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T h e  F u t u r e  o f  A I

Mindless Intelligence
Jordan B. Pollack, Brandeis University

Most of my 25 years of professional involvement in AI have been focused on

research far from its mainstream, not because of any antisocial tendencies on

my part, but because of certain dilemmas inherent in the field. The first dilemma con-

fronting AI is that both single-celled and multicelled animals survive and reproduce very 

well without any nervous system at all, and “lower
animals,” even insects, organize into thriving soci-
eties without any symbols, logic, or language, bee
dancing and birdsong notwithstanding. These phe-
nomena led me to delve into nonsymbolic models
and ask how complex hierarchal representations and
sustained state-changing procedures might naturally
emerge from iterative numeric systems such as asso-
ciative or connectionist neural networks.

The second dilemma is that the kind of mind we
in AI seek to discover, one that “runs” on the human
brain yet might be portable to another universal
machine, wouldn’t even exist without having co-
evolved with the brain—a chicken-and-egg problem.
So, while many of my connectionist colleagues
migrated with US National Institutes of Health fund-
ing into cognitive or computational neuroscience,
trying to understand how the human brain works, I
focused instead on what natural process could design
and fabricate machinery as complex as the brain.

I ended up working closer to the field of artificial
life, seeking to understand how evolution, a mind-
less iterative reproduction system, could eventually
lead to machines whose complexity and reliability
dwarfs the product of the largest teams of human
engineers.

On this 50th birthday of artificial intelligence, I
would like to reflect on what I feel has been its great
mistake, and propose a corrective course for the next
50 years. But before analyzing this mistake, I want
to say that AI is a great human endeavor with a col-
orful cast and many partial successes. It has provided
frameworks for formally studying biological sys-

tems, animals, and humans and has spun out indus-
tries such as Lisp machines, expert systems, data
mining, and even Internet search.

Don’t promise the practically
impossible

We all agree on AI’s fundamental hypothesis, that
physical machines have the capacity for intelligence.
Unfortunately, this hypothesis can neither be proven
nor refuted scientifically, but realized only by
demonstration. And until it has been convincingly
demonstrated, it must remain in scientific limbo.
Ordinary citizens and funding bureaucrats don’t
know whether AI is tardy, like mechanical flight,
which emerged from limbo after several hundred
years of failure, or magical, like ESP or the
alchemists’quest to turn lead into gold. Perhaps there
is even an impossibility proof waiting around the cor-
ner, as has put to rest quixotic notions such as time
travel (Einstein) and perpetual motion (Ludwig
Boltzmann). Who wants to fund a field that might be
proven impossible tomorrow?

So AI, which represents one of the greatest intel-
lectual and engineering challenges in human his-
tory—and should command the same fiscal re-
sources as efforts to cure cancer or colonize Mars—is
sometimes relegated to a laughingstock, because we
can’t prevent bogus claims from cropping up in
newspapers and books. We cannot seem to convince
the public that humanoids and Terminators are just
Hollywood special effects, as science-fictional as the
little green men from Mars!

Still, some want to keep pursuing the same old AI
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goals: “What are the missing pieces neces-
sary to achieving human-level common
sense?” “Let’s do a project to gain human-
level performance in a (nonchess) domain.”
“We will build natural language software
that’s human-level in ability.” “Soon com-
puters will be fast enough to supply human-
level intelligence to humanoid robots.”

AI won’t be a gift of more CPU time. If it
were, we would have already glimpsed real
AI on supercomputers or large clusters, yet
nothing of the kind has occurred. We don’t
need faster chips to make robots smarter,
since we can link a robot’s body to its super-
computer brain over wireless broadband. As
the joke goes, even if AI requires an infinite
loop, it should run in only five seconds on a
supercomputer.

The issue isn’t the speed of running a mind-
like program; it is the size and quality of the
program itself. Because we routinely underes-
timate the complexity of evolved biological
systems, and because Moore’s law doesn’t lead
to a doubling of the quality of human-written
software,1 the same old goals are red herrings
that promise the practically impossible!

Take Mind off its pedestal
AI’s great mistake is its assumption that

human-level intelligence is the greatest intel-
ligence that exists, and thus, that our com-
putational intelligences should operate “like”
human cognition. Because of this mistake,
most AI research has focused on “cognitive
models” of intelligence, on programs that run
like people think. But it turns out that we
don’t think the way we think we think!

The scientific evidence coming in all
around us is clear: Symbolic conscious rea-
soning, which is extracted through protocol
analysis from serial verbal introspection, is
a myth. From Michael Gazzaniga’s famous
split-brain experiments, where a patient asso-
ciated a snow shovel with a chicken,2 through
Daniel Dennett’s demolition of conscious-
ness,3 through the unconscious intelligence
described most recently by Malcolm Glad-
well,4 it’s entirely clear that the “symbolic
mind” that AI has tried for 50 years to simu-
late is just a story we humans tell ourselves
to predict and explain the unimaginably com-
plex processes occurring in our evolved
brains.

Because of this preoccupation with mim-
icking human-level intelligence, as a scien-
tific field, we’ve ignored or excluded the con-
tributions of many alternative nonsymbolic
mechanisms. Such mechanisms range from

associative and matrix models of mathemat-
ical psychology, to Markovian models, to
both game and decision theories, to early
neural networks (the perceptron disaster), to
simulations of evolution and organic self-
organization. The early success of low-hang-
ing symbolic fruit through Lisp program-
ming led to the pursuit of the “mythical man
module,” a computer program that has the
“look and feel” of human cognition yet is
something more than an Eliza.

John Searle’s “Chinese Room” argument5

is hateful because, in fact, he’s correct. Nei-
ther the room nor the guy in it pushing sym-
bols “understands” Chinese. But this isn’t
really a problem, because nobody actually
“understands” Chinese! We only think we

understand it. As anyone—even a native
speaker—drives further down into an expla-
nation of his or her knowledge or behavior,
instead of gaining sharper insights (as we
might expect in a reductionist physical sci-
ence with a better microscope), the explana-
tions get blurrier and blurrier.

By assuming that intelligences based on
human-centric cognitive architectures such
as grammars or production systems are the
zenith, are the most powerful intelligences
in the world, our field has made the same
kind of embarrassing mistake as today’s
cryptocreationists, the proponents of Intelli-
gent Design. By doubting that a mindless
nonlinear iterative process such as evolution
could be responsible for irreducible com-
plexity in the designs of biological life-
forms, they hold that a superhuman, super-
intelligent being must have intervened.

AI also behaves as if human intelligence
is next to godliness. Even the neural
approach, more accepted today then ever,
falls into the trap of trying to model human

cognitive structures such as verb conjuga-
tion. Why is simulating the human mind
more important than simulating cellular
metabolisms, insect or animal intelligence,
complex pattern formation, or distributed
control of complex ecologies? It must be
because, as a mirror of our own intelli-
gence, the mindless iterative and numeric
computing we scientifically uncover in
nature doesn’t compare to the perfectly log-
ical indefatigable mind of Hollywood char-
acters such as Mr. Spock and Commander
Data, NP-completeness notwithstanding.

To repair this mistake and move forward
as a scientific field, we must recognize that
many intelligent processes in Nature perform
more powerfully than human symbolic rea-
soning, even though they lack any of the
mind-like mechanisms long believed neces-
sary for human “competence.” Once we rec-
ognize this and start to work out these
scaleable representations and algorithms with-
out anthropomorphizing them, we should be
able to produce the kind of results that will
get our work funded to the level necessary for
growth and deliver beneficial applications to
society, without promising the intelligent
English-speaking humanoid robot slaves and
soldiers of science fiction.

Defining mindless intelligence
I define “mindless intelligence” as intelli-

gent behavior ascribed (by an observer) to
any process lacking a mind-brain. Suppose
some black-box process (for example, math-
ematical, numerical, or mechanical) exhibits
behavior that appears to require intelligence.
However, when we scientifically study it, we
find no Lisp interpreter, no symbols, no
grammars, no logic or inference engine—in
fact, we realize that it works without any of
the accoutrements of cognition. We can say
that this process is mindlessly intelligent.

Now we can begin to seriously study intel-
ligent performance by

• feedback-driven systems such as ther-
mostats and steam governors;

• pattern-action systems such as Eliza pro-
grams and immune systems;

• stability and hierarchy networks such as
cellular metabolisms;

• societal assemblies such as insect and
colonial life-forms;

• utility-maximizing systems such as game
and economic agents;

• exquisitely iterative systems such as evolu-
tion, fractals, and embryogenesis; and even
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• mind-erasing collectives such as academic
committees, crowds, and bureaucracies.

To give you a broader sense of the field,
I’ll briefly cover several kinds of natural
processes that appear intelligent yet lack 
any cognitive apparatus. John Kolen and I
showed how an iterated dynamical system
could appear to generate a context-free or
context-sensitive language, depending on the
observer.6 The dynamical system lacked any
cognitive architecture for “generative capac-
ity,” which has been assumed by all natural
language processing systems since Noam
Chomsky.

Wherever we look in Nature, we see amaz-
ingly complex processes to which we can
ascribe intelligence, yet we observe symbolic
cognition in only one place, and only there as
a result of introspection. Many of these nat-
ural processes have been studied under the
aegis of complex systems or have been given
the prefix “self” or “auto.” Because these sys-
tems have no mind, and thus no self, I’ve
taken the liberty of replacing those prefixes
with the new term ectomental, which means
outside (Greek) of mind (Latin).

Ectomental organization
Evolution is the primary example of 

an intelligent designer who lacks a mind.
There’s no grammar, set of rules, library of
CAD parts, or physics simulation. Simply
put: a mindless reproductive system operates,
transcription errors occur, and selection locks
in a statistical advantage for the marginally
better—or luckier—members of a popula-
tion. And yet this iterative process has auto-
matically designed machines of incredible
beauty and complexity, objects that far

surpass—in complexity and reliability—
anything architects, engineers, novelists, ven-
ture capitalists, or teams of software pro-
grammers can achieve.

Human teams can build systems with only
10 million to 100 million unique moving
parts before the entire structure collapses, yet
biological forms can have 10 billion unique
moving parts.

For the past decade, my lab’s goal has
been to understand how evolution can pro-
duce more complex designs than a human
engineering team, while lacking human-
level symbolic cognition. We’ve focused
specifically on coevolutionary machine
learning systems. While we haven’t yet
achieved a fully open-ended design process,
we have

• shown coevolutionary systems that have sur-
passed human performance in sorting net-
works and cellular-automata optimization;7

• developed theories such as Pareto coevo-
lution,8 emergent dimensionality,9 and
computational models of symbiogene-
sis;10 and

• revealed the possibility of motivating a
community of learners11 to become their
own Ideal Teachers,12 resulting in novel
educational software.13

Perhaps our best-known research is on the
coevolution of robot bodies and brains,
known as the Genetically Organized Lifelike
Electro-Mechanics, or GOLEM, project. This
research resulted in three generations of self-
designed systems that discovered irreducibly
complex components and processes such as
the cantilever, ratcheting, and kayaking (see
figure 1).

Ectomental learning
One of the oldest AI paradigms is a self-

learning or autodidactic system, a program
that begins with a tabula rasa and, when
dropped into an environment, gets better and
better over time. Perhaps the best example
of such a system is Gerald Tesauro’s TD-
Gammon.17 He started with essentially a ran-
dom neural network that could return a value
for any backgammon position. Rather than
training the network against an encyclope-
dia of human expert games, he essentially
trained it against itself. After about a month
of computer time on an IBM supercomputer,
with the weights adjusted as a result of each
game, his network, with further refinements,
became one of the best players in the world.

Humans can verbalize backgammon strat-
egies. We consider only a few plausible
moves and then estimate whether one move
is better or worse than another on the basis
of strategic goals from models of the game
(running, blocking, back-game), using all
kinds of approximate and exact calculations
about probability. I was a professional-level
backgammon player in 1975 and felt that
there were about seven different human-
player “types” who, at the top of their game,
achieved a rock-scissors-paper parity.

On the other hand, TD-Gammon is a
mindless intelligence that dominates all
human players. It uses a function to estimate
values and uses a one- or two-ply look-ahead
with a greedy selector to make a move. It has
no logic or symbols, no strategy that looks
far ahead or back in time, and no language
component to discuss its strategy. Yet it’s
stronger than any rule-based strategy.

My lab had worked on self-learning for
tic-tac-toe,18 and we became interested in
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Figure 1. Three generations of evolved robots: (a) Pablo Funes’ evolution of Lego discovered the cantilever,14 (b) Hod Lipson’s 
evolution of dynamic trusses invented the ratchet,15 and (c) Gregory Hornby’s evolution using L-systems to describe machines
invented a kayaking motion.16

(a) (b) (c)



understanding why TD-Gammon worked.
We were able to replicate the Tesauro effect
using simple hill-climbing,19 which led to the
question of why coevolutionary self-learn-
ing worked so well for backgammon. Game
theorists such as Richard Bellman recog-
nized many years ago why a purely numeric
backgammon player works better than a log-
ical game.20 He proved the existence of a
value table for optimal sequential choice in
Markovian games, where opponents can
choose strategies yet are buffeted by random
elements such as dice. Moreover, iterated
approximation of the value table, through a
single-ply expectimax look-ahead, leads to
its convergence. So, an optimal value table
combined with a one-ply greedy choice leads
to the strongest-possible player.

In order to study the success of learning
backgammon, I recently invented Nannon®,
the smallest version of backgammon that
maintains its core behaviors, yet only uses six
points, three checkers, and one die per side.
There are only 2,530 different board positions,
and the value table converges in 15 sweeps to
an error of 10�7.21 While the full game of back-
gammon is much larger than Nannon, so a
table can’t be stored, Tesauro’s choice of input
representation and network size from earlier
experiments led to a fortuitous convergence
between TD reinforcement learning and Bell-

man’s earlier mathematical work.
Perhaps many mindlessly intelligent pro-

cesses in Nature are similar instances of
mathematical ideals that can lead to conver-
gence, complexity, and optimal performance
in the limit.

Ectomental repair
A marvelous characteristic of natural sys-

tems is that they can heal, or self-repair. A
naïve computerized view would be to envi-
sion the algorithmic equivalent of a team of
repairpersons who, under centralized super-
vision, consult a system model and are then
deployed to a disturbance’s site to apply cog-
nition, logic, and spare parts to return the sys-
tem to model behavior. However, imagining
a system that contains a deployable model of
itself can lead to logical conundrums.22

How might we understand self-repair in
natural systems? In artificial-life research on
“algorithmic chemistry,” Walter Fontana and
Leo Buss described systems of simple
lambda calculus programs that consume and
produce each other, forming a metabolism.23

When such an artificial-chemistry network
had a steady-state dynamic, perturbations
would return to the same attractor, like the
memories in a Hopfield network.

Is the Bauplan of an animal a similar
attractor, which the myriad of microscopic

mindless actions can’t help but keep return-
ing to? In other words, the answer to self-
repair is that there’s no blueprint or explicit
diagram; there’s just a framework and a set of
parameters that mathematically define a
complex attractor. Mindless and far-flung
distributed operations can’t help themselves;
they must gravitate toward it.

Such dynamical systems with complex
attractors driven by parameters are well
known. One example is the Mandelbrot set,
a truly exquisite iteration where the parame-
ters define a window and each pixel com-
putes its own color. Another example is iter-
ated function systems, a union of a set of
contractive maps that Michael Barnsley
proved has a single fractal limit attractor akin
to Cantor dust.24

Barnsley showed, much analogous to Bell-
man’s proof, that some nonlinear iterative
processes, despite having many adjustable
parameters, have a single, yet complicated,
limit, defined by the interaction of the para-
meters and rules. Simply put, an IFS fractal
attractor is like repeatedly copying an image
with a special copying machine that makes
multiple shrunken and transformed copies of
the input page (see figure 2). All nonblank
starting pages, from a speck of dust to a piece
of black construction paper, end up converg-
ing to the same attractor in the limit.
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Figure 2. (a) An iterated-function-systems fractal is like a feedback loop on a copy machine that makes more than one reduced 
copy of an image, resulting in the same limit for a speck of dust or a full page of ink. (b) The IFS theory explained the “strange
automata” that emerged when recurrent neural networks were trained to recognize languages.



I came across IFSs while working to
understand the relationship between recur-
rent neural networks and finite-state ma-
chines. As the result of trying to learn a lan-
guage, a recurrent network generated an
infinite-state machine with the states located
on a fractal attractor.25 Subsequent research
used these structures for memory and hier-
archal representations.26

The mindless intelligence of self-defining
and self-repairing, or autopoetic,27 biologi-
cal forms is a big leap from Fontana’s
chemistries and Barnsley’s fractals. Yet I am
certain that biological form will one day be
scientifically explained as an attractor that
changes its parameters over time while it’s
constantly and mindlessly repaired by dis-
tributed processing at a microscopic level.

Ectomental assembly
Fetal development, or embryogenesis, is

perhaps the perfect place to recognize the
profound scale of complex behavior achiev-
able by mindless intelligence.

Herb Simon introduced Tempus and Hora
as two different kinds of watchmakers who
suffer from interruptions: one uses modular
construction; the other works with basic
parts.28 Richard Dawkins introduced the idea
of the Blind Watchmaker.29 Both researchers
comfortably anthropomorphized what is a
mindless assembly process.

Every assembly factory depends critically
on human minds both as labor as well as
supervision to monitor, correct, and repair
ongoing processes. Yet a developing fertil-
ized egg is also an assembly factory, without
any human supervisors or any brain, that pro-
duces an exquisite, custom product with 10
billion moving parts in only nine months!
Where’s the mind inside the fertilized egg?
Even Intelligent Design proponents might be
hard pressed to defend the existence of an
omniscient “Intelligent Factory Foreman”
who supervises every embryo developing in
the world simultaneously, deciding which
creatures live or die.

Other than basic work on pattern forma-
tion, related to work by, for example, Alan
Turing and Stephen Wolfram, we have a long
way to go in understanding the mindless
intelligence in a process that could self-
assemble into a biological form with billions
of parts. My lab is working on replacing the
idea of a perfect robotic factory with evolu-
tionary processes that must evolve both form
and formation and overcome noise and error
in physical assembly.30 One of the more

interesting threads is the relationship be-
tween robotic assembly with errors and
noise, and the kinds of tasks that Bellman
proved could iteratively converge to opti-
mal.31 This might provide a self-construction
theory involving not a blind watchmaker but
a blind chessmaster who continuously opti-
mizes assembly processes to maximize its
own chances for successful reproduction.

Ectomental reproduction
Another great mystery of Nature is com-

plex self-reproduction. Shy of a magical
reverse-engineering theory (which would let
us genetically engineer flying horses), we
have little or no grasp on the algorithmic
processes involved in the major transition

from single cells reproducing, through colo-
nialization, to multicellular creatures with
differentiated tissues and functions.

I think it’s another case of dramatically
underestimating the amount of intelligence
in a seemingly obvious natural process. We
have many simple examples of reproduction
in software, from straight data copying to
self-reproducing code as shown by evaluat-
ing this ditty in Common Lisp:

((LAMBDA (X) (LIST X (LIST ‘QUOTE X)))
‘(LAMBDA (X) (LIST X (LIST ‘QUOTE X))))

Following John Von Neumann’s challenge
of finding self-reproduction in cellular au-
tomata, Christopher Langton helped birth the
field of artificial life with his more elegant
automata,32 and Jason Lohn and James Reg-
gia showed how easy it is to discover the rules
for such automata.33 Yet so far, all our com-
puting reproducing systems, including Tom
Ray’s Tierra34 and Hod Lipson’s cubes,35 are
very simple. I’m hopeful that evolutionary

search for more complex reproductive forms
holds some hope for understanding how a
mindless reproductive process can become
more capable over time to sustain complexity
in the design of reproducible machinery.

Ectomental recognition, control,
and regulation

Obviously, intelligence arises outside the
mental sphere in so many other places in
nature that I can’t list them all.

The immune system is an ectomental
chemical recognition system that filters and
separates millions of chemicals along the
me/not-me boundary, without a central data-
base listing which compounds are in or out.

Self-control of physical movement, of
individuals and groups, is often mindless.
This isn’t only because time constraints push
nervous-system controls to the edge but also
because it’s hard to find a valuable use for
cognitive symbols inside mainly numeric
models such as pattern generators and feed-
back loops.

Finally, the zenith of self-regulation is
probably the planet itself. Similar to Adam
Smith’s “invisible hand” idea that markets are
mindlessly intelligent regulators and alloca-
tors of goods and services, the Gaia hypoth-
esis proposes that the whole biosphere oper-
ates so as to maintain the right conditions for
life as we know it.36 A trivial and kooky inter-
pretation is that Gaia is a Goddess with a
mind of her own, complete with symbols,
logic, and language, so she might talk to us
one day through a burning bush or a statue of
her likeness. A deeper interpretation is to rec-
ognize that the algorithmic complexity of bal-
ancing resources, encouraging growth, and
managing the network of species to maintain
the “sweet spot” for life is a huge job requir-
ing such intelligence that we better not entrust
it to any elected human officials!

Under the mindless-intelligence viewpoint,
both evolution itself and the global-regulation
system known as Gaia are intelligent beyond
and outside the mental framework based on
the symbol manipulation that AI has chosen
as its first 50-year focus.

I ’m neither alone nor unique in wishing for
a stronger scientific basis for the field.

These comments certainly hearken back to
many earlier calls.37 Much of the world has
changed in the last decade. For example, after
so many years of chasing generative linguis-
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tics’ focus on parsing and syntax, the main
thrust of both natural language processing and
speech recognition has been to drive mind-
less statistical responses from large corpora
rather than to establish carefully wrought
rules and features. Intelligent-control research
is also moving in a mindless way, from robot-
ics that use shaky logical algorithms to more
mathematically sophisticated nonlinear con-
trol systems.38 Much cognitive-modeling
research takes seriously the idea that algo-
rithms should be not only cognitively plausible
but also neurally plausible. Finally, machine
learning research has progressed from its early
efforts at matching human learning curves, to
building strong algorithms for extracting
knowledge from large statistical sources.

Yet these fields often must defend them-
selves from the charge that they aren’t really
AI. George Dyson recently visited Google
and wrote that he has long considered that
when “real” AI arrives on the scene, it will
be surrounded by “a circle of cheerful, con-
tented, intellectually and physically well-
nourished people.”39 Certainly Google is
based on a very large database and uses 
statistical machine learning techniques to
choose which keywords are important in dif-
ferent contexts. Does Google software have
any of the cognitive aspects that AI has stud-
ied for many years? The mindless market
doesn’t care.

As we’ve seen, mindless intelligence
abounds in Nature, through processes that
channel mathematical ideals into physical
processes that can appear optimally designed
yet that arise through and operate via exquis-
ite iteration.

The hypothesis for how intelligence arises
in Nature is that dynamical processes, driven
by accumulated data gathered through iter-
ated and often random-seeming processes,
can become more intelligent than a smart
adult human, yet continue to operate on prin-
ciples that don’t rely on symbols and logical
reasoning. The proof lies not only in Mar-
kovian situations where a greedy sequential-
choice algorithm driven by values converged
under Bellman’s equation, but also in the reli-
ability, complexity, and low cost of biologi-
cally produced machines.

Because our minds aren’t what they seem,
symbolic explanations of our behavior that
were extracted from protocol analysis and con-
scious introspection are misleading at best and
complete fabrications at worst. Most of what
our brains are doing involves mindless chem-
ical activity not even distinguishable from

digestion of the food in the Chinese Room.
I don’t mean to imply that human cogni-

tion isn’t worth studying. I just want to re-
iterate that cognitive reporting is an always-
incomplete story, a simplified verbalization
of a partial insight of the working patterns of
our brains. And brains aren’t instruction set
computers; they’re complicated biological
networks with all kinds of feedback at all lev-
els, like metabolisms, gene regulatory net-
works, and immune systems. The software
and systems that emerge from and control
these networks, like evolution, embryologi-
cal-development protocols, Gaian ecologi-
cal regulation, or mind, will be much harder
to reverse-engineer than the artifacts of
human engineering culture.

Emphatically then, as AI arises, it won’t
be organized like a good computer program,
it won’t speak English, and it certainly won’t
act like a humanoid robot from a science fic-
tion movie. Symbolic Mind is a self-aggran-
dized fiction told to make sense of a few
pounds of mindlessly intelligent meat. It’s
time we wean ourselves from the fiction and
start working on the science.
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