition and cooperation
is driving the increase in complexity, not merely the pres-
ence of a third species.

Four-Species Mixed

The four-species mixed ecosystem is formed by adding an
additional species to the three-species mixed system, such
that both A and B have a cooperative partner. Here we find
that B attains similar complexity to that of A in the three-
species mixed system, and D attains similar complexity to
that of C. In particular, A and B attain final complexities
of 26.7 and 23.8 nodes, respectively, with highs of 29.9 and
26.2. C and D attain final complexities of 38.4 and 36.1
and highs of 39.8 and 38.0. We also see that species C and
D sustain final complexity trajectories well above that ob-
served in any other simulations, both with rates of more than

3 additional nodes per 1,000 generations.

Discussion
Our experiments reveal that co-evolution is able to drive
complexity growth above that expected by genetic drift -
indeed, all of our coevolutionary systems achieve higher fi-
nal and maximal average complexity values than the control.
However, the trajectories of complexity growth vary signif-
icantly depending on the nature of the coevolutionary inter-
action. Competitive co-evolution is able to drive extremely
fast initial complexity growth, but then settles into stagna-
tion. Cooperative co-evolution, somewhat surprisingly, is
also able to drive complexity growth, but does so at a slower,
steadier pace than competition.

Extension to three species systems reveals that a mix of
competitive and cooperative relationships is a much more
powerful driver of complexity growth than either competi-
tion or cooperation alone. Such a system seems to allevi-
ate the phenomenon of mediocre stable states observed in
two- and three-species purely competitive systems. Return-
ing to the competing hypothesis of Gould and Dawkins, we
find that genetic drift alone is able to produce complexity
growth. However, this baseline growth is well below that
observed in coevolutionary systems. The competitive arms
races hypothesized by Dawkins are successful in creating
complexity above that created by genetic drift, but fall short
of other more successful systems.

Future Work
We’ve presented experimental results for a limited selec-
tion of the possible multi-species ecosystems. It may be
worthwhile to perform a systematic analysis of all possi-
ble ecosystems of a given size, in the style of Wolfram’s
analysis of elementary cellular automata. The dynamics of
competitive systems have recently gained importance in the
field of deep learning due to the success of generative adver-
sarial networks (GANs) (Goodfellow et al., 2014). These
systems often display the undesirable behavior observed
in many purely competitive coevolutionary simulations, in-
cluding those presented here. Much work has been done to
coax these models towards more stable dynamics (Salimans
et al., 2016; Arjovsky et al., 2017). We look towards apply-
ing the notion of mixed cooperative and competitive systems
to the GAN architecture. A few works have successfully im-
plemented systems which are approximately isomorphic to
our three-species mixed model (Chen et al., 2016; Abadi and
Andersen, 2016), although with the aim of extending the ca-
pabilities of the system, rather than improving learning tra-
jectories.
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