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ABSTRACT

Representation of Information in Neural Networks

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Ofer Melnik

Arti�cial neural networks are a computational paradigm inspired by neurobiology. As
with any computational paradigm, its strengths are a direct result of how it represents and
processes information. Despite being widely used and researched, many questions remain
about how arti�cial neural networks represent information.

Feed-forward networks have seen wide application, but as complex, interdependent, non-
linear models the question of assessing the exact computation performed by one has never
been fully addressed. This thesis �lls that void with a new algorithm that can extract an
exact alternative representation of a multi-layer perceptron's function. Using this exact rep-
resentation we explore scope questions, such as when and where do networks form artifacts,
and what can we tell about network generalization from its representation. The exact na-
ture of the algorithm also lends itself to answer theoretical questions about representation
extraction in general. For example, what is the relationship between factors such as input
dimensionality, number of hidden units, number of hidden layers, how the network output
is interpreted to the potential complexity of the network's function.

Building on understanding gained from the �rst algorithm, a complementary method is
developed that while not being exact allows the computationally e�cient analysis of di�erent
types of very high-dimensional models. This non-speci�city to model type and ability to
contend with high-dimensionality is a unique feature due to the method's direct focus on
the parts of a model's computation that re�ect generalization.

The addition of recurrent connections to feed-forward networks transforms them from
functions to dynamical systems, making their interpretation signi�cantly more di�cult. In
fact, recurrent neural networks can not have a �correct� interpretation, as what part of their
operation constitutes computation is biased by the observer. Thus the same exact network is
capable of performing completely di�erent computations under di�erent interpretations. In
this thesis two such interpretations of representation are explored for a four neuron highly-
recurrent network. Despite its miniscule size we demonstrate that it can be used, on the one
hand, to store and learn highly complex fractal images, or on the other hand, to represent
an in�nite context-free grammar.

Combining these elements, this thesis advances our understanding of how neural net-
works compute, both feed-forward and recurrent. It provides a coherent perspective on
how to understand and analyze the function of feed-forward networks, and develops new
perspectives on computation in recurrent networks.
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Chapter 1

Introduction

1.1 Neural Networks

The focus of this thesis is on questions of how neural-networks represent information. Even

though neural networks are an example of a Turing equivalent computational system [59](or

more [78]) or a universal approximator [27; 34], in the real-world this theoretical equivalence

is of only minor signi�cance, as di�erent computational paradigms may be suited for com-

pletely di�erent tasks. What fundamentally distinguishes what a computational paradigm

is suited for, is how it represents information and how it manipulates it. Thus, analyzing

and characterizing the types of information that neural networks can encode e�ciently is at

the core of understanding neural computation.

Neural networks mean di�erent things to di�erent people: Neuro-scientists see them as

a model to explain biological data [1], cognitive scientists see them as formalism to capture

cognitive processing [80], some computer scientists see them as a step towards machine

intelligence [68], statisticians see them as interesting non-linear models [8], engineers use

them in applications requiring non-linear processing of continuous data [31], and data-mining

analysts use them to �nd regularities in massive databases [92]. The approach adopted in

this research is to treat neural networks as interesting computational models, asking, can

we understand what these models do? And, what kinds of computational information are

1
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they well suited to represent and process?

Neural networks, the substrate for all high-level biological processing, are naturally an

interesting computational paradigm for study. But, what has provided an impetus for their

study these past two decades is the realization that even small simulated neural networks [30;

48] are adept at tasks like perceptual processing, pattern matching and associative memory

[31], tasks that have traditionally been di�cult for classical programming paradigms.

What is it about how neural networks compute that makes them well suited for these

tasks? What is special in the way that they represent and process information? Tradi-

tionally, these have not been easy questions to answer, as the same intrinsic computational

properties that make neural networks powerful also make them di�cult to analyze. A neural

network is e�ectively a large network of highly-interconnected non-linear processing units.

It is by having multi-dimensional, tightly interdependent processing units that neural net-

works can extract relationships from high-dimensional continuous data. However, these very

properties are also what make them di�cult to analyze:

� The high interdependence between processing units implies a lack of decomposability.

That is, a network can not typically be broken down into modular subparts to facilitate

analysis. Rather, the network needs to be considered as a whole for each computation.

� The di�culty in �assigning credit� [55] to particular parameters due to the non-linearity

of the computation, again forces a multi-dimensional examination of a large number

of interdependent parameters concurrently.

Although the analysis of recurrent networks also needs to contend with contextualization

in the form of iterative dynamics, the previous two issues are the ones that have plagued

the analysis of all neural networks, recurrent and feed-forward. Thus hampered, the process

of understanding the computational mechanisms of neural computation has taken multiple

avenues of research. To start, let us focus on feed-forward networks, the most successful of

neural network models.



CHAPTER 1. INTRODUCTION 3

1.1.1 Feed-Forward Networks

Purely theoretical research into feed-forward networks has tried to address the computa-

tional power of networks in general, for example by demonstrating their universal approx-

imation properties [34] or by constraining the class of functions that �nite networks can

compute using measures from learning theory such as the VC dimension [90]. While theo-

retical constraints are interesting, they typically serve as bounds and do not directly address

how actual networks compute.

Various concepts have been proposed to describe what kinds of computation networks

perform. Some of these are vague, others more concrete. The idea of receptive �elds [48]

was borrowed from neurobiology [41], it asserts that individual neurons are tuned to detect

distributions of patterns in their inputs. Thus, the hierarchy of neurons in a feed-forward

network relates to multiple levels of pattern detection. This hierarchical processing concept

is a common one that is generally referred to as �hidden layer representations� [21]. It

postulates that layers of neurons act to �nd alternative representations of their inputs,

where successive layers are believed to incrementally re�ne these representations to higher-

levels [32]. An alternative explanation for the function of the hidden or feature space is

found in the theory behind Radial Basis Function networks [13] and to some degree Support

Vector Machines [90]. There, Cover's Theorem [19] is exercised to state that the function

of the �rst layer of neurons (the hidden layer) is to project the otherwise lower-dimensional

inputs to a much higher dimensional space where the next layer of neurons can more easily

separate the di�erent input patterns (linearly separate). This notion of separability is also

present in the understanding that neural networks form decision regions in the input space

[35]. Hyperplane analysis [73] describes the function of neurons as separating their inputs

across a hyperplane in their input space, and suggests that this is done incrementally across

layers.

While these approaches may o�er some perspectives on what computation is in these

networks, they do not help much in understanding speci�c networks. Initial attempts to

analyze existing networks were weight visualization approaches, such as Hinton Diagrams

[67], and activation visualization approaches, such as Hierarchical Clustering [30]. To date,
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the only general approaches that have been able to shed light on the computation performed

by non-toy-sized-networks are the Rule-Extraction approaches [2]. Rule-extraction tries to

�nd an alternative representation of network function, typically as symbolic rules. That

is, it tries to capture the function that a network performs in an alternative model, one

which is hopefully simpler to understand. Although there have been many approaches to

rule-extraction or representation-extraction [2; 20; 72; 86], the �eld has lacked grounding.

It has focused more on the nature of the rules it extracts than on proving the relationship

between the rules and the networks it analyzes. While it has had successes at generating

rule sets with similar performance scores to counterpart neural networks, proving that the

rule set completely and e�ciently captures the computation performed by a network has

not been done except for networks with very speci�c constraints on their topology [11; 3].

Thus, despite the plethora of neural network research, the following two core questions have

not been adequately addressed in the literature:

1. How do you satisfactorily analyze existing neural networks?

2. What are the aspects of a network's computation that are salient for understanding

its function?

The motivation behind the algorithms for network analysis developed in chapter 2 and 3 is

to address these holes in our understanding of neural networks. As discussed in the following

sections, the Decision Intersection Boundary Algorithm (DIBA) of chapter 2 �lls the gap

of an algorithm that can generate an alternative representation of network function which

is exact and concise, allowing us to analyze a network's function completely. While the

Decision Region Connectivity Analysis (DRCA) method of chapter 3 is a method that fo-

cuses on the salient aspects of a network's computation, using understanding about network

computation gathered from the DIBA algorithm.

1.1.2 Recurrent Networks

Even though there are holes in our understanding of feed-forward networks, recurrent neural

networks remain a greater mystery. This is not due to an oversight of the research com-
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munity, rather they are inherently much more complex. Adding recurrent connections to a

neural network, transforms it from a function to a dynamical system, and links recurrent

networks with concepts like chaos, strange attractors, and fractals [82], placing them in a

mathematical domain that is just now being developed.

Mathematics aside, from a computational perspective recurrent networks have inher-

ently tougher issues with representation than do feed-forward networks. Whereas in a

feed-forward network there is a clear delineation of the inputs, outputs and the process

or mapping between the two, in a recurrent network it is not obvious what aspect of the

network's dynamics is actually relevant to computation. Do we label the �xed-points of the

network's dynamics as associative memories as in Hop�eld type networks [33]? Or, do we

consider the the dynamics as transitions in a state machine [28]? Or are the transitions

iterations in a large data structure [60]? There are obviously many possible ways to in-

terpret the computation performed. And, in fact, the observer's bias endows a meaning of

its own to the computation [45]. From the perspective of neuroscience, this is an inherent

obstacle, since it is not obvious where and in what form in the brain's recurrent network

information is stored and processed. From an arti�cial neural networks perspective there is

no �right representation�, as di�erent approaches may have di�erent applications. Therefore,

explorations into the di�erent ways that recurrent networks may represent information is a

natural direction of study into their underlying capabilities.

The material of chapters 4 and 5 considers the same small recurrent neural network

from two di�erent perspectives of what is being represented by the network. In chapter 4

the network is interpreted as storing �visual memories� in its underlying fractal attractor.

The question addressed is whether this is a learnable representation, whether a learning

algorithm can be developed to allow the networks to learn new attractors. Chapter 5 views

the same network as a Recursive Auto Associative Memory [60], a representation that stores

recursive data structures (grammar like) within the recursion of a network's dynamics. Here

we are interested in the capacity of the network, what kind of structures can it store in its

dynamics. Speci�cally, we prove that certain in�nite context-free grammars can be encoded

within its dynamics.
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Following are introductions to each of the main contributions of this thesis, in the same

order that they will be presented.

1.2 Decision Intersection Boundary Algorithm

In chapter 2 we present the Decision Intersection Boundary Algorithm (DIBA), a new algo-

rithm to extract exact representations from feed-forward threshold networks. As previously

discussed, the question of understanding a neural network's function dates back to at least

Minsky and Papert's seminal Perceptron [55] where the question was posed as, how do we

attribute a network's function to its individual neurons (credit assignment problem). In

this work, an algorithm is developed to extract an exact concise alternative representation

of network function in the form of polytopic decision regions. To explain, consider that the

vector of inputs to a network de�nes an input space, a space of all possible inputs, then what

this representation captures is: for what locations in the input space does the network make

a speci�c �decision� or give a speci�c output. Due to speci�c properties of the networks the

geometrical shape of these decision regions are polytopes, the high-dimensional extension

of polygons. Thus what the DIBA algorithm does is to �nd the borders of these polytopes

which are enough to completely describe them.

This is the �rst example of an algorithm able to extract exact and concise representa-

tions from continuous input, arbitrary topology, threshold feed-forward networks. Recently

others have contributed algorithms that also use polytopic decision regions as an alternative

representation [51], however their algorithms are not exact and concise, limiting their appli-

cability to the questions of theory and scope that can be answered by the DIBA algorithm,

as described next.

While Golea [29] has demonstrated that representation extraction from discrete input

networks is NP-hard, little work has been done to explore the computational complexity of

representation extraction in general. The fact that the DIBA algorithm is exact and concise

allows us to answer theoretical questions about the complexity of network representations

in general. Using the computational complexity of the algorithm as a measure for the
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potential complexity of a network's representation, we examine how this measure is a�ected

by variations in the input layers size, hidden layers size, number of hidden layers and output

interpretation. This analysis leads to a better understanding of how these factors a�ect the

function a network can potentially represent, and consequentially the computational cost of

understanding what function a network is representing.

Unlike other representations which only approximately cover a subset of the network's

function, as an exact algorithm, the other main contribution of the work is that it allows

an objective analysis of the function of di�erent networks. A complete alternative represen-

tation allows us to truly analyze what a network is or is not doing without fear that we are

missing aspects of its computation or sugar-coating others. For example, by examining their

extracted representation, we can identify decision region properties that networks exhibit

when they generalize well as opposed to when they do not generalize. By isolating these spe-

ci�c properties we not only gain a better understanding of how neural networks compute,

but these properties form the foundation of another representation extraction algorithm,

described in chapter 3.

Another thing that can only be done with an exact representation is that we can examine

something that is hardly addressed in the neural network literature� noise in neural networks.

Under what conditions does noise appear, and what form does it assume in the network's

decision regions.

1.3 Decision Region Connectivity Analysis

The �Curse of Dimensionality� [6] is a term used to describe di�erent problems in modeling

[8]. In the case of model analysis it strikes on two fronts: 1) The potential complexity

of a model (e.g., the number of decision regions, as shown in the second chapter) can be

exponential in the number of its inputs. 2) Our understanding of irregular high-dimensional

structures (e.g., decision regions) is severely constrained by our own perceptual handicaps,

mainly that we can not e�ectively �see� beyond three dimensions.

While the �rst problem has rarely been dealt with directly in network analysis, it has
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usually been implicitly addressed by constraining the analysis. This is done either by per-

forming directed sampling [20] in a subregion of the input space and/or constraining the

model type [58] to one with limited complexity.

The di�culty in interpreting high-dimensional information appears in many domains.

General approaches to high-dimensional data visualization range from Draftsman's Displays

[53] which produce plots of all pairs of variables simultaneously, through Glyph scatter plots

[24] or Cherno� faces [46] which use adjustable symbols to represent higher-dimensional

data, to Andrew's curves [53] that use functional representations to di�erentiate between

high dimensional data points. Another approach with a long history is to assume that the

data can be reduced to a lower dimensional representation. The most common example

of this is Principal Component Analysis [40]. Rule-Extraction is, in e�ect, also another

approach, since it attempts to describe an alternative representation of a high-dimensional

model using symbolic rules, typically if-then-else rules describing the domains of the input

space. All of these approaches, being relatively general methods, can assist in taking an

incremental step in understanding higher-dimensional information. However, as general

methods their utility is limited, since models with more than just a few extra dimensions,

or larger amounts of data, overload these methods.

The Decision Region Connectivity Analysis (DRCA) method described in chapter 3 is a

method to analyze decision region type classi�ers that directly addresses both of these issues

of high-dimensionality, model complexity and visualization. In part, it is motivated by the

analysis in chapter 2 of the basic properties of the decision regions of neural networks. It is

thus motivated in the sense that the analysis served to illustrate what aspects of a neural

network's decision region structure were salient to understanding its generalization strategy.

Therefore, the DRCA method is as much a �ltering tool as it is an analysis method, zeroing

in on the important parts of a model's decision region structure while ignoring artifacts.

Considering that the �learning� or �tting performed by a classi�er on training data results

in the enclosure of the training points within decision regions, the DRCA method confronts

the �rst dimensionality issue of model complexity by only looking at the �relevant� structure

of a classi�er. That is, it focuses on the decision regions only as they pertain to how they
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enclose the training points, avoiding extraneous complexity or artifacts. Since, if a model

generalizes it must have located patterns or redundancies in the data, or restated, that the

relevant complexity of the model must be lower than that of the data it was trained on.

Then, by focusing only on the �relevant� complexity, the DRCA method directly deals with

the �rst dimensionality issue by extracting a representation that is typically much simpler

than the model or the data it was trained on.

The second dimensionality issue of visualization is also surmounted by focusing on the

relationships imposed on the training data by their enclosure in decision regions. As shown

in chapter 2, the essential aspects of a classi�er's function are the shape of its decision regions

with respect to its training points. For example, variations in decision region structure of

interest are: the number of decision regions, whether they are convex or concave, and if they

are concave can they be decomposed into convex subcomponents. The DRCA uses a new

representation, a graph representation (edges and vertices), that can clearly convey these

essential relationships between the training points. In this representation, there is a direct

correspondence between properties of the graph, such as unconnected sub-graphs, cliques

and connectivity density, to geometrical properties of the underlying decision regions, such

as unconnected decision regions, convexity and concavity. The main advantage of the graph

representation over its decision region counterpart is that it is a dimension-less mathematical

structure. That is the key to how the high-dimensional visualization issue is negated, since

the graph, which can be displayed two-dimensionally, allows us to examine the essential

aspects of classi�er function, independently of its input dimension, allowing the analysis

and visualization of very high-dimensional classi�ers.

As shown in the examples in the chapter, the main contribution of the DRCA method

is that it allows the computationally e�cient analysis of decision region based classi�ers

independently of model type or input dimensionality. Thus, it allows the comparison of

completely di�erent kinds of models at the core level of how they use decision regions to

generalize from the training data.
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1.4 Neural Fractal Memory

Unlike feed-forward networks which are clearly de�ned as a mapping between inputs and

outputs, what computation is performed by a recurrent neural network is as much driven

by the observers interpretation of its function [45] as it is driven by a networks underlying

dynamics. Chapters 4 and 5 both study the same highly-recurrent neural network. The

di�erence between them is in the observer's interpretation of what computation is taking

place in the network.

In chapter 4 the network is interpreted to be storing a memory within the fractal attractor

of its dynamics. The relationship between neural networks and fractals is a straight forward

one� as highly-recurrent neural networks are really examples of iterated function systems, the

mathematical form of fractals [4]. While other researchers have recognized this relationship

before [60; 83; 56; 87; 84], none have yet devised an adaptive learning mechanism that can

exploit this highly rich representation. Instead, this mathematical insight into recurrent

dynamics has remained a primarily didactic device about the dynamics of computation in

recurrent neural networks, with a few interesting hard coded applications [87; 84].

Without a way to �nd network weights for speci�c attractors, the notion of memories

being stored in the attractor remains unworkable. Thus the motivation behind the work in

chapter 4 was to see if this representation can actually be made into a viable model, a model

with adaptive learning, in the spirit of other neural-network models. What is developed in

chapter 4 is a learning algorithm for networks that store memories in their fractal attractor.

Like the ubiquitous back-propagation [66], this is a gradient descent method, where an error

function is developed that, using its gradient, allows for incremental weight adjustments on

the network. This seems like a non-trivial problem as the process of generating the attractor

does not lead to a di�erentiable function, because it is iterative. However, as shown in the

chapter, exploiting the natural self-similarity of fractal attractors in the form of the collage

theorem [4] and concepts of mutual overlap from the Hausdor� distance [4], leads to a

tenable error function. This error function actually has a signi�cant success rate across a

bank of various attractors and di�erent noise levels, with just simple gradient descent.
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1.5 RAAMs can encode in�nite context-free grammars

People have been interested in the application of neural networks to structured information,

speci�cally towards natural language processing, since their inception [54; 80]. Pollack [60]

formulated an original approach for recurrent networks to store structured information, the

RAAM model. In this model the recurrence of the network coincides with the relationships

between elements in the data structure. That is, each activation of the recurrent connections

in the network implies a transition in the data structure that it is representing. While this

model answered the question of how neural networks could potentially perform symbolic

computation, and generated much interest [10; 57], its development plateaued before clearly

de�ning its strengths and capacities.

A central question for connectionist symbolic processing has been where in the Chomsky

language hierarchy [17] do these models �t. Are they regular, as Casey [16] has demonstrated

for noisy dynamical systems, or are they context-free or context-sensitive? The transition

between regular and context-free has been of particular interest as it demonstrates a certain

in�nite memory capacity. Rodrigez, Wiles and Elman [64] have explored how the dynamics

of a predictor network allow it to recognize a context-free language, anbn. Moore [56]

showed how to construct Dynamical Recognizers [61] that can recognize arbitrary context-

free languages using the Cantor sets [82].

In this work we look at a RAAM decoder model whose network is identical to the one

used in chapter 4. Using understanding of the underlying dynamics of this network, Pollack

has reformulated the original RAAM model in a way that more naturally re�ects these

dynamics. By so doing the major �bugs� that caused inconsistencies in RAAM function

are alleviated. My contribution is to prove that this new RAAM formulation, with its now

more rigorous foundation, is powerful enough to generate in�nite context-free grammars

of the anbn variety. Thus, it demonstrates the computational power laden in this kind of

interpretation of the representation of recurrent neural networks.
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1.6 Contributions

As previously described, this thesis addresses fundamental questions of representation in

both feed-forward and recurrent neural networks. Following is an itemized listing of the

individual contributions of this thesis:

1. Developed the Decision Intersection Boundary Algorithm (DIBA), an algorithm that

can extract exact and concise representations from threshold feed-forward networks,

in the form of polytopic decision regions. This is the �rst example of an algorithm

capable of extracting completely exact and concise representations.

2. Used the DIBA algorithm to explore the e�ects of artifacts on neural network decision

regions. Showed that artifacts are common and their e�ects are exacerbated in higher-

dimensional models. This is an issue that otherwise has hardly been directly addressed

in the neural network literature.

3. Used the DIBA algorithm to examine networks with both good and bad generalization.

Noted, for both cases, what properties in a network's decision region structure are

indicative of its generalization strategy, allowing us to abstract away the aspects of

network computation that are directly relevant to good generalization.

4. Generalized the DIBA algorithm to multiple hidden layers and arbitrary output inter-

pretation schemes. In so doing demonstrated that the underlying potential complexity

of the network is independent of those two factors.

5. Demonstrated by construction how a neural-network can generate an exponential num-

ber of complex decision regions in its input space. As such, showing the inherent com-

putational complexity involved in exact and complete representation extraction from

these types of models.

6. Decomposed the generalization mechanisms of these types of networks into proxim-

ity and face-sharing. Suggested by example that typical local weight modi�cation

learning approaches such as back-propagation are more likely to exploit proximity

generalization than face-sharing.



CHAPTER 1. INTRODUCTION 13

7. Using the concepts of how networks use decision regions to generalize from their train-

ing data, seen using the DIBA algorithm, the aspects of decision region structure

important a understanding a model were outlined, motivating the development of

Decision Region Connectivity Analysis (DRCA).

8. The low-level analysis part of the DRCA method was developed, allowing the structure

of a model's decision regions, as it pertains to the training data, to be extracted

and represented as a mathematical graph. This a novel representation whose main

strengths are its model and dimensionality independence. Thus, it allows completely

di�erent types of very high-dimensional models to be easily analyzed at the core level

of their decision regions.

9. The high-level analysis part of the DRCA method was developed, which serves to

extract the core decision region structure information form the low-level graphs. Thus,

it allows even very dense graphs, representing many training points, to be e�ciently

analyzed and understood.

10. Showed how the DRCA method can be used to analyze and compare completely

di�erent types of very high-dimensional models, using a character recognition example.

11. Explained and demonstrated how using ellipsoid based PCA, important non-visual

information about a model's classi�cation strategy can be extracted. This shows the

general applicability of the DRCA method.

12. Showed how the connectivity graph of an analyzed classi�er can be used as a blue-print

to construct an alternative classi�er, typically simpler, with similar functionality.

13. Showed how this same graph blue-print can be used to take structure that exists in

a lower input dimensional model and transfer it to create a higher-dimensional model

with the same structure. This suggests an avenue of thought on how to potentially

overcome some of the e�ects that the �The Curse of Dimensionality� has on model

construction algorithms.
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14. Devised a continuous error function in the weight space of a four neuron highly recur-

rent neural network, that allows the comparison of a desired fractal attractor with the

network encoded attractor. Even though the fractal dynamics in these networks were

previously recognized, no method existed to do learning for them.

15. Approximated the derivative of the error function to serve as a basis for any online

gradient descent type learning algorithm for these networks.

16. Using simple learning constant decayed gradient descent this learning approach was

tested in 4000 trials of di�erent desired attractors and noise conditions. Using vi-

sual inspection and three test measures, the learning showed signi�cant success, both

visually and statistically, demonstrating the validity of the approach.

17. Using the analysis of a hill-climbed RAAM model that did a subset of the anbn lan-

guage, a parameterized competence model was developed that exclusively generated

words from the anbn language, for any attractor discretization level. This proves that

such a model exists for any resolution of the space.

18. Using a one-dimensional map analysis of the trajectories on such a competence model

it was proven that for certain settings of the competence model parameters a RAAM

is capable of generating the complete in�nite anbn language. This is the �rst known

proof that a standard RAAM model can express a basic context-free language.

To summarize, through the development of new algorithms for network analysis, critical

examination of real networks, re�nement of generalization principles, innovative approaches

to contend with �The Curse of Dimensionality�, development of learning under fractal dy-

namics, proof of the capacity of RAAM, this thesis advances our understanding of both

feed-forward and recurrent neural networks. It provides a coherent perspective on how to

understand and analyze the function of decision region based models, while pushing new

directions in recurrent network computation.



Chapter 2

Theory and scope of exact

representation extraction from

Feed-Forward Networks

In this chapter an algorithm to extract representations from feed-forward perceptron net-

works (threshold) is outlined. The representation is based on polytopic decision regions in

the input space� and is exact, not an approximation. Using this exact representation we

explore scope questions, such as when and where do networks form artifacts, or what can we

tell about network generalization from its representation. The exact nature of the algorithm

also lends itself to theoretical questions about representation extraction in general, such as

what is the relationship between factors such as input dimensionality, number of hidden

units, number of hidden layers, how the network output is interpreted to the potential com-

plexity of the network's function. The material in this chapter have appeared in conference

form at the International Joint Conference on Neural Networks 2000 (IJCNN, sponsored by

the IEEE and INNS). A journal version of this material has been submitted to Cognitive

Systems Research.

15
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2.1 Introduction

There are important reasons to analyze trained neural networks: For networks deployed

in real-world applications, which must be predictable, we want to use network analysis as

a veri�cation tool to gauge network performance under all conditions. In Data Mining

applications, where networks are trained in the hope that they may successfully generalize,

and in so doing capture some underlying properties of the data, we want to use network

analysis to extract what the network has learned about the data. Or conversely, when a

network fails to generalize, we want to use network analysis to �nd the causes of its failure.

However, despite being proli�c models, feed-forward neural networks have been ubiqui-

tously criticized for being di�cult to analyze. There are multiple reasons for this di�culty:

First, since neural networks consist of a large quantity of interconnected processing units

that continuously pass information between them, there is a high degree of interdependence

in the model. This implies a lack of locality, where small perturbations in one location can

a�ect the complete network. As such, it is not possible to modularize a network's func-

tionality directly with respect to its architecture, rather it has to be analyzed as a whole.

Second, the input dimensionality of the network implicitly limits its comprehensibility. Most

people's intuition resides in two or three dimensions. Higher dimensionality impedes our

ability to comprehend complex relationships between variables. Third, the processing units

are non-linear. As such, they are not easily attacked with standard mathematical tools.

Di�erent approaches have been proposed to analyze and extract representations from

neural networks (covered in the next section). But other than Golea's [29] proof of the

NP-hardness of discrete network analysis, little work has been done to address questions of

theory and scope for representation extraction in general. Some of these general questions

relate directly to the previously discussed reasons for network analysis, including: How

does the computational cost of verifying a real-world neural network scale? What are the

common properties of networks that generalize well and those that do not? The focus of

this chapter is to address these and other questions. Speci�cally, on the theory front we are

interested in the following questions:
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1. How does the potential complexity of a neural network change as a function of the

number of its input dimensions and its hidden units? This relationship acts as a lower

bound on the computational complexity of any representation extraction algorithm.

2. What are the computational costs of calculating the exact error between an approx-

imate representation and the actual function that a neural network is computing?

These costs act as a bound on the di�culty of verifying the correctness of an ex-

tracted representation.

3. How does the number of hidden layers, and the interpretation of the network outputs

a�ect what a network can do? This correspondence is related to how the quality of a

representation might change across di�erent network models.

The questions of scope address what aspects of a network's function can be inferred from

an extracted representation. Some questions we address are:

1. How can we gauge the potential generalization properties of a network by examining

its extracted representation? In general, what properties might a network with good

generalization exhibit that can be detected in its representation?

2. Where can we expect the network to exhibit unpredictable behavior or artifacts? What

is the form of these artifacts that can be detected in an extracted representation?

The tool that we use to address these fundamental questions of theory and scope is a new

algorithm able to extract exact and concise representations from feed-forward neural net-

works. By being an exact algorithm its properties re�ect directly on all other representation

extraction algorithms. Since any properties it exhibits or illustrates are inherently related

to properties of the underlying networks it analyzes, and as such delimit the performance

of representation extraction in general. Such an algorithm will help address the theory

questions in the following ways:

1. The computational complexity of the representation extraction algorithm is related to

the potential complexity of the network.
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2. The computational cost of performing measurements on the exact representation is

related to the cost of estimating how well other representations capture a networks

function.

3. How the computational complexity of the algorithm changes when hidden layers are

added, or how this computational complexity changes when the network output is

interpreted di�erently, are both directly related to how these variations a�ect the

network's potential complexity.

The questions of scope require that the representation will allow us to understand what

features of a network's function are conducive or detrimental to good performance and gen-

eralization. Only by having an exact representation can we be sure that we are examining all

the relevant aspects of a network's function, and not missing information. The scope ques-

tions are approached by example� by examining the representations of di�erent networks.

Speci�cally, these questions are addressed in the following ways:

1. By having a trustworthy representation, and some intuition about what generalization

entails, we can compare and contrast the representations of networks with good and

poor generalization to elucidate common properties of both.

2. By scrutinizing the representations of networks we can determine the form that devi-

ations from desired function or artifacts take on. Ideally we would like to be able to

predict what network situations are more likely to introduce artifacts.

This chapter is structured into three main parts: a description of the algorithm, an exami-

nation of the scope questions through example, and a discussion of the theoretical results.

We start by presenting the goals of the algorithm and contrast those with other network

analysis methods, leading to an examination of the principles of network computation on

which the algorithm are based. The algorithm is then described in its basic form for single

hidden-layer, single output threshold multi-layer perceptrons.

The example sections begin with examples that serve to introduce the representation

while addressing the kind of artifacts present in multi-dimensional networks. We then give
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examples that contrast representations of networks that do generalize well and those that

do not.

The theoretical discussion �rst addresses the complexity of the basic algorithm and the

relationship to potential network complexity. This complexity discussion is continued by

describing how the algorithm can be extended to multi-layer multi-output networks and

its computational implications, and also by examining complexity from the perspective of

representation validation. We then discuss the di�erences between threshold and sigmoidal

networks, where we examine what e�ect this change of activation function has on their

representational ability. We conclude the discussion by tackling the issue of whether learning

algorithms can successfully exploit all the potential complexity available in these networks.

2.2 Network Analysis Methods

To address the questions asked above we seek a way to extract from a network's parameters

an alternative representation of its function, a direct representation, one without interde-

pendence between parameters. The representation should be exact, matching the network's

function fully, but concise, not introducing redundancy. Only if all three properties are

met can the algorithm truly re�ect the full underlying computation of these networks and

their complexity. Thus, in examining the di�erent approaches to neural network analysis

proposed in the literature we need to focus on whether they exhibit these properties of be-

ing exact, concise and direct. There are di�erent ways to categorize approaches to network

analysis, of these we choose to examine them by the form of their results or representation.

The rule extraction approaches [2; 20; 72; 86] extract a set of symbolic �rules� to describe

network behavior. These algorithms can be divided into two broad categories by their

treatment of the network, decompositional and pedagogical. The decompositional approaches

try to �nd satis�ability expressions for each of the network units with respect to its inputs.

Depending on the algorithm, this is achieved by �rst applying discretization, large scale

pruning or placing structural limitations on the networks and then performing an exhaustive

search on the inputs of all the units. To their credit, by performing an exhaustive search
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on all the network's constituent units, the decompositional approaches o�er a complete

alternative representation to the network's function. Nonetheless, the rules extracted are

not exact, as in most cases the network's function can only be approximated by rules. This

representation is also not independent as the rules represent individual network units and

as such maintain their distributed representation dependence.

The pedagogical and hybrid approaches to rule extraction do not decompose a network

unit by unit, rather they construct rules by sampling the network's response to di�erent parts

of the input space, using varying degrees of network introspection to re�ne their regimes.

Sampling makes these algorithms computationally feasible, and depending on the algorithm

at times independent, but the algorithms fail to examine the full space of possibilities of

network behaviors, so their rules are a greater approximation than the decompositional

approaches.

Weight-state clustering [30], contribution analysis [70; 76], and sensitivity analysis [36;

37], which do use the network's parameters directly in their analysis, unlike rule extraction

do not generate an alternative representation, rather they try to ascertain the regularity in

the e�ect that di�erent inputs have on a network's hidden and output units. That being

the case, these methods do not explain global properties of the network, but are limited to

speci�c inputs and like the pedagogical approaches, do not meet our criteria of being exact.

Hyperplane analysis [62; 73] is a technique by which the underlying hyperplanes of neural

network's units are visualized. As such it is global and uses the network's parameters in its

analysis. However, it does not remove interdependence, and does not scale since it is based

on understanding the network interdependencies by direct visualization.

Network inversion [49; 51] is a technique where locations in the input are sought which

generate a speci�c output. Maire's recent work is promising in that it approaches the

problem by back-propagating polyhedra through the network and as such does generate an

exact direct representation. However its main shortcoming is its lack of conciseness, each

stage of inversion can generate an exponential number of sub-polyhedra.

Ideally we would like to construct an algorithm that extracts exact, direct and concise

representations from any arbitrary neural network. This is not feasible, however. The main
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impediment is that the functional form of the alternative representation is dependent on

the type of activation function used. As such, for di�erent activation functions we would

need to use di�erent types of representations, breaking our notion of a uni�ed algorithm.

Nevertheless, di�erent monotonic activation functions do not fundamentally impact the

questions we posed previously� the basic methods of network generalization remain the

same. Therefore, the approach taken in this chapter is to construct an algorithm for a

speci�c activation function (threshold) to address the questions as they pertain to this

activation function, and then discuss what e�ects varying the activation function would

have. The concept behind the algorithm is to �nd the limitations or constraints on how the

network output can change under di�ering input conditions. Stated another way: How does

the network architecture govern its decision regions?

2.3 Decision Regions

The output of a network, interpreted as a classi�er, partitions the space of its inputs into

separate decision regions. For each possible network output value, there exists a corre-

sponding region in the input space such that all points in that region give the same network

output. Hence the name decision region, since a region re�ects the network's output or

decision.

The decision regions encompass the full function that a network computes. They describe

the complete mapping between the input and the output of the network. Unlike the original

network, which does this mapping through the interdependent computation of many units,

the decision regions map the input and output directly.

Decision regions can have di�erent shapes and other geometric properties. These proper-

ties are directly related to the network architecture used. The Decision Intersection Bound-

ary Algorithm (DIBA) is designed to extract decision regions from multi-layer perceptron

networks, a feed-forward network with threshold activation functions. The decision regions

for this type of network are polyhedra, the n-dimensional extension of polygons. The algo-

rithm is based on a few principal observations about how multi-layer perceptrons compute.
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Figure 2.1: A 3-layer perceptron neural network.

Consider a three layer perceptron neural network, with full connectivity between each of

the layers as in �gure 2.1, where the output of each of the units is 1 if
P

i
weightiinputi > 0

and 0 otherwise. The �rst observation is the independence of the output units. There is

no information �ow or connectivity between any of the output units. This is due to the

strictly feed-forward nature of the network. E�ectively, each output unit is computing its

own value irrespective of the other output units. As such, for now, we can treat each output

unit separately in our analysis of the network, generating separate decision regions for each

output unit. Since this is a perceptron network with threshold activation functions, an

output unit can have either a value of 0 or 1. Therefore we can pick to build decision

regions corresponding to either an output value of 0 or 1.

An output unit value is dependent on the values at the hidden layer, which are dependent

on the values at the input layer. Since the hidden layer units' output can only take on a

value of 0 or 1 as well, their e�ect on the output unit's weighted sum is discrete. In fact,

the output unit's weighted sum is just a partial sum of its weights. The full value of each

weight is either included in the sum or completely left out.

Any location in input space where an output unit switches values is a decision boundary.

Such a switch corresponds to a transition in the output unit's partial sum, either going above

threshold when it was previously below or vice-versa. Since the partial sum is a function

of which hidden units are active, this threshold transition must be coordinated with a state
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change in one or more hidden units. This means that a decision boundary must correspond

to a region in the input space where at least one hidden unit undergoes a state change.

Each hidden unit divides the input space into two regions, a region where its output is

0 and a region where its output is 1, in e�ect generating its own decision regions. In this

context, each location in input space has associated with it a hidden state, a binary number

corresponding to the output values of all the hidden units when given that input location.

The hidden state corresponds directly to the output unit's partial sum and hence the output

unit's value. This leads to the important observation that the only locations in input space

where this hidden state can change are across the hidden units' own decision regions, or

across the intersection of multiple decision regions. This implies that the basic building

blocks of output unit decision regions are the decision boundaries between the intersections

of hidden unit decision regions. As such the output unit decision regions are composed of

parts of the hidden units' division of the input space.

In the multi-layer perceptron the hidden units divide the input space using hyperplanes.

Therefore, the output unit decision regions are composed of high-dimensional faces gener-

ated by the intersection of hyperplanes, making them polyhedra. If we want to explicitly

describe these faces, we need to specify their individual boundaries. As the intersection

of hyperplanes, these boundaries are just lower dimensional faces. Assuming the space is

bounded, we can repeat this process recursively, describing each face using its lower dimen-

sional faces, until we reach zero dimensional faces or points. Consequentially, the output

unit decision regions can be described by the vertices which delineate them.

2.4 The Decision Intersection Boundary Algorithm

The basic Decision Intersection Boundary Algorithm is designed to extract the polytopic

decision regions of a single output of a three layer perceptron network. Later sections ex-

plain the simple modi�cations necessary to extend it to multiple hidden layers and multiple

outputs and discuss the di�erence between threshold and sigmoid activation functions. The

algorithm's inputs are the weights of the hidden layer and output unit, and boundary con-
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Figure 2.2: The generative portion of the DIBA algorithm recursively projects the hidden
layer hyperplanes down till they are one-dimensional, in order to generate all the intersec-
tions of the hyperplanes. Here we see an illustration of two stages of projection from three
dimensions to two and from two to one.

Figure 2.3: The boundary testing portion of the DIBA algorithm evaluates individual ver-
tices and line segments, that were generated by the recursion, in order to test whether they
form corners or edges of decision regions. Here we see the edges and corners of two decision
regions the algorithm would recognize in an arrangement of hidden unit hyperplanes.

ditions on the input space. Using boundary conditions guarantees that the decision regions

are compact, and can be described by vertices. Its output consists of the vertex pairs, or

line segment edges, which describe the decision regions in input space.

As described in the previous section, decision region boundaries are at the intersections

of the hidden unit hyperplanes. Thus the algorithm consists of two parts, a part which

generates all the possible vertices and connecting line segments by �nding the hyperplane

intersections, and a part which evaluates whether these basic elements form the boundaries

of decision regions. In �gures 2.2 and 2.3 we see an illustration of these two parts of the

algorithm.
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2.4.1 Generative Recursion

The generative part of the algorithm is recursive. For each hidden unit hyperplane of

dimension n, the algorithm projects onto it all the other hyperplanes. These projections are

hyperplanes of dimension d-1. This procedure is performed recursively until one dimensional

hyperplanes, or lines are reached� lines are the basic unit of boundary evaluation in this

algorithm.

function extract(hidden, out, borders): Return Representation

Input Hidden Units' weights, Output Unit's weights, Borders

Output Representation containing vertices and line segments

if hyperplane_dimension(hidden) > 1

for base_hyperplane in hidden

for hyperplane in hidden

if hyperplane 6= base_hyperplane

new_hyperplane :=

projection of hyperplane onto base_hyperplane

if hyperplane is parallel to base_hyperplane then

store state of hyperplane with respect to base_hyperplane

else

add new_hyperplane to new_hidden

endif

endif

endfor

call extract(new_hidden, out)

endfor

textbfelse execute the traversing-the-line routine (appendix A)
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2.4.2 Boundary Test

Along the line, the locations of output unit value changes are at the intersections with

the remaining one-dimensional hidden unit hyperplanes. At each such location the algo-

rithm needs to test whether the intersection, a vertex, forms a corner boundary� and if the

intervening line segment forms a line boundary.

In order to understand the boundary test we need to examine the concept of a boundary

in a d -dimensional input space. We start our examination by looking at one hidden unit. If

a single hyperplane acts as an output unit border, it implies that at least for a portion of

the hyperplane, in a neighborhood on one side of the hyperplane there is one output unit

value and in the corresponding neighborhood on the other side of the hyperplane there is a

di�erent output unit value. For example, (see �gure 2.4) if we take our input space to be two

dimensional and use a line as our hyperplane, the line acts as a one-dimensional boundary if

the output unit value on one side of the line is 1 and the output unit value is 0 on the other

side of the line. One can think of the hyperplane as forming the boundary. Or inversely,

one can think of the boundary taking on the form of a hyperplane in that particular region

in space. That is, the location in input space where we have an output value transition can

be described by a hyperplane. This is the functional view of the boundary. To functionally

describe a boundary at that part of the space we need a hyperplane. Taking this view, a

boundary is composed of various geometric entities which demarcate output value transitions

in input space� and the corner test becomes: do we need a lower dimensional geometric entity

to describe the boundary at the intersection of multiple hyperplanes?

Take two non-parallel hyperplanes which act as boundaries, around each of these hyper-

planes the boundary takes the form of a d-1 -dimensional manifold. If at their intersection

both hyperplanes still act as boundaries, then the functional geometric form of the location

with this output value transition across both hyperplanes is the d-2 -dimensional hyperplane

formed by the intersection of the two hyperplanes. One can say that the corner formed at

the intersection is the description of the location of a complex boundary across multiple
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Input Space

Output of 1

Output of 0

Figure 2.4: The decision region formed by the division of a two dimensional space by a
hyperplane line. The line could be said to be partitioning the space. Or, in a complementary,
functional fashion it could be said that the form of the boundary in the space is in the shape
of a line.

hyperplanes.

To illustrate this, let us examine under what circumstances an intersection of lines (2-

dimensional hyperplanes) forms a complex boundary. Two lines intersect at a vertex, this

vertex could be a corner, a zero-dimensional boundary, or not. In �gure 2.5 we see di�erent

boundary con�gurations at this vertex. Two of the con�gurations form corners, while the

others do not. The two that do form corners have one element in common, both of the

hyperplanes that make up the corner are still boundaries in their own right. That is,

in the vicinity of the corner both hyperplanes have a part of them that engenders one

output unit value on one side of the hyperplane, and another on the other side. As stated

before, this corner marks a location in input space where a complex transition takes place,

a transition across multiple hyperplanes. This corner test can be naturally generalized

to higher dimensions. In general, what we seek in an intersection that forms a

boundary is that all hyperplanes making up the intersection have at least one

face that is a boundary in its vicinity.

How do we practically check for this intersection boundary condition? In a d -dimensional

input space, an intersection of n � d hyperplanes partitions the space into 2
n regions (see

�gure 2.6). If we consider our hidden units as these hyperplanes, then the space is partitioned

into the 2n possible hidden states. Each possible hidden state with respect to these hidden
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Output of 1

Output of 0

Input Space

Figure 2.5: Some possible decision regions formed at the intersection of two lines. Corners
are only formed if both lines are boundaries.

3-Dimensions 2-Dimensions

Figure 2.6: The partitioning of a 2 and 3 dimensional space around the intersection of
hyperplanes.

units is represented in our input space around the intersection. A hidden unit hyperplane

has a boundary face within the input space partitioning of the intersection, if within these

2
n hidden states there exist two hidden states that di�er only by the bit corresponding to

the hidden unit hyperplane being tested, such that one hidden state induces one value at the

output unit and the other state induces another value. This basically says that at least in

one location of the partitioning, if we cross the hyperplane we will get two di�erent output

unit values. Thus algorithmically the corner test is to go through all possible hidden states

at the intersection and check that each hidden unit acts as a boundary.

In the 3-layer single output network case, where the output unit just computes a partial
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Figure 2.7: Unlike two dimensional spaces, a corner in a three dimensional space can be in
the middle of multiple line segments.

sum of its weights, the test simpli�es to �nding whether the hyperplane corresponding to

the smallest absolute valued weight has a boundary in the intersection. Of course, this is a

necessary condition, but it is also su�cient, since if the hyperplane of the smallest absolute

valued weight has a boundary then all other hyperplanes making up the intersection must

also have boundaries. This is shown mathematically in appendix B.

The boundary test for line segments and corners is the same, since both lines and vertices

are just intersections of hyperplanes. Lines are the intersection of d-1 hyperplanes and

vertices are the intersection of d hyperplanes.

2.4.3 Traversing the Line

When do we perform the boundary test? In two-dimensional input spaces, a corner always

either starts or ends a line segment; a corner can not be in the middle of two line segments.

In contrast, in higher dimensional spaces, corners can be in the middle of line segments.

Figure 2.7 demonstrates how a three-dimensional corner can be in the middle of multiple

line segments. However, even in high dimensional spaces a line segment can only start and

terminate at the corners which delineate it. Therefore in traversing a line, we need to check

corners at all hidden unit intersections, and check for line segments only between corners

which start and end them.

For the intersection boundary test there are two kinds of hidden unit hyperplanes: hy-
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perplanes that make up the intersection and hyperplanes that do not, but whose state does

a�ect the output unit value. Before performing the boundary test on a line segment or

vertex, we need to assess the contribution of these additional hyperplanes to the output

unit partial sum in the intersection vicinity. It is possible to simply sample the hidden state

of these hidden units in the vicinity of the intersection. But on the line there is a more

economical solution. On the line we are traversing, the projection of these additional hy-

perplanes is a point. These hyperplanes each divide the line into a half where their hidden

state value is 1 and a half where their hidden state value is 0. This gives a directionality

to each hyperplane. That is, if we traverse the line from one end to the other, some of

the hyperplanes will be in our direction, meaning that as we pass them their hidden value

state will become 1, and the others will be in the other direction, their hidden value state

changing to 0 as we pass them. See �gure 2.8. We can use this property to incrementally

quantify the contribution of these units to the hidden state/partial sum.

The bi-directionality suggests a two pass algorithm. Initially, we arbitrarily label the two

ends of our line, left and right. The forward pass starts with the leftmost hyperplane and

scans right, hyperplane by hyperplane. We are interested in �nding the partial sum contri-

bution for each line segment between hyperplanes. So, as each hyperplane is encountered it

is checked for right directionality, and its weight is tallied to a running sum of the weights.

This sum is assigned to the current line segment, accounting for the contribution of all the

right directed hyperplanes on this line segment. The backwards pass is identical, except

it starts from the rightmost hyperplane and scans left, adjusting its running sum with left

directed hyperplanes, and adding its sum to the values already generated in the forward

pass. Thus, completion of both passes calculates the partial sum contribution of all left and

right directed hyperplanes for all the line segments on the line. The actual boundary tests

can be conducted during the backwards pass, since the full contribution to the partial sum

has been tabulated at that stage. Appendix A contains a pseudo code description of the

�Traversing the Line� portion of the algorithm.
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W1 W2 W3 W4

W1+W3 W1+W2+W3 W1+W2 W1+W2+W4W3Partial sum of
output unit weights

Output unit weight
of each hidden unit

Direction of hidden
units on the line

Figure 2.8: The bi-directionality of hyperplane intersections on a line suggests a two pass
algorithm to calculate the partial sums of the output unit weights.

2.5 Examples

The following are examples of applying the Decision Intersection Boundary Algorithm on

trained three layer perceptron networks. The training consisted of a mixture of momentum

back-propagation and weight mutation hill-climbing1. However the units were always treated

as threshold for the purposes of the DIBA algorithm. The examples are used to demonstrate

the kind of decision region descriptions that can be extracted using the DIBA algorithm

and how they can be interpreted. In parallel, by examining the representations of multiple

networks we address the questions of scope: What is the form of network artifacts? And

what can we learn about how networks generalize from their representation?

2.5.1 Sphere Networks

Two-Dimensions: The Circle

Using back-propagation an 80 hidden unit sigmoidal neural network was trained to classify

300 points inside and outside of a circle of radius 1 around the origin. Treating the activation

functions as threshold, the DIBA algorithm was then applied to the weights of the network.

In �gure 2.9 we see the decision region extracted at the origin, and the points corresponding

to the training sample. The decision region allows us to directly view what the network

does� exactly where it succeeds and where it fails. The representation is concise, since all

1We do not go into the speci�cs of these generic training methods, as the focus of the paper is on

the trained networks, not how they were trained. For further reading, see [8] on these and other training

methods.
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Figure 2.9: A decision boundary of a network which classi�es points inside and outside of a
circle.

the vertices used are necessary to completely describe the decision region. With this exact

representation we can make out the nuances of the network's function, for example, note the

small protrusion on the bottom right part of the decision region that covers two extremal

points.

The DIBA algorithm also allows us to examine other aspects of this network. By zoom-

ing out from the area in the immediate vicinity of the origin we can see the network's

performance, or generalization ability, in areas of the input space that it was not explicitly

trained for. In �gure 2.10 we recognize large artifactual decision regions at a distance of at

least 50 from the decision region at the origin. Thus, in this area of the input space where

there was no actual training data, a few decision regions formed as artifacts of the network

weights that were learned.

Three-Dimensions: The Sphere

A 100 hidden unit network was trained to di�erentiate between points inside and outside

of a sphere centered at the origin. In �gure 2.11 we see the rather successful decision

region encapsulating the network's internal representation of the sphere from di�erent angles.

Figure 2.12 illustrates the same phenomena of additional artifact decision regions we saw

in the circle for the sphere� the miniature sphere appears amid a backdrop of a large cli�

face like decision region. Note that the artifacts are more complex in the three-dimensional

case. As the higher dimensionality of the input space implies the existence of exponentially



CHAPTER 2. DECISION INTERSECTION BOUNDARY ALGORITHM 33

-100 0 20
-80

0

80

Circle

Figure 2.10: A zoom out of the network illustrated in �gure 2.9 illustrates the existence of
artifactual decision regions.
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Figure 2.11: A decision boundary of a network which classi�es points inside and outside of
a sphere.

more hyperplane intersections (vertices) than in the two-dimensional case and with that

potentially more artifactual decision boundary corners.

Four-Dimensions: The Hyper-Sphere

Another 100 hidden unit network was trained to recognize points inside and outside of

a 4-dimensional hyper-sphere centered around the origin. Due to human limitations it is

di�cult for most people to visualize objects in more than three dimensions (even three can

be a challenge at times.) One way to gather information from our high dimensional polytopic

decision regions is to describe them in terms of rules. That is, we bound each polytope inside

of a hyper-rectangle, and examine the rectangles' coordinates. At this �rst approximation
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Figure 2.12: The artifacts around the sphere decision boundary.

we can elucidate how many decision regions there are, their location in input space and a

coarse approximation of their volume. The rectangles can later be incrementally re�ned to

enclose parts of polytopes, thereby giving higher resolution rules, re�ning our perception

of their structure and volume. In this case the hyper-rectangle which covers the polytopes

representing the hyper-sphere has the following minimum and maximum coordinates:

Min: (-4.45 -5.79 -3.90 -7.93)

Max: (6.47 6.01 7.39 6.07)

Another way to examine the high dimensional space is to examine projections on to lower

dimensional spaces. In �gure 2.13 we see projections of the four dimensional polytope with

the fourth component set to zero and one respectively. Needless to say the four dimensional

hyper-sphere looks less and less like a sphere. As before, increasing the number of input

dimensions increases the potential for more artifactual boundaries. But this is also coupled

with the curse of dimensionality [8], which says that as we increase the input dimension

while keeping the number of training samples constant, our problem (the decision region we

are trying to learn) becomes exponentially less speci�ed. Thus, artifacts appear not only

at a distance from out training samples, but in higher-dimensional spaces, might appear on

our actual decision regions in the form of unwanted complexity.
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Figure 2.13: Projections of the four dimensional hyper-sphere polytope across x4 = 0 and
x4 = 1.

x Throwing Distance 0-100

v Initial Velocity 0-100

5 Meter Target ß Angle 0-90

Figure 2.14: The network is supposed to predict whether the ball will hit the target given
throwing angle �, initial velocity v and target distance x.

2.5.2 Ball Throwing Network

A 15 hidden unit network was trained to predict whether a thrown ball will hit a target. As

input, it received the throwing angle, initial velocity and the target distance (see �gure 2.14.)

After training it achieved an 87% success rate on the training data.

This is a simple non-linear system which when solved analytically gives us the following

relationship:

����x� v
2
sin2�

2g

���� < 2:5



CHAPTER 2. DECISION INTERSECTION BOUNDARY ALGORITHM 36

Figure 2.16 contrasts the decision region generated from a 15 hidden unit neural network

with the analytical solution. It is apparent that the network managed to encapsulate the gist

of the model, its decision region approximates the analytically derived decision region fairly

well. The decision region possesses properties which suggest good network generalization,

independently of knowing the actual solution. The decision region clearly de�nes a speci�c

sub-manifold of the space. It consists of 4 main sub-decision regions, that are each highly

convex but distinct from each other, suggesting that those locations in input space were

clearly individually de�ned in the training set. In addition, the region of input space not

in the decision region (the �misses the target� area) is also clearly de�ned and separated,

consisting of a few large convex regions.

2.5.3 Predicting the S&P 500 Movement

A neural network with 40 hidden units was trained to predict the average direction of

movement (up or down) for the following month's Standard and Poor's 500 Index. It was

trained on monthly macro economic data from 1953 to 1994 from Standard & Poor's DRI

BASIC Economics Database. The network's inputs were the percentage change in the S&P

500 from the past month, the di�erential between the 10 year and 3 month Treasury Bill

interest rates, and the corporate bond di�erential for AAA and BAA rates, indicators used

in non-linear economic forecasting [15]. After training, the network achieved a better than

80% success rate on the in sample data. Figure 2.15 shows the network's decision regions.

from it we can surmise that the network would probably not generalize very well to out of

sample data. We can see that rather than learning some underlying regularity, the network

tended to highly partition the space to try and enclose all the sporadic data points.

We can use the rule method outlined before to quantify some of these partitioning e�ects.

In the region of input space where the training data resides the network has 28 di�erent

decision regions. Of these all but �ve have a bounding rectangle with a volume of less

than one. One decision region has a bounding rectangle which encompasses the whole input

space. We can re�ne the rule for this large decision region by slicing the decision region using

another hyperplane and examining the bounding rectangles for the resultant sub-decision
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Figure 2.15: The decision regions of the S&P 500 prediction network.

regions. If we simultaneously slice this polytope using three hyperplanes, each bisecting the

input space across a di�erent dimension, then if the polytope were completely convex, we

would expect, at most, to get eight sub-polytopes. However for this decision region, this

re�nement procedure generated 23 separate sub polytopes, implying that the polytope has

concavity and probably has some form of irregular branching structure needed to partition

the space. A simple analogy would be to contrast an orange with a comb. Both are solid

objects. No matter how we slice the orange we will always be left with two pieces. However

if we slice the comb across its teeth, it will decompose into many pieces.

2.5.4 Vowel Recognition

Two neural networks were trained on the vowel data available at the CMU neural network

benchmark repository [22]. This data consists of 10 log area parameters of the re�ection

coe�cients of 11 di�erent steady state vowel sounds. Our interest in this example was

to gauge the e�ect of using di�erent dimensioned input spaces. The re�ection coe�cients

are particularly suited for this test [52] because of their mathematical properties: they are

orthogonal, the coe�cients do not change when larger sets are generated, and using their

log area parameters confers a greater spectral sensitivity. Both networks were trained to

recognize the vowel sound in the word had within the background of the other 10 vowel
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Figure 2.16: The decision region of the ball throwing neural network (left) contrasted with
the decision region of the actual analytical solution (right). Two di�erent perspectives are
shown.
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sounds.

The �rst network received as input the �rst two coe�cients. After training, it achieved a

better than 86% success rate on the training data. Its decision regions and the training data

are shown in �gure 2.17. In the input region of [�3:2;�2:3]� [0:7; 1:2] we see a relatively

high degree of partitioning, in that many decision regions are being used in order to secure

a perfect classi�cation, implying problematic generalization in that region.

The second network received the �rst four coe�cients as inputs, and enjoyed a success

rate of over 91% on the training data. It also achieved perfect classi�cation within the input

region described. However, it appears to have done so with less partitioning of the space.

We can see this using the rule re�nement procedure described in the previous example. If

we extract the decision regions in this part of input space we get only one rectangle which

spans it completely. Conducting the same kind of concavity test we previously used, that

is slicing the space using four hyperplanes, each bisecting an input dimension of the region,

we get only 10 sub polytopes suggesting a small degree of concavity (less than the 24 for a

perfectly convex shape). In addition these sub-decision regions are mostly delimited in the

third and fourth dimensions with the �rst two dimensions left to span the whole area of the

sub-space. Therefore it appears that the network makes use of these added dimensions to

form a more regular decision region in that di�cult region of the input space. This must

be quali�ed, since by the curse of dimensionality the increase in the dimensionality made

the problem less speci�ed, and as such it became easier to enclose the data points within

one, more convex decision region. But the fact that the decision region makes exclusive use

of the added dimensions to discriminate, signi�cantly strengthens the claim of potentially

better generalization.

2.6 Discussion

2.6.1 Algorithm and Network Complexity

The Decision Intersection Boundary Algorithm's complexity stems from its transversal of

the hyperplane arrangement in the �rst layer of hidden units. As such, that part of its

complexity is equivalent to similar algorithms, such as arrangement construction [23], which
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Figure 2.17: The decision regions of the two input vowel recognition network with the
training data in the background. The X's are positive test cases.

are O(nd), where n is the number of hyperplanes and d is the input dimension. Another

aspect of complexity stems from the corner test, which is O(2d). Even the partial sum case

is of similar complexity, since the question of asking whether the lowest magnitude weight

acts as a border is equivalent to the knapsack problem [71] which is NP -complete.

Do we really need to examine every vertex though? Perhaps the network can only

use a small number of decision regions, or it is limited with respect to the complexity of

the decision regions. In this section we prove that this is not the case by hand construct a

network with 


��
n

d

�d�
di�erent decision regions, where each decision region has 2d vertices,

concluding that networks are capable of having exponential complexity.

We begin with a one dimensional construction of a three layer, single output percep-

tron network. Start with k hidden units with the same directionality, and assign to them

alternating +1 and �1 weights. In �gure 2.18a we see such a construction with k = 4 hy-

perplanes. If we set the output unit threshold to 0:5, we see that the hyperplanes partition

the input space into three decision regions, a decision region for each line segment with a

weight sum of zero.
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Figure 2.18: A hand constructed neural network which demonstrates the potential number
of decision regions a network can have.

Let us extend this construction to a two dimensional input space. First we extend the

one-dimensional hyperplanes, points, to two-dimensional hyperplanes (lines). We do this by

making them parallel in the added dimension. Next we add an additional k hyperplanes that

are orthogonal to the original hyperplanes, and again assign to them alternating �1 and +1

weights. Figure 2.18b illustrates this. We see that the additional hyperplanes continue each

zero term in a checkerboard pattern in the added dimension, but above zero terms remain

above zero in the added dimension. Thus, by adding a dimension, each lower dimensional

decision region multiplies to become either (k + 1)=2 or k=2 + 1 di�erent decision regions,

depending on whether k is odd or even.

This construction can be extended to any number of dimensions, so by induction we

can see that this construction has 


��
n

d

�d�
decision regions. Since each decision region

is a hypercube in d dimensions, it has 2
d vertices. Another point to note is that each

hyperplane contributes a face in 


��
n

d

�d�1�
decision regions. This example uses parallel

lines, the complexity is obviously higher with non-parallel lines in which all hyperplanes

intersect with each other.
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The result of this construction extends Golea's proof [29] of the NP-hardness of discrete

network analysis to the continuous input case, by showing that it is necessary for the al-

gorithm to be exponential as the complexity of the network may also be exponential in its

decision regions structure. This complexity result addresses our �rst theoretical question

as it applies not only to this algorithm, but to any algorithm which on some level tries to

describe a neural network by enumerating its functions, listing its decision regions (e.g., rule

extraction). Any algorithm that deals with network function on the level of decision regions

will need space exponential in the input dimension to fully describe an arbitrary network.

2.6.2 Extensions to the Algorithm

The formulation of the DIBA algorithm given previously was for a three layer, single output

network. Now we address on of the theoretical questions posed earlier: How does the

complexity of the network and algorithm change when we allow more hidden layers and

multiple outputs?

Additional Hidden Layers

Fundamentally, the addition of more layers to a perceptron neural network does not change

the underlying possible locations and shapes of the decision regions. Consider adding an

additional layer to our previous three-layer network. We already know that the units in the

�rst hidden layer divided the input space into half-spaces, the units in the second hidden

layer (previously the output units) form decision regions composed of the intersections of

the divisions in the �rst layer, so what does the next layer do? Like the units in the second

layer, the output values in the third hidden layer can only change across a boundary in

the previous layer (another partial sum). And since the values in the second layer can only

change across the boundaries of the �rst hidden layer's hyperplanes, then the boundaries

of the third hidden layer are still only composed of the intersections of the �rst layer's

hyperplanes. This argument holds for any additional layers. So in essence the �rst layer

fundamentally de�nes what possible decision regions the network can express.

In terms of the algorithm itself, the modi�cation is straight forward. The potential

locations of the polytope vertices are still the same, we just need to adjust the corner test.
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Rather than doing the partial sum test for the smallest absolute valued weight, we perform

the general corner test. We check for a transition across all the intersection hyperplanes at

a vertex, but with respect to an output unit at a higher level. Speci�cally, we form all the

possible hidden states at the vertex, feed them to the rest of the network, and see if they

qualify as a corner boundary with respect to the output unit. That is, each hyperplane acts

as a boundary at least once in the vicinity of the vertex. Thus, the algorithm complexity

does not change with the introduction of multiple hidden layers.

Multiple Output Units

Multiple output units can be handled in much the same way as additional hidden layers,

using the generalized corner test. Instead of checking for an output transition with respect

to one output unit (either on or o�), we can check for an output transition with respect to a

combination of output units. For example we might be interested in extracting the decision

regions described by having exactly six output units on. Then in order to check if a vertex

forms part of such a decision region we check the value of all the output units with respect

to the possible hidden states at the vertex. If there is a transition across all hyperplanes

forming the intersection, that is, in the vicinity of the intersection across each hyperplane

there is a location where the number of on output units is six on one side and di�erent from

six on the other side, then it is a corner of the decision region. This can be applied to any

output interpretation regiment that is applied to the output units. As such, the algorithm

complexity stays the same for di�erent output interpretations.

2.6.3 Rule Extraction and Network Validation

Polytopic decision regions o�er us a direct representation of the underlying neural network.

However, high dimensional polytopes are not immediately fathomable to most people either.

The interdependence in the polytopic case is limited to understanding the linear relationships

governed by the vertices which delineate the faces.

As proposed earlier, one way to generate more comprehensible descriptions is to generate

independent rules in the form of minimum bounding hyper-rectangles (MBR). That is, for

each polytope we �nd the minimum hyper-rectangle which completely encloses it. This is a
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trivial operation, and it gives us a zeroth order approximation for the location and size of

the network's decision regions.

We can improve this rule approximation to an arbitrary degree by dividing the polytopic

decision regions into sub-polytopes. In the previous section we saw one approach to this,

which was to systematically bisect the polytopes across its dimensions. This incrementally

re�nes each rule into sub-rules each time it is applied.

It is feasible to imagine a more intelligent method to divide the polytopes. For exam-

ple, we could only divide those polytopes for which the MBR is a bad approximation. It

would seem that our geometric analogy would also give us the tools to exactly calculate

the e�cacy of the approximation, since all we would need to do is compare the volume

of the hyper-rectangle with the volume of polytope it was enclosing to get an exact error

measure. However, volume computation of n-dimensional polytopes is #P -hard in the exact

case (worse than NP -hard) and of high complexity for approximate cases [42]. This is a

general property of the comparison of di�erent models with perceptron neural networks,

not just symbolic approximations� to get an exact error measure we have to compute the

volume of the polytopic decision regions. This addresses another of the theoretical ques-

tions: The cost of validating the accuracy of alternative representations of network function

is computationally hard.

2.6.4 Sigmoidal Activation Functions

It is not possible to model the underlying decision regions of a sigmoidal neural network using

only vertices and lines, since the sigmoid is a smooth transition. However we can get a good

idea of the implications of this form of non-linearity by modeling the units with piecewise

linear units (see �gure 2.19.) Unlike the threshold activation function unit hyperplanes,

where an output transition is completely localized, the transitions in piecewise or sigmoidal

activation function units are gradual and take place over the width of the hyperplane. In

�gure 2.20 we see the form of a typical intersection between two border piecewise linear

hyperplanes. Notice how each hyperplane resides within the width of their linear region.

The actual location of the boundary falls somewhere within that region, wherever the output
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unit exactly passes its decision threshold. When multiple linear regions overlap they form

a composite linear region. As the �gure illustrates, the boundary in this region has the

e�ect of smoothing out the edge or corner by de�ning a sub-face between the faces of the

intersecting hyperplanes. A sigmoidal unit would generate a smoother transition.

The intersection of multiple piecewise linear hyperplanes generates a potentially exponen-

tial number of di�erent linear regions in its vicinity. Any of these regions could potentially

house a border face. The test for whether a border passes through such a region is trivial

(check the smallest and largest corners.) However, �nding the exact face of the border is

also a hard problem [42].

The addition of more hidden layers still does not substantially change the possible un-

derlying decision regions. The output of any higher level unit is dependent on the values of

the lower level units. This means that a transition in the value of a higher level unit must

accompany a transition in a lower level unit. Therefore, the decision regions can only be

within the width of the �rst layer's hyperplanes, where all basic transitions take place.

To summarize, the e�ect of using sigmoidal activation functions on network computation

is to change the shape of the boundary at the hyperplane intersections, speci�cally it has a

smoothing e�ect. The fundamental locations of the decision region boundaries is still gov-

erned the hyperplanes of the �rst hidden layer. However, we can get additional complexity

within the widths of the intersections. The computational cost of extracting this additional

complexity by approximating it with piece-wise linear activation functions is potentially

high.

2.6.5 Generalization and Learning (Proximity and Face Sharing)

Generalization is the ability of the network to correctly classify points in the input space

that it was not explicitly trained for. In a semi-parametric model like a neural network,

generalization is the ability to describe the correct output for groups of points without explic-

itly accounting for each point individually. Thus, the model must employ some underlying

mechanisms to classify a large number of points from a smaller set of parameters.

In our feed-forward neural network model we can characterize the possible forms of
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Figure 2.19: A sigmoidal activation function and its piecewise linear counterpart.
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Figure 2.20: The intersection of two piecewise linear border hyperplanes forms an interme-
diate border face.
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generalization into two mechanisms. The �rst is by proximity : nearby points in the same

decision region are classi�ed the same way. The second is by face sharing : the same hy-

perplane is used as a face in either multiple decision regions or multiple times in a decision

region. An analogy for this type of generalization would be Manhattan streets, where each

street forms the boundary of many di�erent blocks.

Changing the network architecture does not radically a�ect the kind of generalization

possible. Instead of hyperplanes another shape could be used or the non-linear activation

functions could be modi�ed in a locally continuous fashion. Fundamentally we would still

have just two kinds of generalization, proximity and face sharing, in these types of feed-

forward network architectures.

Given these two mechanisms, how well do learning algorithms exploit them? Proximity

mandates the ability to enclose regions in space with similar outputs. It is intuitive that

learning algorithms which pull borders (Hyperplanes in this case) towards similar output

points and push borders away from di�erent output points, should be geared to do some

form of proximity generalization by forming decision regions around similar points. However,

face sharing generalization is more combinatorial in nature, and might not be as amenable

to continuous deformation of parameters as found in many algorithms.

To illustrate this point a group of 8 hidden unit neural networks were trained on the

decision regions illustrated in �gure 2.18b, a problem requiring face sharing to solve. One

thousand data points were taken as a training sample. Two hundred di�erent networks were

used. Each was initialized with random weights in the range of �2 to 2, and trained for 300

online epochs of back-propagation with momentum. Of the 200 networks, none managed to

learn the desired 9 decision regions. The network with the best performance generated only

six decision regions (�gure 2.21a). In examining its output unit's weights, we saw that only

one weight changed sign, the weight initially closest to zero, indicating a predisposition to

this con�guration in the initial conditions with respect to the learning algorithm. Or stated

more directly, the learning algorithm did not cause su�cient combinatorial modi�cations to

facilitate face sharing. Figures 2.21b and c show the decision regions for some of the other,

more successful networks.
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Figure 2.21: The decision regions of back-propagation networks trained on the decision
regions of �gure 2.18b.

This issue brings up some potential research questions. How do direct network construc-

tion algorithms contrast or coexist with training algorithms with respect to the decision

regions they generate? Can we employ geometric regularization in learning algorithms to

generate decision regions with speci�c properties?

2.7 Conclusion

We started the chapter by asking what factors a�ect the complexity of neural network rep-

resentation extraction in general. We further asked, what can be learned about a network's

success from its representation, especially in terms of generalization and artifacts? The tool

we developed for the task is the Decision Intersection Boundary Algorithm. An algorithm

that can be used to extract exact, concise and direct representations of the decision regions

of threshold multi-layered perceptron networks.

The scope questions were addressed by analyzing multiple example networks to see where

they introduce noise, when they generalize, and what forms their computation can take on.

Using the examples of sphere networks at di�erent dimensionality we explored the relation-

ship between the input dimension, the location of the training data and the appearance

of artifacts, clearly demonstrating that artifacts are not only not uncommon but become

quickly prevalent in higher dimensional input spaces. We then explored generalization for

three di�erent networks by examining the properties of their decision regions, looking at:

convexity, concavity, the quantity of decision regions, their location, and their orientation.
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In general, how the decision regions partition the input space was seen as an indicator of

generalization. In addition, for higher-dimensional spaces where the decision regions can

not be directly visualized we explained how using hyper-rectangles and slicing the decision

regions can be analyzed for these di�erent properties at any desired resolution.

We started addressing the theory questions by analyzing the complexity of the algorithm,

proving that even though the algorithm's complexity is exponential, it is unavoidable, since

networks are capable of generating an exponential number of decision regions, where each

decision region's complexity is also exponential. By explaining how the algorithm can be

extended to additional hidden layers, and multiple output units, we showed that these

modi�cations do not fundamentally impact the kind of processing the network is capable

of, or their complexity, as the arrangement of hyperplanes in the �rst layer of hidden units

fundamentally de�nes what possible decision regions the network can express.

Next, we discussed the computational cost of �nding the exact error between a network

and any approximate representation, showing the cost to be exponential due to the complex-

ity of volume calculations in high-dimensional spaces. Then, we explored the rami�cations

of switching the activation function to a sigmoidal one, concluding that even though it may

induce additional complexity to the network's decision regions, this complexity is highly

localized to the widths of the boundaries of the �rst layer of hidden units, otherwise their

decision regions behave the same as for threshold units.

We concluded by asking how well can learning algorithms use the two forms of gener-

alization, proximity and face sharing. Is it possible for these networks to exploit all their

potential complexity? Even though back-prop did not show promising results for face shar-

ing, this remains an open question and a direction for further exploration of future learning

and network construction algorithms.

Beyond our questions, the DIBA algorithm can also be used as an applied tool. As

an exact, direct and concise representation extraction algorithm, the DIBA algorithm can

easily be used to analyze reasonably sized threshold networks,2 where knowing the exact

representation is essential to validate them for real-world deployment. Or, using the concepts

2A �ve dimensional, 100 hidden unit network takes less than 10 seconds to analyze on a Pentium II.
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and methods presented in this chapter, it can be used to shed light on how any such network

generalizes. DIBA can also be used to study learning, in the simple case to visualize decision

regions changing during learning, or as we have done in other experiments, to explore

how well learning algorithms form speci�c decision regions. For examples, please look at

http://www.demo.cs.brandeis.edu/pr/DIBA.

Appendix A: Pseudo Code of Traversing the Line

In this appendix a pseudo code description of the Traversing the Line portion of the Decision

Intersection Boundary Algorithm (DIBA) is outlined. It is the termination step of the

recursion described in the Generative Recursion portion of the algorithm.

It calculates the contribution of the di�erent hyperplanes to each potential line segment,

and then �nds the corners and actual line segments.

else { hidden hyperplane dimension � 1 }

sort the hidden by their position on the line

Forward pass.

running_sum := 0

clear array segments

current_segment := 1

for hyperplane = leftmost hyperplane to rightmost hyperplane

if hyperplane not a border then

if hyperplane is forward directed then

Add weight out(hyperplane) to running_sum

endif

segment(current_segment) := running_sum

current_segment++

endif
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endfor

Backward pass.

running_sum := 0

in_line := false

current segment��

for hyperplane = rightmost hyperplane to leftmost hyperplane

if beginning of border delimited region and check_line(current_segment) then

in_line := true

Add the node to the representation

elseif hyperplane not a border then

current_segment��

if hyperplane is backward directed then

Add weight out(hyperplane) to running_sum

endif

segment(current_segment) := segment(current_segment) + running_sum

if in the border delimited region then

new_in_line := check_line(current_segment)

if in_line and new_in_line then

if check_corner(current_segment, out(hyperplane)) then

Add the vertex to the representation

Connect current vertex to last corner

endif

elseif in_line and not new_in_line then

Add the vertex to the representation

Connect current vertex to last corner

elseif not in_line and new_in_line then

Add the vertex to the representation
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endif

endif (in border region)

endif (not border)

endfor

if in_line then

Add the vertex to the representation

Connect current vertex to last corner

endif

endif

Appendix B: Proof of partial sum corner test

For a 3-layer network with one output unit (partial sum case) it is su�cient to test whether

the hidden unit with smallest absolute valued weight has a boundary in the intersection. If

it does, then all the other hyperplanes which make up the intersection also have boundaries.

Let W = fw1 : : : wng be the set of partial weights corresponding to the hyperplanes

making up the intersection. De�ne S �W , as a hidden state. Let T be the threshold, such

that if
P

w2S
w � T then the output value is 1, otherwise the output value is 0.

Assume that there exists a wm, such that for all w 2 W , jwmj � jwj, and there exists a

hidden state, S, which does not contain wm, such that if wm > 0 then
P

w2S
w < T and

wm +
P

w2S
w � T , or if wm < 0 then

P
w2S

w � T and wm +
P

w2S
w < T .

If � 2 W , and � is not wm, we need to demonstrate that there exists a hidden state

such that � acts as a boundary.

� If wm > 0, � > 0 and � 62 S, then
P

w2S
w < T and

P
w2S

w + � � T .

� If wm > 0, � > 0 and w 2 S, then
P

w2S
w + wm � T and

P
w2S

w + wm � � < T .

� If wm > 0, � < 0 and � 62 S, then
P

w2S
w + wm � T and

P
w2S

w + wm + � < T .

� If wm > 0, � < 0 and � 2 S, then
P

w2S
w < T and

P
w2S

w � � � T .
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� If wm < 0, � > 0 and � 62 S, then
P

w2S
w + wm < T and

P
w2S

w + wm + � � T .

� If wm < 0, � > 0 and � 2 S, then
P

w2S
w � T and

P
w2S

w � � < T .

� If wm < 0, � < 0 and � 62 S, then
P

w2S
w � T and

P
w2S

w + � < T .

� If wm < 0, � < 0 and � 2 S, then
P

w2S
w + wm < T and

P
w2S

w + wm � � � T .

Therefore all hyperplanes have a boundary in the vicinity of the intersection.



Chapter 3

Decision Region Connectivity

Analysis: A method to analyze

high-dimensional classi�ers

The DIBA algorithm described in the previous chapter allowed us to exactly analyze the

decision regions of multi-layer perceptron networks. By doing so, we came to realize that

the classi�cation strategy (and the potential to generalize) of a network is to a large degree

guided by how it uses decision regions to partition its training data. Di�erent partitioning

strategies may be appropriate for di�erent cases, but the fundamental choices given to a

model are issues such as the number of decision regions and their convex/concave structure.

Another aspect of neural computation explored by applying the DIBA algorithm were ar-

tifacts, model complexity that is unrelated to the training task. In exploring this issue we

realized that it is quite insidious, as higher-dimensional networks are prone to exponentially

more artifacts. These two issues combined raised the question, is there a computationally ef-

�cient way to analyze a model (neural networks or otherwise) that gets out all its important

decision region structure choices but �lters out the irrelevant artifactual complexity?

The answer is yes, and in this chapter we present a method to extract decision-region

structural information from any classi�cation model that uses decision regions to generalize

(e.g. neural nets, SVMs, etc) while �ltering out artifacts that are not related to the training

task. The method's complexity is independent of the dimensionality of the input data or

model, making it computationally feasible for the analysis of even very high-dimensional

54
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models, something which can not be said for any other method that I am aware of. The

qualitative information extracted by the method can be directly used to analyze the clas-

si�cation strategies employed by a model, and also to compare strategies across di�erent

model types.

This material has been presented at the Montreal Workshop on Selecting and Combining

Models, and a conference version of this material has appeared in the proceedings of the

IJCNN 2000, where it received the best of session distinction. In addition, a journal paper

has been submitted to a special issue of Machine Learning.

3.1 Introduction

It is typically di�cult to understand what a high-dimensional classi�er is doing. The most

common form of analysis usually consists of examining raw performance scores. However,

as simple one-dimensional measures, they do not lend much insight as to what a model's

advantages and shortcomings may be. This problem is exacerbated when we want to com-

pare across di�erent methods that solve the same problem. For instance, across a bank of

di�erent neural networks, di�erent graphical model's, or di�erent SVMs etc : : : .

A model is usually trained or constructed by being given sample input/output pairings

that demonstrate its desired function, from which the model is expected to generalize to the

rest of the input space. Thus, the way that a model can form sets in the input space (with an

in�nite number of points) from a �nite training sample is intrinsically tied in to how it can

generalize. Many of the models used today for classi�cation such as Feed-Forward Neural

Networks, Support Vector Machines, Nearest Neighbor classi�ers, Decision Trees and many

Bayesian Networks generate classi�cation sets that are mostly manifolds or manifolds with

boundaries. Sets of this sort exhibit strong locality properties. That is, most of the points

in the set have a neighborhood surrounding them such that all points in the neighborhood

are also part of the set. Thornton [85] demonstrated that many of the datasets in the UCI

machine learning repository [9] contain data points that exhibit neighborhood properties,

and as such are amenable to generalization by manifold type classi�ers.

Given this common generalization method of classi�ers, what di�erentiates between dif-
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Figure 3.1: Examples of some of the variations possible in decision region structure.

ferent classi�ers is how they individually partition the training points into decision regions.

A classi�er might only use separate convex decision regions to classify (e.g. a linear dis-

criminant classi�er). In which case, sample points are separated explicitly by completely

segregating them from each other in separate decision regions. However, most interesting

classi�ers use more complex decision regions to organize the sample points. The points

are organized into decision regions with concavity, thus creating a partitioning of the points

without explicitly placing them in disconnected decision regions. In a sense this partitioning

allows a �ner grain of di�erentiation since points may be closely associated by being in a

convex subcomponent of the decision region or be distantly associated through a �network�

of other convex subcomponents. Figure 3.1 illustrates some of the questions that we may

want to ask about the decision region structure of a classi�er, and some of the interpretations

of this information:

1. How many separate decision regions are used (�gure 3.1a): On the one hand, too

many decision regions might imply that the classi�er had a hard time �tting the

data to decision regions, and would lead to bad generalization. But some separate

decision regions may be indicative that the data points themselves come from multiple

subclasses.

2. How many and which sample points were used to decide the structure of each decision

region (�gure 3.1b): Generally, more points throughout a decision region raises our
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con�dence that it actually encapsulates the data. But sometimes having one big

decision region may also imply that the data used to construct the classi�er is too

sparse.

3. The geometry and topology of each decision region (�gure 3.1c): A decision region may

be convex (the left one), such that if we take any group of points inside the decision

region, the area between them is also inside the decision region. Such a decision region

describes a kind of uniformity, an extended neighborhood in the input space where

all points on the inside belong to one class. In contrast, a decision region might be

concave (the right one), where locations between points from the decision regions may

not belong to it, implying some substructure between the components of the decision

region.

4. The geometry of convex subcomponents (�gure 3.1d): A concave decision region can

be decomposed into convex subcomponents, like the one in the �gure which can be

decomposed into three convex subcomponents. The purpose of this is twofold: First,

the decomposition allows us a glimpse into the structure of the decision region, how it

separates its di�erent constituent portions and their interrelationships. Second, being

convex, the subcomponents can be analyzed using common tools to understand their

geometry. Thus, decomposition is an important step in the analysis of the larger

concave decision region.

5. Connection strength of convex subcomponents (�gure 3.1e): The degree that the con-

vex subcomponents are attached together in a concave decision region is indicative of

how separated they are. Concavity might be almost negligible between two strongly

attached convex subcomponents (left pair), or the concavity might act almost like a

complete wall between two very weakly connected subcomponents (right pair).

Our aim is to analyze the decision regions of classi�ers. We would like a means to extract

a classi�er's decision regions and be able to decompose them individually. To do this in

an exact manner would seem to be ideal. Unfortunately, in doing so we run into two

related problems, the problem of dimensionality and the problem of complexity. Initially,
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dimensionality appears to be our bane in the form of visualization di�culties. We can not

directly visualize a decision region of more than three dimensions. However, assuming we

can overcome that hurdle, dimensionality also in�uences the complexity of the models. For

example, a neural network can have a number of decision regions that is exponential in the

input dimension, where the complexity of the individual decision regions is also exponential

with respect to the input dimension, as seen in the previous chapter.

In this context, it seems like an almost futile endeavor. However, there is an intrinsic

discrepancy between the potential complexity of the model, the complexity of the data and

the relevant complexity of a trained model. In �gure 3.1f we see an example of this. The

model could be representing some highly complex decision regions. However, the actual data

points only reside in a simple part of the of decision regions. And with respect to these data

points, the model is basically enclosing them in two pseudo-decision regions, one convex and

one slightly concave. Not only is the additional complexity of the model artifactual, but if

a model is successful at generalizing it must have found some underlying redundancy in the

data, therefore in some respect its relevant complexity is even less than that of the data.

Our analysis method tries to extract this relevant complexity, by elucidating the prop-

erties of the decision regions in the vicinity of the data points. This is done not by directly

examining the decision regions, but rather by examining the e�ects that the decision regions

have on the relationships between the data points, and encapsulating this information in a

mathematical graph, a form that allows us to make out the properties of the decision regions.

This examination of the relationships between the points instead of the general decision re-

gions is not only what allows us to extract only the relevant complexity, but also what makes

the analysis method practically independent of the model type and dimensionality of the

input space.

The rest of the chapter is organized as follows: We �rst introduce the core analysis

method, a method that extracts the structure of decision regions by representing the rela-

tionships of the internal points using graphs. Following, we give a relatively simple example

of its application to a neural network that classi�es points in a three-dimensional space. The

fact that it is three-dimensional allows us to visually compare the structure described by the
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graph with the actual network decision regions. In the section after, we re�ne the graph anal-

ysis method, and explain the method by which we decompose the graph into the subgraphs

which correspond to decision region subcomponents. We then continue with an example

where we analyze two di�erent types of classi�ers, both applied to a high-dimensional letter

recognition problem. Using the graph analysis method allows us to clearly show di�erences

in the classi�cation strategies of the two classi�ers, and show where one of them will gener-

alize incorrectly. The section after that contains a discussion about the analysis of convex

subcomponents, leading to an in depth example of this on an SVM model applied to a

dataset from the Statlog project[43]. We conclude with a detailed discussion of the method

and some of its caveats and then discuss how the method can be extended, suggesting

possible avenues of new research.

3.2 Low Level Analysis

The fundamental way that manifold type classi�ers create decision regions is by enclosing

points together in common neighborhoods, which is what our analysis method tries to

detect. As input we are given two things, the classi�er we wish to analyze and relevant

labeled sample points, possibly the training data. It is important that the sample points

embody the part of the input space that is of interest, otherwise we would be analyzing the

classi�er's artifacts and not the relevant regions. From now on, when we refer to decision

regions we will mean only the relevant portions of the decision regions (Note that this

relevant area can be extended almost arbitrarily if needed.)

Figure 3.2a graphically illustrates how the analysis method works. We take all pairs

of points with the same classi�cation label (in this case points A,B and C). Between each

pair we extend a line segment in the input space. We then sample along this line using the

classi�er. In other words, we �nd a series of points in the input space along the line and

apply the classi�er to them. What we look for is a break in the connectivity, a change in

the classi�cation label in one or more of the points. Such a change implies that between the

two points there is a decision region boundary, and the two points do not share a common

neighborhood. Algorithm 1 explicitly describes this operation. Note that if we take a
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Figure 3.2: a) The connectivity graph is generated by sampling between the sample points.
In this case we see how sampling between points A and B detects a boundary, but points A
and C share a neighborhood. b) A connectivity graph for two decision regions, one convex
and one concave.

constant number of samples on the line between each pair of points then this algorithm's

complexity is O(n2), where n is the number of points.

With this connectivity information we construct a graph in the mathematical sense. In

this graph each sample point is assigned a vertex, and the edges are the actual connectivity

information. That is, if two points are connected in the actual input space with respect to

the classi�er then their vertices are connected in the graph.

This connectivity graph can tell us three basic pieces of information: What points reside

in separate decision regions, if points are colocated in a convex decision region, or if points

reside in a concave decision region. Moreover, in the latter case we can decompose this

concave decision region and �nd what points reside in its di�erent convex subcomponents.

Figure 3.2b illustrates how the graph relates these three pieces of information:1

1. If decision regions are disconnected then the graphs of the points they enclose are also

disconnected. In the �gure we see this with respect to two decision regions, whose

internal points form two disconnected graphs in the connectivity graph.

2. When points are in a convex decision region then by de�nition they are fully connected

1In the �gure the graph is superimposed over the actual two-dimensional decision regions. Thus the

vertices of the graph correspond to the actual points in the input space. This is done only for visual

convenience, essentially, we could have drawn these vertices anywhere.
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Algorithm 1 The Connectivity Algorithm generates the Connectivity Graph by examining
the connectivity between points in the decision regions.

X is the set of sample points.
G(V,E) is the undirected connectivity graph, where jV j = jX j.
c(x) is the classi�er function, returns a 1 if x belongs to the class and other values
otherwise.
v(x) is a function that returns the vertex v 2 V corresponding to the sample point x.

Y  X

for all x 2 X do

Y  Y n x
for all y 2 Y do

delta x�y

NUMSAMPLES+1

set (v(x); v(y)) in E

for i = 1 : : :NUMSAMPLES do

if c(x + i � delta) 6= 1 then

clear (v(x); v(y)) in E

break
end if

end for

end for

end for

and as such form a clique in the graph. We see this convexity property in the left

decision region� it is convex and hence its graph is fully connected.

3. Cliques within the graphs of concave decision regions correspond to its convex sub-

components. The right decision region is not convex and so its graph is not fully con-

nected. However cliques within its graph represent convex subregions of this concave

decision region. In this example decision region there are three cliques, representing a

decomposition into three convex subcomponents (shown with dashed lines.)

3.3 Analyzing a three-dimensional neural network

A 15 hidden-unit threshold neural network was trained to predict whether a thrown ball

will hit a target (as shown in the previous chapter). As input, it received the throwing

angle, initial velocity and the target distance (�gure 3.3), Having only three inputs makes

it possible to visualize its decision regions. After iterations of back-propagation and hill-

climbing it achieved an 87% success rate on the training data. This system can be easily
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x Throwing Distance 0-100

v Initial Velocity 0-100

5 Meter Target ß Angle 0-90

Figure 3.3: The classi�cation task of the ball throwing network is to predict whether a ball
thrown at a certain velocity and angle will hit a target at a given distance.
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Figure 3.4: The decision region of the ball throwing network contrasted with the analytic
decision region.

solved analytically, and the analytic decision region is shown in �gure 3.4 contrasted with

the neural network decision region which was extracted using the DIBA algorithm.

Using the �rst 78 of the positive training points, a connectivity graph was generated

for the hit class, as seen in �gure 3.5b. The graph was drawn using a spring-gravity type

algorithm [14], where the edges are modeled as springs in a physical model. This draw-

ing algorithm has the property of making highly interconnected vertices cluster together,

allowing us to recognize cliques.

In the graph we can discern four di�erent clusters that practically form cliques. Assigning

a label to the vertices based on which cluster they belong to (if they belong to any cluster),

we can plot the position of the actual points in the decision region corresponding to the

labeled vertices (�gure 3.5a, compare with �gure 3.4). In this �gure we can literally see

that the points that make up each of these clusters correspond to four di�erent �slabs� or
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Figure 3.5: a) The points extracted from the labeling in the connectivity graph superimposed
in their correct position within the decision region. b) The connectivity graph of the decision
region in �gure 3.4 with respect to 78 internal points. The vertices are labeled by association
to four di�erent clique like clusters.

conspicuous convex subregions that make up the actual neural network concave decision

region. Also, notice how the connections between the clusters in the graph correspond to

the relationships between the subregions. That is, how the slab containing the C points

touches the slab containing the B points which in turn touches the A slab which touches

the D slab, all properties evident in the connectivity graph.

Since we have separated the points into convex subregions we can also analyze their ge-

ometric properties. For example, by performing principal component analysis [8] (PCA) on

each of these clusters of points, we can discern their dimensionality and also their orientation.

Figure 3.6 shows the three eigenvalues for each of the clusters as well as for all the points

combined. The eigenvalues of the clusters all have a practically negligible third eigenvalue.

This indicates that they all form part of a decision region which takes up little volume in the

input space, rather it is almost a two-dimensional embedding in a three-dimensional space.

In contrast, this is not a property we could have discerned by just performing a PCA of all

the points, since the eigenvalues of the PCA of all the points have a sizeable magnitude in

all three dimensions (as seen in the �gure).
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Figure 3.6: The eigenvalues of the PCA analysis for each of the groups contrasted with
the eigenvalues of all the points taken together. The decomposition into groups allows us
to realize that the points in the decision region form a two-dimensional embedding in the
space. This would not have been discernible by just performing a PCA on all the points
together.

3.4 Higher Level Graph Analysis

The connectivity graph contains the topological information about how the sample points

are partitioned into decision regions. With relatively small graphs it may be possible to

visually discern the di�erent components of the graph. But with larger or more complex

graphs we need an automated method to decompose the graph into convex subcomponents.

This higher-level analysis method extracts two pieces of information from the connectivity

graph: First, which points are colocated in the same convex subregions. Second, how do

the convex subregions combine to form the original decision region. The basic assumption

of the method is that multiple points inhabit the convex subcomponents of the decision

region. This is a fair assumption if we expect the classi�er to have generalization properties,

since a manifold type classi�er can only generalize by recognizing neighborhoods of points

to enclose together.

In the �rst stage of the method we seek to group sample points with similar properties,

to �nd points in similar locations with respect to the decision region. This is done as follows:

Consider the connectivity matrix associated with the graph, where each row enumerates the

edges of a vertex in the form of a binary vector. The basic grouping operation is simply:

If the hamming distance between two such vectors is su�ciently small then we group their
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Figure 3.7: a) A concave decision region housing nine points in di�erent convex subcompo-
nents. b) The connectivity graph for the points in the decision region. c) The group graph
associated with the labeling in the connectivity graph.

respective vertices together. From the perspective of the graph, this means that we group

together vertices that are mostly connected to the same vertices and disconnected from the

same vertices. The logic of this grouping mechanism comes by considering how the vertices

in the graph relate to the actual decision regions. We know that if a group of points are

in the same convex subregion then they should all be connected with each other, but by

being in the same part of the decision region they should also all be connected to the same

vertices outside their immediate clique. Therefore, they should all have a similar connectivity

signature pattern, and that is what we look for in forming groups.

For example, consider the concave decision region in �gure 3.7a and its respective con-

nectivity graph in �gure 3.7b. Notice how the points in the bottom left part of the decision

region are all connected to each other by belonging to the same convex subcomponent. In

addition notice that they are also all connected to the points in the top portion of the

decision region, but not to any of the points in the bottom right portion of the decision

region. Thus, all these points exhibit a distinctive connectivity signature which is distinct

from the other convex subcomponents of this decision region. In contrast, for example, the

points in the top portion of the decision region are connected to all the other points, where

as the points in the bottom right portion are connected to all but the points in the bottom

left region. Thus, if we label the vertices based on similar connectivity, we end up with

three groups of points as illustrated. Each group represents a convex subregion, as each

group's vertices forms a clique. However, these groups are di�erentiated with respect to
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their position in the decision region, which is divined by their intergroup connectivity.

Algorithm 2 shows the grouping procedure. If we discount the computational cost of

calculating the Hamming distance (which on some platforms is almost an atomic operation)

then the complexity of this algorithm ranges from O(n
2
) in the worst case to O(n) depending

on the density of the groups.

Algorithm 2 The Grouping Algorithm groups together vertices with a similar connectivity
signature.

G(V,E) is the connectivity graph.
� is the Hamming similarity.
� is the minimum group size.

M  V

while jM j > 0 do

arbitrarily pick i 2M
assign new group label to i

M  M n i
for all unlabeled j 2 V do

if HammingDistance(i; j) < � then

assign group label of i to j

M  M n j
end if

end for

if group size < � then

remove label for all group members
M  M [ fgroup n ig

end if

end while

function HammingDistance (vertex i, vertex j )
distance 0

for all k 2 V do

if ((i; k) 2 E ^ (j; k) =2 E) _ ((i; k) =2 E ^ (j; k) 2 E) then
distance distance+ 1

end if

end for

return distance

In the second stage of the analysis we wish to simplify the original connectivity graph, in

order to gauge the relationships between the convex subregions. This is done as follows: For

each group, take all its vertices and merge them, transforming the group into one labeled

vertex with the same intergroup connectivity as the group originally had. Doing so, we are
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Figure 3.8: An example of two di�erent concave decision regions and their respective group
graph.

left with a much smaller and sparser group graph that relates the relationships between the

groups� their intergroup connectivity. In �gure 3.7c we see this operation performed on the

connectivity graph in �gure 3.7b. This new graph shows us that with respect to the sample

points, the original decision region partitioned the space into three groups such that one

of the groups (group B) is connected to both of the other groups, but that the other two

groups are not directly connected. Notice how the graph is similar in structure to the actual

decision region.

Figure 3.8 illustrate the relationship between the group graph and two di�erent concave

decision regions. Cliques in the group graph represent groups that may be combined to form

larger convex subcomponents, possibly for a geometrical or statistical analysis of the points

in the subregion. In the trivial case, every edge in the graph is a clique and represents a

potential combined convex region. Another group graph characteristic is loops of cliques.

Loops of cliques in the group graph represent the existence of holes in the decision region, as

the convex subregions that go around them must be connected together. The fundamental

characteristic of interest in the group graph is the branching structure. It relates the actual

partitioning between convex subregions, which subregions are directly connected, which are
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distantly connected and their connection paths.

The next example applies the higher-level analysis method to compare between two

di�erent types of high dimensional classi�ers on the same task. By understanding the

di�erent ways that these two classi�ers partition the training data we can learn how they

generalize di�erently.

3.5 Comparing two classi�ers: A high-dimensional ex-

ample

The UCI repository [9] contains a dataset contributed by Alpaydin and Kaynak of hand-

written digits. The original dataset contains 32 by 32 pixelated images, normalized for scale

and position. There is also a preprocessed version of the dataset, where the 32 by 32 images

are shrunk to 8 by 8 by counting the number of pixels in each 4 by 4 of the original. This

training set contains 3823 samples from 30 people.

Using the preprocessed dataset the following classi�cation task was constructed. The

data corresponding to the numerals 3 and 4 were assigned to one class, while the remaining

numerals were assigned to a second class. Thus the task consisted of classifying a 64-

dimensional input into two classes.

Two classi�ers were used, a sigmoidal feed-forward neural network with one hidden layer

of 7 units and a K-nearest neighbor classi�er with K set to 9 [8]. The network was trained

using conjugate gradient [8] until it reached perfect classi�cation on the test data.

In order to make the connectivity graph more presentable, only the �rst 63 cases of the

3-4 class were used to draw it. In the additional levels of analysis 300 exemplars were used.

Figure 3.9 shows the connectivity graph for the neural network. Since the graph is

connected it consists of one decision region. However, it is apparent that this graph is

illustrating a concave decision region because the graph consists of two highly connected

regions with only very sparse connectivity between them. The points were labeled using the

labeling method described above at a 90% Hamming similarity, which labeled the points

as expected into two classes corresponding to these (practically) clique subregions. In the
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Figure 3.9: The connectivity graph of a 64-input neural network trained to classify the
numerals 3 and 4 as one class and the other numerals as another class. The graph clearly
illustrates that the network constructed a decision region with two separate subclasses.
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Figure 3.10: For the two labeled sets in the connectivity graph in �gure 3.9 a PCA analysis
was done to estimate the extent of the convex subregions, and two extreme values are shown.
As seen, group A contains threes, and group B contains fours.
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connectivity graph the clusters are almost completely disconnected, therefore we do not

need to draw a group graph, since a group graph is only constructed when the groups make

up parts of larger convex subregions.

When we examine the actual numeral associated with the labeled points we realize that

the points associated with the �rst label all correspond to the threes, and all the points with

the second label correspond to the fours. What this means is that the network discovered

that the 3-4 class really consists of two subclasses and divided its decision region to clearly

separate between them. Suppose that we did not know that the class was decomposable and

wanted to know the composition of the subregions that the neural network generated. As

before, since the subregions are convex we can analyze them using PCA. In �gure 3.10, for

each group, we took the mean of the points, in the top half we added the �rst 20 eigenvectors

of the PCA normalized by their standard deviation, and in the bottom half we subtracted

the same values. This gives a coarse approximation of the decision region's scope, the part

of the input space that in encapsulated by the region. As can be seen, the left images

correspond to threes and the right to fours, so we can literally see that the two subregions

correspond to two logically separate subclasses, without looking up the original classes of

the points.

Figure 3.11 shows the connectivity graph for the K-Nearest Neighbor classi�er. Again, it

is a connected graph and hence has one decision region. This graph doesn't lend itself to a

simple visual analysis, since it is more dense. However, when we apply the labeling method

at 80% Hamming similarity we get three labeled classes as illustrated. The group graph

analysis of the three labeled sets shows that the vertices in group C are connected to both

groups A and B, but that there are very few connections between groups A and B directly.

Therefore the group graph is of the form we saw in the example in �gure 3.7. In �gure 3.12

we present the results of applying PCA analysis (as before) on the three di�erent groups as

well as on the two cliques of the group graph. The �gure shows that group A corresponds

to threes, and groups B and C correspond to fours. Since B+C and A+C form cliques in

the group graph, they form larger convex regions. The PCA analysis of the composition of

B and C corresponds (as expected) to fours, but the images of the composition of groups A
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Figure 3.11: The connectivity graph of a K-nearest neighbor classi�er set to classify the
numerals 3 and 4 as one class and the other numerals as another class. The labeling of the
graph suggests a weaker concavity than the neural network's decision region.
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Figure 3.12: A PCA analysis was done to estimate the extent of the convex subregions of
the KNN connectivity graph. Two extreme values are shown for each region analyzed. The
subregion containing groups A and C is suspicious.
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and C are not interpretable. This lack of interpretability goes with what we know about how

the data is structured, a convex subregion, such as this one, consisting of both threes and

fours would have to contain spurious data, data which is neither a three or four, and thus

lead to a malformed classi�cation set. When we examine the actual numerals associated

with the labeled points, we see that the A-labeled points do correspond to threes, and the

B and C labeled points do correspond to fours.

Both of the classi�ers realized that the points making up the 3-4 class are not homoge-

neous. This is demonstrated by the fact that both classi�ers used a concave decision region

to house the points of the class. However the discrepancy between them lies in how clearly

they realized what the two subclasses are. The neural network made a very clean distinction,

clearly dividing the space between the threes and fours. Whereas the K-Nearest neighbor

classi�er divided some of the threes completely from some of the fours (groups A and B).

However, it did not di�erentiate between the threes in group A and the fours in group C,

hence we would expect potential misclassi�cation in that region of the input space.

3.6 Learning from lower dimensions: A high-dimensional

example

3.6.1 PCA on Ellipsoids

Due to speci�c properties of the previous two examples (low dimensionality and visual

interpretation of the input space) we could perform a visual interpretation for the PCA

results of the convex subcomponents. For many applications a visual interpretation is not

possible. However, PCA results can still be numerically interpreted to gain an understanding

of the strategies employed in di�erent parts of the input space by a classi�er. The next

example is one which requires such a numerical interpretation, as its variables are not

readily visually interpreted. Using PCA we will see how the classi�er treats the variables

di�erently across the subcomponents of its decision region. But before we proceed we need

to reexamine how we perform PCA on the points of the convex subcomponents.

In the previous two examples we performed a PCA on the points that make up cliques

in the standard way, using the covariance matrix. PCA is typically performed on the
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covariance or correlation matrix of the data points, making the assumption that the points

were sampled from an underlying distribution. The assumption of a distribution attributes

a signi�cance to the density or measure of the points. Thus, if the sample contained more

points in a particular part of the space the impact on the covariance matrix would be greater

than points coming from a sparser part of the space.

In our application there is no real meaning to the density of the points. Rather than

representing a sample from a distribution, the points de�ne the shape and extent of a convex

part of a decision region. We know that all the points are inside the convex region and that

all the space between the points is also inside the convex region. Therefore, looking at the

density of the sample points would be deceiving since the complete interior of the convex

hull of these points is uniformly inside the decision region. Instead, our interest lies with

the geometric properties of the convex hull de�ned by the points.

It is di�cult to study the convex hull directly. As such, we aspire to approximate the hull

with a more regular shape, speci�cally an ellipsoid. Using an ellipsoid to approximate data

is a common approach both in statistics [65] and in other domains [69]. This is in part due

to the relationship proved by Lowner and John [50] between the minimum volume enclosing

ellipsoid of the hull and the maximum volume enclosed ellipsoid. They proved that these two

ellipsoids are concentric and the same except for a constant shrink factor. Thus implying

that the minimum volume ellipsoid (MVE) would make a reasonable approximation to a

convex region by somehow capturing and bounding its geometry.

The advantage of using an ellipsoid to approximate the convex region is that it allows

us to continue using PCA to understand the shape of the region. Instead of performing the

PCA on the covariance matrix we apply it to the scatter matrix of the ellipsoid, using the

geometric interpretation of PCA [40]. Given an ellipsoid described by the equation:

(x� �)
0

�
�1
(x� �) = c

Where � is the center of the ellipsoid, ��1 is the scatter matrix and c is a constant equal to

the dimension of the space, then the principal components of � correspond to the directions

of the principal axes of the ellipsoid, and the eigenvalues can be used to calculate the half-
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lengths or radii of the axes.

In the next example we demonstrate how to use this method of performing PCA on

the MVE's scatter matrix. There, we calculate the MVE using the algorithm proposed by

Titterington [88], a relatively fast iterative algorithm. Note that this is an area of active

research and there are other algorithms to compute the MVE [75].

In this example we will also show another advantage of using ellipsoids. By enclosing

points in ellipsoids in the analysis we indirectly build an alternative classi�er with the same

group structure as the one we are studying. On the one hand, this ellipsoid classi�er allows

us to verify our analysis. But, as we will see, it also allows us to transfer decision region

structure across di�erent input dimensions.

3.6.2 The task and classi�er

The vehicle database [77] used in the Statlog project [43] describes the silhouettes of four

di�erent types of vehicles: an Opel, a Saab, a van and a truck. Each entry in the database

contains 18 di�erent geometrical and statistical measures of the respective silhouette. There

are 846 entries in the database, which after random shu�ing, were divided into a 550 entry

training set and 296 entry test set. As stated before, the previous two examples had a visual

component to their PCA/convex analysis. In this dataset we do not have that luxury, which

is one reason it was chosen, to demonstrate how the analysis can be done on raw numerical

data.

Using the SVM-Light package [39] a degree 3 polynomial kernel SVM (61 support vectors)

was trained to recognize the van vehicle using only the �rst 6 of the 18 measures (normalized

to the range [-1,1]). The reason we used a smaller number of inputs was primarily to simplify

the analysis, having fewer variables implies less interdependencies between them. Using the

�rst six inputs was an arbitrary choice. Any subset which allowed the classi�er to achieve

su�cient accuracy on the task could have been used. This particular classi�er achieved

98.1% on the training data and 93.9% on the test set.

Using the training data a connectivity analysis was conducted rendering the group graph

in �gure 3.13. As can be seen, the classi�er consists of one concave decision region with 4
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A

B C

D

11 points

52 points 26 points

35 points

Figure 3.13: The group graph of the six input SVM model classifying the van class from the
vehicle dataset.

connected convex subregions, A, B, C and D. The connectivity between these regions means

that A and B form a larger convex subregion, so do B and C, and C and D. So, for the sake

of analysis, we can decompose the decision region into 3 overlapping convex subregions.

Figure 3.14 contains the results of the ellipsoid PCA method applied to each of the

convex subregions. Note that the values in the tables are rounded. This is common practice

as PCA is robust to rounding with respect to interpretability [40]. Next, we will interpret

these tables in order to understand what geometric properties de�ne membership in the van

class, for each of these di�erent convex subregions of the input space.

3.6.3 PCA Interpretation

Interpretation of PCA data is an art unto its own [40]. To generalize for the sake of simpli-

fying the process, the principal components are roughly divided into two sets: those with a

relatively high eigenvalue or radius, and those with a small eigenvalue or radius.

Those components with a large radius describe correlations in the data. That is, in

a principal component vector with a large radius, the variables with a large magnitude

are variables that move together: Either they move in the same direction together (positive

correlation) if they have the same sign, or they move in opposite directions together (negative

correlation) if they have opposite signs.

On the other hand, components with a small radius act as constraints, describing rela-

tionships between the variables in the component vector which must be maintained in order

to stay within the decision region. Constraints are probably more important to understand-

ing a classi�er's decision regions than are correlations, as the constraints describe the sharp

boundaries between belonging or not belonging to the class.
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Axis # I II III IV V VI Center

1. Compactness .6 -.2 .8 -.2 .0 .0 .5

2. Circularity .7 -.2 -.4 .6 .0 .2 .7

3. Dist Circularity .3 -.1 -.5 -.8 -.1 .0 .7

4. Radius Ratio -.2 -.8 -.1 .0 .3 -.5 -.2

5. Axis Aspect Ratio -.3 -.5 .1 .0 -.3 .7 -.8

6. Max Aspect Ratio .0 -.1 .0 .1 -.9 -.4 -.9

Radius .7 .4 .3 .2 .0 .0

Axis # I II III IV V VI Center

1. Compactness .3 -.3 .0 .9 .1 .0 .1

2. Circularity .8 .0 .6 -.2 .0 .0 .0

3. Dist Circularity .5 -.2 -.8 -.2 .2 -.1 .2

4. Radius Ratio .3 .7 -.2 .2 -.4 .4 -.1

5. Axis Aspect Ratio .0 .7 .0 .1 .5 -.5 -.5

6. Max Aspect Ratio .0 .0 .0 .0 .7 .7 -.9

Radius 1.8 .6 .4 .4 .1 .0

Axis # I II III IV V VI Center

1. Compactness .4 -.5 .5 -.5 .1 .2 -.4

2. Circularity -.5 -.8 -.2 .1 .0 .0 -.2

3. Dist Circularity .3 -.1 .4 .8 .1 .1 -.1

4. Radius Ratio .6 -.3 -.4 .0 -.3 -.6 -.5

5. Axis Aspect Ratio .4 -.1 -.6 .0 .3 .6 -.5

6. Max Aspect Ratio .0 .0 .0 .0 .9 -.4 -.8

Radius .6 .3 .2 .2 .1 .1

Axis # I II III IV V VI Center

1. Compactness .3 .0 .8 -.4 .2 .0 -.5

2. Circularity -.2 .6 .4 .5 -.4 .0 -.1

3. Dist Circularity -.1 .5 -.2 .0 .8 .0 -.2

4. Radius Ratio -.4 .2 -.1 -.5 -.2 -.7 -.7

5. Axis Aspect Ratio -.5 .2 .0 -.5 -.1 .7 -.7

6. Max Aspect Ratio .7 -.5 .3 .3 .3 .0 -.7

Radius .7 .4 .3 .2 .2 .0

Group D Ellipsoid

Group C Ellipsoid

Group B Ellipsoid

Group A Ellipsoid

Axis # I II III IV V VI Center

1. Compactness .3 -.1 .6 -.7 .1 -.1 .2

2. Circularity .8 .0 .3 .5 .0 -.1 .2

3. Dist Circularity .5 .0 -.7 -.4 .1 -.2 .3

4. Radius Ratio .1 .8 .0 -.2 -.4 .5 -.1

5. Axis Aspect Ratio -.2 .6 .1 .0 .4 -.6 -.6

6. Max Aspect Ratio .0 .0 .0 .0 .8 .6 -.9

Radius 1.9 .7 .4 .4 .1 .1

Axis # I II III IV V VI Center

1. Compactness .4 -.6 .6 -.4 .2 -.1 .0

2. Circularity .7 .6 -.2 -.5 .0 .0 .0

3. Dist Circularity .6 .0 .0 .8 .2 -.1 .2

4. Radius Ratio .3 -.5 -.5 -.1 -.5 .4 -.2

5. Axis Aspect Ratio .0 -.3 -.6 -.2 .5 -.5 -.5

6. Max Aspect Ratio .0 .0 .0 .0 .7 .7 -.8

Radius 1.8 .8 .6 .4 .1 .1

Axis # I II III IV V VI Center

1. Compactness .1 -.5 .1 -.9 .0 -.1 -.5

2. Circularity -.1 .3 -.8 -.3 .3 .1 -.1

3. Dist Circularity .3 -.2 -.4 .0 -.9 -.1 -.2

4. Radius Ratio .7 -.1 .0 .0 .2 .7 -.6

5. Axis Aspect Ratio .6 .1 .0 .1 .3 -.7 -.6

6. Max Aspect Ratio .2 .8 .3 -.4 -.2 .0 -.7

Radius .8 .6 .4 .3 .2 .1

Groups A + B Ellipsoid

Groups B + C Ellipsoid

Groups C + D Ellipsoid

Figure 3.14: This �gure shows the PCA analysis of each of the ellipsoids used to approximate
the convex regions of the SVM classi�er. The hi-lighted values are discussed in the text.
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How does a small radius principal component express a constraint? Since the component

represents a small axis of the underlying ellipsoid then it implies that moving from the

center in the direction of the axis vector will quickly take us out of the ellipsoid. Hence

the component acts as the direction of the border o� the decision region. A complementary

algebraic perspective is to consider that any point x in the ellipsoid can be expressed as

z using the coordinate system given by the PCA vectors from the center of the ellipsoid.

The component zi of the coordinate corresponding to the i-th principal component pi is

calculated by the inner product x�pi, due to the orthonormality of the principal components.

To be inside the ellipsoid zi has to be smaller than the radius of pi. But since the radius

of pi is very small or almost negligible we get the approximate equation x � pi = 0, a direct

linear constraint on the values of x.

3.6.4 The Analysis

We would like to analyze the larger convex subregions, AB, BC and CD. In our analysis we

are interested in answering two questions: 1) What part of the input space does the ellipsoid

address? 2) What unique identi�er of belonging to the class, or constraints on the data are

imposed by the ellipsoid?

First consider the group consisting of C and D (�gure 3.14). Starting with what part

of the input space is covered by the ellipsoid, we contrast the center of this ellipsoid with

the other two ellipsoids to �nd that it di�ers mostly from the other two by having a low

Compactness (COM) and a lower Radius Ratio (RR). Looking at the COM values in the

principal components factored by their radii, we �nd that this low COM value is true for

the full ellipsoid as it is limited in this ellipsoid to stay below -0.2. We next try to �nd the

properties of the points in the ellipsoid. Examining the PCA, what is particularly interesting

is the last PC, one which expresses a constraint. In this PC all but the 4th and 5th elements,

RR and Primary Axis Aspect Ratio (PAAR), have an almost negligible value. Since the

value of these two signi�cant variables is almost equal but of opposite sign, then we arrive at

the approximate constraint: RR�PAAR = 0) RR = PAAR, a direct strong limitation on

class membership. The �rst PC, the one with the largest radius, also demonstrates that this
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constraint is the source of greatest variance for the set. In the �rst PC, the RR and PAAR

elements have the most signi�cant magnitude of any other variable. Their magnitude is also

very similar between them, implying that they are correlated and move together across the

full stretch of the large radius. Thus the group CD limits membership in the van class to

points with a relatively low compactness, which are constrained to have an almost equal RR

and PAAR.

The groups AB and BC share many common properties. First, their centers are very

similar, hovering near zero for the �rst 4 variables and having a low Maximum Length

Aspect Ratio (MLAR). In fact this low MLAR is a constraint for both of these groups.

Looking, for example, at the group BC (the same is true for AB), whose last two PCs act as

constraints, we can see that other than the MLAR the variables in the two constraints are

mirrors of each other, their magnitudes are close but their signs are reversed. Thus, adding

the two constraints together, the other variables cancel out and we conclude that the MLAR

is constrained to be zero (relative to the center of the ellipsoid). Note that this is also borne

out in the larger radius PCs, where the magnitude of the MLAR is negligible. Another point

of similarity between these two groups is their �rst PC. This PC has a very large radius,

allowing for the Circularity (CIR) and Distance Circularity (DC) to move together through

almost their full value range, between -1 and 1. There is also some correlation with COM

across this major axis of the ellipsoid. This major axis is obviously a contribution from the

points in the B group which also has a very similar �rst PC.

Given these 3 large similarities between AB and BC, what are the di�erences that put

them into two separate convex regions? While these di�erences are hidden in the respective

PCs of these groups, it is easier to examine their two unconnected subcomponents, A and

C. The centers of A and C convey that these two groups are from largely di�erent regions

of the input space. Where A is located to enclose points with a high COM, CIR, DC and

relatively low PAAR, C encloses points with a low COM, relatively low CIR and DC, and

a relatively higher PAAR. Other than that important di�erence, the constraints of these

two groups are similar� both constraining the MLAR to zero, with a few small variations.

The fact that their kernel is similar (the subspace de�ned by their constraints) implies
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that these ellipsoids have a similar orientation in the input space. Nevertheless, we can

still discern an important di�erence between them by looking at their �rst PC. Where as

group A's PC shows a positive correlation between COM and CIR, group C's PC shows

a negative correlation. Thus, in the direction of maximal change, these groups show an

opposing relationship between these variables (as well as others).

In summary, using the PCA analysis on the scatter matrix of the ellipsoids we saw that

the CD ellipsoid primarily addresses data points with a low COM and varying MLAR, by

constraining membership in the class to points having similar RR and PAAR values. We

then saw that the AB and BC ellipsoids both allow their CIR, DC and to some degree their

COM to vary together a great deal under the constraint that their MLAR stays constant.

Their main di�erences stem from the contributions of the A and C groups which tackle points

in the opposite extremes of COM, CIR and DC by imposing variations on the relationships

of these variables. Thus, we conclude from the analysis that the classi�er's construction of a

concave decision region facilitates imposing a di�erent classi�cation strategy on the di�erent

parts of the input space.

3.6.5 The ellipsoids as a model

In our previous analysis we constructed ellipsoids to enclose the points belonging to each of

the composite groups in order to analyze them using PCA. In doing so we have indirectly

constructed an alternative classi�er, the model which consists of these ellipsoids. That is,

we can take an unclassi�ed point in the input space and check whether it is on the inside of

any of the ellipsoids, if so it is classi�ed as belonging to the van class.

We now compare this model with the original SVM model. Where the SVM model

achieved 93.9% on the test set, the ellipsoid model achieved 91.2%. Of the 296 entries in

the test set the output of the two models agreed on 254 entries, 85.8%. The SVMs average

positive output response was 5.64 and -10.8 for negative outputs. For the points where

the models disagreed the SVMs average positive output was 2.84 and the average negative

output was -2.59. The fact that these responses are closer to zero implies that these points

of contention between the models are points which are close to the SVM's boundary. We
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would not expect the ellipsoids to be an exact match to the SVM model; di�erences in

the underlying forms of the decision boundaries, and limited information about the exact

nature of the SVM decision boundary would preclude that. However, as an approximation

the ellipsoid model gives a reasonable match to the SVM, capturing a large part of the

essence of its classi�cation strategy.

Another SVM was trained using the same kernel on the full 18 input classi�cation prob-

lem (56 support vectors). It achieved 97.6% accuracy on the test set. The connectivity

analysis of this classi�er showed that its decision strategy with respect to the training set

consists of one large convex region. Thus, in the process of adding input variables, some

of the concave structure present in the lower dimensional model was removed. There could

be di�erent reasons for this, but it is a fair assumption that the �Curse of Dimensionality�

[8], the fact that as we increase the input dimensions the problem becomes exponentially

less speci�ed, is involved. This allows for a structurally simpler model (one convex deci-

sion region as opposed to a concave one composed of 4 parts) to �t the data, as the added

dimensionality loosens the restrictions on the shape of the decision regions.

Fitting a minimum volume ellipsoid to the data gave a classi�er with 87.84% accuracy

on the test data. However, this model does not take into account any margin information

(where to put the boundary between the van and other classes.) We took a naive approach

to this, just expanding the model by a factor. As such, the ellipsoid would remain with the

same center and relative axes proportions, but we would expand or shrink it appropriately.

Rather than using an absolute factor we calculated the factor that it would take to bring

the ellipsoid to just touch the nearest member of the other class outside the ellipsoid, and

normalized the factors to that value. Thus, a factor of 1 corresponds to just touching the

�rst member of the other class. This expansion and contraction approach is related to the

Restricted Coulomb Energy algorithm [63]. Using the test set for validation the ellipsoid

was expanded by a factor of 2.4, giving an accuracy of 96.96% on the test set, misclassifying

only two examples more than the SVM.

Even though the 18 input SVM model did not display the same structure as its lower

dimensional counterpart, that structure can still be applied to the 18 input problem. Con-
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sider the connectivity graph as a way to organize the data points. In essence it de�nes

which points go together in convex decision regions. Thus, we can build the same ellipsoid

model used in the 6 input case, in terms of which points to place in which ellipsoid, but use

the full 18 dimensions of the input for the MVE construction. Doing so renders a model

with 80.4% accuracy on the test set. Using a factor of 1 to adjust the margins of all three

ellipsoids gives a model with 97.97% accuracy, and validating with respect to the test set

(factor=1.15) gives a model with 98.99% accuracy on the test set. That is an improvement

from 2.4% error for the SVM to 1% error. Even though it is hard to draw strong conclu-

sions from this result it does speak to an important issue in decision region based classi�ers,

over-generalization. The model with one convex decision region can perform well on the test

data. However, ultimately the task of the classi�er is to de�ne the class set, what it means

to be a van. By using one convex region to enclose all the points, the model allowed the

class to be, at the very least, any point between the vans represented in the training data.

Thus, rather than �nding what makes a van a van, it found what makes a van not an Opel,

Saab or truck. In a world with more than four types of cars the model would most probably

misclassify other inputs which fell into its decision region. In the lower dimensional case,

the training data was denser (relative to the dimensionality of the input space) and forced

greater constraints on the shape of the decision regions. By using this additional structure

in the higher dimensional case we may be getting closer at what it means to be a van.

3.7 Analysis Method Details and Discussion

3.7.1 Low-Level Analysis

In the low-level analysis stage the connectivity graph is constructed by sampling between the

sample points. There is only one parameter that may be varied at this stage, the sampling

rate on the line. Unlike DSP applications where assumptions can be made about the data

source, allowing use of the Nyquist frequency to sample, in our particular case there is no one

correct frequency, as illustrated in �gure 3.15. In the �gure we see that as our two sample

points approach the decision boundary at the corner, we will need a continuously increasing

sampling rate to detect the output transition. The consequence of losing that transition is
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Figure 3.15: There is no absolute sampling frequency which will guarantee the detection
of all decision boundaries. In this �gure we see that the closer we come to the corner the
higher the sampling rate must be to detect the boundary.

that the two sample points may seem connected when there is in fact a region between them

with a di�erent output. Thus, we can never lose the fact that two points are connected, only

that there may be a hole between them. Increasing the sampling frequency increases our

sensitivity to smaller and smaller holes. From an applied perspective, ultimately it comes

to the question of how small a transition is important to detect. Typically, the heuristic

used is to try a few sampling frequencies until an increase in the sampling rate does not

signi�cantly change the connectivity graph.

Another decision to be made is what points to use. In this chapter we have used the

points of the training set. However, there is no reason to be limited to only those points. One

can also use the points of the test set, validation set, and unlabeled data. In addition it is

possible to generate additional points to explore the classi�er's response in under represented

parts of the input space. For example, if we were interested in the shape that the decision

region has between two classes (at the margin), we might generate new points by sampling

between the two classes to �nd points near the boundary to be used for the connectivity

analysis.

3.7.2 Higher-Level Analysis

At the higher-level analysis stage we want to construct a group graph out of the connectivity

graph. The grouping approach at this stage is to compare the connectivity vector of vertices

using the Hamming distance. The �rst stage is to calculate a rough grouping using algorithm
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2.

Having a rough group division in hand we construct a matrix G describing the intergroup

connectivity. Let i,j be the labels of two groups, let Si be the set of vertices with label i, and

de�ne n(l; Si) to be the number of connections that vertex l has with group Si. Then the

matrix G is constructed as (where the equalities are due to the symmetry of the connectivity

matrix):

Gji = Gij =

P
l2Si

n(l; Sj)

jSij jSj j
=

P
l2Sj

n(l; Si)

jSij jSj j

What G describes is how connected any two groups are. Each entry is a value between 0

and 1, where 1 implies that the two groups are 100% connected. Typically most values are

not 0 or 1, but somewhere in between. Usually we apply a cuto�, for example groups with

over 85% connectivity are considered connected, and groups with less than 15% connectivity

are considered disconnected.

After the �rst round of grouping we may end up with groups with ambiguous connec-

tivity. That is, their intergroup connectivity value is somewhere between the cuto� values,

not allowing us to explicitly state whether they are connected or not. The reason for this

is that during the grouping procedure we purposely allow a degree of robustness in the

form of the � parameter. The function of this robustness is to allow vertices with similar

but not identical connectivity signatures to be grouped together, and as such, to gloss over

small noise or irregularities in the decision region structure. However, the side e�ect of this

robustness is that it may allow groups to form which consist of points that, at a coarse level,

have a similar connectivity signature, but with respect to a few groups may have di�erent

connectivity. Fortunately, the solution to this is quite simple, a re�ned grouping. After

identifying two groups with ambiguous connectivity, we perform a second round of grouping

on the members of one of the groups. However, when we check the Hamming distance we

do so only with respect to the members of the other group. What this does is to split the

original group up with respect to how the vertices are connected to the ambiguous second

group. Typically, we may end up splitting the group up into two groups based on whether

or not they are connected to the ambiguous group. The procedure may be repeated until
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Figure 3.16: The point at which the arrow is pointing has a unique connectivity signature
which would preclude including it in any group. However, it is part of the convex region
de�ned by the top 3 points.

we are left with an interpretable group connectivity matrix G, allowing us to draw a group

graph of the relationships between the groups.

3.7.3 Convex Region Analysis

In the convex analysis stage, we wish to locate which points go together in convex regions,

and to apply a convex analysis methodology to those points. During the labeling of the

various groups, some points that are part of convex regions may end up not being labeled.

We call these corner points. As �gure 3.16 illustrates these corner points are points that, due

to their position in the decision region, may not have a connectivity pattern that is shared

by other points. Thus, before we start the convex analysis, we go through each unlabeled

point and check which groups it is fully connected to. Then, when we do the actual convex

analysis we include those unlabeled points that are also fully connected to the group clique

being analyzed.

In this chapter we have used PCA on the covariance matrix of the data and PCA on

the scatter matrix of the MVE. There are other methodologies that may be applied to

analyze convex regions, for example convex regions may be approximated by axis-parallel

boxes [7; 93], allowing a �rule like� representation of the data. Unfortunately, a detailed

discussion of these and other methods are beyond the scope of this manuscript.
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3.8 Extending and Generalizing the Method

The Decision Region Connectivity Analysis method (DRCA) as described here is applied

to decision regions in the input space. At times we may want to interpret the classi�er

as �rst applying a coordinate transformation to the data (feature extraction, hidden unit

space, kernel space, etc) and then enclosing the transformed data in decision regions. In

such a case we can apply the DRCA method in this transformed space instead of the input

space. For example, for a neural network we may apply the method to the data points only

as they are represented in the �rst layer of hidden units, thus sampling along lines in the

hidden-unit space instead of the input space.

It is also interesting to note that the only location in the basic algorithm that we make an

assumption about the metric of the input space is in how we de�ne what it means to sample

�on the line�. Thus, another possible modi�cation to the algorithm would be to adjust

this de�nition to re�ect prior knowledge about how either the input space is organized or

how the classi�er interprets it. However, modi�cations of this sort re�ect changes in the

neighborhood de�nitions, and as such would preclude the typical analysis of convex regions

using PCA.

In general though, how do we extend this method to other types of classi�ers? It may

seem that we want to mathematically abstract the cornerstones of the method, introducing

abstract notions of convexity and concavity. Singer [79], describes this procedure as �One

selects a certain property that usual convex sets in R
n have, but many other objects in

possibly other settings also have, and one uses that property to de�ne a `generalized' sort

of `convexity'�. Even though this sounds vague it hints at the real question, why are we

interested in convexity to begin with?

When a model is given training data, it is given a sampling of a class set, and asked to

deduce the actual complete set. So if a model has generalized from training data then the set

it has constructed approximates the actual underlying category set. Thus the model builds

a larger (probably in�nite) set from a �nite sample. Whether the model will generalize

successfully depends on whether these larger sets are the right form of extrapolation from
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the sample. Our goal being to understand the model's class set, we want to describe these

in�nite sets that are derived from the sample. In a decision region type classi�er, points

are enclosed in contiguous volume �lling areas of the input space. By examining where

points are fully enclosed in convex portions of decision regions, we can infer how the model

generalizes. These convex portions describe the unique, contiguous, volume �lling parts

of the input space where all the points belong to the class. Thus, convex regions are the

essential mechanism by which these models construct in�nite sets from �nite samples. In

order to adapt this method to a di�erent type of classi�er we would need to understand how

it constructs its in�nite class sets from samples and �nd a method to recognize and analyze

these sets.

3.9 Conclusion

Many classi�ers operate by constructing complex decision regions in the input space. These

decision regions can be few or many, convex or concave, have large or small volumes, etc.

By focusing on the sample points enclosed in these regions we have demonstrated a method

with low computational complexity, DRCA, to extract these properties which is independent

of the classi�er type or the dimensionality of the input space. It thus allows us not only to

analyze individual high-dimensional classi�ers, but to compare completely di�erent classi�er

models on the same problems. We demonstrated this method on a number of examples:

Analyzing a 3-dimensional neural network, allowing a comparison of the method with its ac-

tual decision region; Comparing a neural network and KNN classi�er on a handwritten digit

classi�cation problem, and demonstrating fundamental di�erences in their generalization

strategy; Analyzing a high-dimensional SVM model, and demonstrating how it partitioned

its decision region to apply di�erent classi�cation strategies to di�erent parts of the input

space.

This method o�ers a signi�cant opportunity in helping to unite a �eld with many models

and approaches by giving an analysis tool which addresses their greatest common denom-

inator, their method of generalization, thus allowing the qualitative comparison of present

and future high-dimensional classi�ers.



Chapter 4

A Gradient Descent Method for a

Neural Fractal Memory

Unlike the direct-mapping computation exhibited by feed-forward and other decision region

type models in the previous two chapters, in recurrent neural networks there is no obvious

interpretation of computation. As such, there have been numerous interpretations of the

function that dynamics serve in recurrent network computation. The Hop�eld network uses

the �xed points of the network dynamics to represent memory elements. Networks studied

by Pollack [61], Giles [28], and Casey [16] use the current activation of the network as a state

in a state machine while using the dynamics of the network as the transition map. Some

try to model existing dynamical systems with recurrent neural networks [89]. RAAMs [60]

(as seen in the next chapter) use the network dynamics to describe complex data structures

such as trees and lists.

In this work we exploit the fact that it has been demonstrated that higher order recurrent

neural networks exhibit an underlying fractal attractor as an artifact of their dynamics [83].

These fractal attractors o�er a very e�cient mechanism to encode visual memories in a

neural substrate, since even a simple twelve weight network can encode a very large set of

di�erent images.

The main problem in this memory model, which so far has remained unaddressed, is how

to train the networks to learn these di�erent attractors. Following other neural training

methods, this chapter we propose a Gradient Descent method to learn these attractors.

87



CHAPTER 4. NEURAL FRACTAL MEMORY 88

The method is based on an error function which examines the e�ects of the current network

transform on the desired fractal attractor. It is tested across a bank of di�erent target

fractal attractors and at di�erent noise levels. The results show positive performance across

three error measures. This material has appeared at the IJCNN 98 conference, where it

received the Best Student Paper Award.

4.1 Introduction

We employ a novel interpretation of the computation performed by the network dynam-

ics [83], in which the network is treated as an Iterated Function System that is coding for

its underlying fractal attractor [4]. The fractal attractors used in this work are two dimen-

sional, hence the network is in e�ect coding for fractal images, and may be acting as a form

of visual memory.

Iterated Function Systems (IFS's) are a set of simple functions. Each function receives

as input a coordinate from a space and returns a new coordinate which is usually a simple

transformation of the input coordinate. When these functions are applied iteratively to

points in a space, they converge on a set of points, called the IFS's attractor. This attractor

is a fractal, a set with similar structure at di�erent resolutions.

The connection between IFS's and recurrent neural networks comes from thinking of a

network's neurons as the functions or transforms of an IFS. As such, these neurons receive

(X,Y) coordinates as input and return new ones in a recurrent manner.

It has been suggested that coding fractals by Iterated Function Systems may be an

e�ective mechanism for compressing images [5]. As such this interpretation of network

dynamics may form the basis of a highly e�cient method for storing visual information and

other related memories.

A small sample of some of the fractals which a simple network of only four neurons can

encode is shown in Figure 4.1. It is conceivable that this rich and interesting set of fractals

may be used to encode real-world visual images or at least some of their properties. To make

this interpretation of recurrent neural networks as storing a fractal attractor applicable,

it is necessary to demonstrate a mechanism by which these attractors can be learned or
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Figure 4.1: Example fractal attractors that can be generated with a four neuron network.

approximated by the network. This issue is related to the Inverse Fractal Problem, an area

of active research, which asks how, given an image, do you �nd the Iterated Function System

which can generate the image.

There have been di�erent approaches towards solving the inverse fractal problem; the

main motivation for this research has been image compression using fractals. Many of the

approaches use generalizations of IFS's such as LIFS's which use local-similarity as well as

self-similarity. The method of moments uses invariant measures of moments to match a

function system to a target image [91]. Genetic Algorithms have also been used to address

this problem [74]. The current generation of successful fractal image compression algorithms

succeed by severely limiting the space of transforms to be used [38; 25]. At present there is

still no general algorithm for solving the inverse fractal problem. It seems to be an elusive

problem related to the classic problem of object recognition under transformation.

In the vein of other learning algorithms for neural networks, such as the ubiquitous

back-prop [66] and many which have come since, we developed a training method for our

network which relies on an energy or error function that we seek to minimize by means of a

gradient descent on its energy landscape. In e�ect, minimization of this error function will

lead to the network learning the desired attractor. In the rest of this chapter we describe
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Figure 4.2: The neural network architecture consists of four neurons, each pair acting as a
transform.

the network architecture employed, explain the ideas behind the choice of the error function

and evaluate its e�cacy.

4.2 Architecture

A neural network based IFS can have an arbitrary number of transforms. We have con-

strained ourselves to two transforms in this implementation, because this is the minimal

amount needed to have a rich set of underlying attractors.

Since each transform is a mapping from one X,Y coordinate to another, it must be

composed of two scalar functions� one function for each output component, either X or

Y. Therefore the recurrent network we employed in our study consists of four neurons,

operating as a two transform IFS, where all neurons receive an X,Y coordinate as input and

return either the X or Y component of a transform. This is seen in �gure 4.2. The function

each neuron computes is the standard sigmoid of the weighted sum of the inputs, with a

bias term:

Out =
1

1 + e�w3X+w2Y+w1

As such each neuron has three modi�able parameters giving a total of twelve parameters
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for the whole network.

Since the attractor is an intrinsic property of its IFS, di�erent methods can be used

to generate it. In our implementation in order to generate the fractal attractor at a user

speci�ed resolution, we initially located a single point on the attractor, by applying one

of the transforms on a random point for a number of steps, until it converged. Next, the

network was iteratively run on this point, generating new points on the attractor. The

process was repeated for all new points, until no new points were found, and the set of

points on the attractor was assumed to be complete.

4.3 Learning

The problem we are trying to solve is: given a fractal attractor, �nd a set of weights for

the network which will approximate the attractor. Our approach to this problem consists

of �nding an error function which will be minimized when the network coded attractor is

equal to the desired attractor.

A common metric or error function used to compare fractal attractors is the Hausdor�

distance [4]. The distance is calculated by �nding the farthest point on each set relative to

the other set and returning the maximum of these two distances. By calculating from both

sets in a symmetrical manner, the Hausdor� distance gives a measure of mutual overlap.

In other words it will equal zero only when each set is contained within the other, or when

they are both equal. The Hausdor� distance between two point sets, A and B, is de�ned as:

H(A;B) = max (h; (A;B); h(B;A))

where

h(A;B) = max f�(a;B) j a 2 Ag

�(a;B) = min fkb� ak j b 2 Bg

The Hausdor� distance does not lend itself to a gradient descent approach to minimiza-

tion because it is not di�erentiable. In the fractal case, this is due to two reasons. First, the
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fractal attractor is generated by an iterative process, which is inherently not di�erentiable.

Second, the Hausdor� distance e�ectively uses only one point from each set. This point is

not constant and its selection may lead to discontinuities.

Our error function borrows principles from the Hausdor� distance and the collage theo-

rem [5]. The collage theorem provides the basis for most approaches to the fractal inverse

problem or fractal image compression. It states that in order to �nd an IFS for a given frac-

tal attractor, it is necessary to �nd a transformation which maps the attractor to itself. As

such, our error function will be minimized when the desired attractor and transformed de-

sired attractor mutually overlap. Since the network transformations are pseudo contractive

due to the sigmoid non-linearity, it follows from the collage theorem that this is equivalent

to the network coded attractor being equal to the desired attractor.

As stated previously, there are two issues which need to be addressed to make our error

function di�erentiable: the issue of attractor generation being iterative and the issue of only

using one point to calculate the error function. By comparing the desired attractor with

the transformed desired attractor instead of the network coded attractor, as per the collage

theorem, we can overcome the iterative process issue. This works since, instead of comparing

two attractors generated by an iterative process, we will be comparing one attractor with the

same attractor acted on by a function, one iteration of the IFS. The second di�erentiability

issue is the number of points used in actually calculating the error function. Our approach

is to sum over all points, both on the desired attractor and transformed desired attractor,

rather than selecting only the furthest points.

For a given attractor A and a set of transforms T our error function is de�ned as follows.

E(T;A) =

X
i

X
x;y2A

�(Tix(x; y); Tiy(x; y); A) +

X
x;y2A

�(x; y; T (A))

Where Tix and Tiy represent the i-th transform for x and y respectively (as calculated

by each neuron) and T (A) is the transformed attractor. The de�nition for � here is:

�(x; y; A) = min

n
k(x; y)� ak

2
j a 2 A

o
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This error function is similar to the Hausdor� metric in being symmetrical, i.e., taking

distances from the desired attractor to the transformed desired attractor as well as distances

from the transformed desired attractor to the desired attractor. It is also similar in its use

of the � function for measuring the distance between a point and a set. There are two

advantages to this error function: �rst, by summing over all the points in the calculation,

we get a better measure of the number of points of actual mutual overlap. Second, this error

function is practically di�erentiable with respect to the weights of the transform, allowing

its use in our gradient descent approach to minimization.

In examining the error function, it is apparent that it is composed of essentially con-

tinuous and di�erentiable functions. The only part which is not is the min function. In

most applications the min function is not continuous, but in this particular case it is. This

continuity stems from the continuity of � with respect to its parameters. For example, if

we were to examine the continuity of � with respect to the x variable, we can imagine that

for a while the min function picks a certain point on the attractor which gives the minimum

distance, and at some value of x the min function switches to another point on the attractor.

However, by geometric reasoning we know that while switching to that other point there is

a certain intermediate x for which the distances to the �rst and second points are equal.

Thus there is no jump in the value of the min function when switching points, therefore it

is continuous.

A similar argument can be presented for y and the weights of the transform. Continuity

does not mean di�erentiability for the min function. At the points where the min function

could go to multiple points on the attractor there is no single derivative. Since this is a

relatively rare event we have chosen to pick arbitrarily one of the points for the derivative

calculation.

Due to the fact that in the �rst term of E the transform applies to x and y, and in the

second term it applies to the set of the attractor, the derivatives must be handled di�erently

for each term. Speci�cally, for each point in T (A) we must remember the point in A from

which it came and which transform was used.

We now calculate the gradient of the function E with respect to the weights of a Tx
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transform. The calculation for the other transforms is identical and will not be repeated.

The gradient is given by:

�
@E

@w1
;
@E

@w2
;
@E

@w3

�
=

@E

@�
�
@�

@Tx
�

�
@Tx

@w1
;
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;
@Tx

@w3

�
+
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�
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�
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The derivative for the transform is the standard one used in back-prop as given by:

�
@Tx

@w1
;
@Tx

@w2
;
@Tx

@w3

�
= xa(1� xa)(x; y; 1)

Therefore the gradient can be written as

�
@E

@w1
;
@E

@w2
;
@E

@w3

�
=

X
x;y2A

2(Tx � x�1)Tx(1� Tx)(x; y; 1) +

X
x;y2A

2(x� x�2)x�2(1� x�2)(x
o

�2; y
o

�2; 1)

where Tx refers to Tx(x; y) ; x�1 is the x chosen by the min function of the � function in

the �rst term of E ; x�2 is the x chosen by the min function of the � function in the second

term of E ; and x
o

�2; y
o

�2 are de�ned by x�2 = Tx(x
o

�2; y
o

�2).

Notice that for the second term x�2 may not exist with respect to the mapping from the

attractor given by a particular Tx, or be mapped to multiple times. By adjusting the sum

respectively, both terms in E even out in magnitude.

4.4 Evaluation and Discussion

The motivation behind the evaluation of the error function was twofold. First, we wanted

to demonstrate that fractal attractors are learnable using this error function. Second, we
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wanted to assess the domain in which the error function was successful. This was done by

applying the algorithm across a diverse set of fractal attractors, and by varying the initial

noise conditions. Since it is well known that it is di�cult to objectively gauge the di�erence

between images, we chose to use three di�erent metrics to evaluate the results as well as our

own eyes.

The error function was tested on a set of 100 fractal attractors. The fractals used were

randomly selected from a set of fractals previously generated using a hill-climbing algorithm

to locate non-point attractors. For each fractal, the set of weights used to generate the

attractor with a certain amount of noise were used as initial conditions for the gradient

descent algorithm. The attractors were represented at 16 by 16 pixels. The weight values

ranged between -5 to 5. The uniform noise introduced had a variance of 0.25, 0.5, 1.0 and 4.0

across di�erent trials. The gradient descent was weighted using a linear decay function, and

consisted of 20 iterations. For each noise level, 10 trials were conducted on each attractor,

thus 4000 trials were conducted.

The performance of the algorithm was gauged using the Hausdor� distance, Hamming

distance, and similar to the error function described in this chapter, the sum of the point

distances between two attractors. These distances to the desired attractor were computed on

the initial conditions and on the �nal conditions after the gradient descent run. On average,

79 out of the 100 attractors tested showed an improvement across all three measures.

In �gure 4.3 we see subjective con�rmation of the success of the algorithm. In the

example runs A, B, C and D, we see that the �nal network coded attractor is very similar to

the desired attractor, in spite of having a di�erent initial network coded attractor. Sample

runs E and F show how the algorithm may fail, since we see that the �nal network coded

attractor di�ers more from the desired attractor than the initial network coded attractor.

It seems that the algorithm performs more impressively with higher initial error. This

is seen clearly in �gure 4.4, where a histogram of changes in the Hausdor� distance across

trials is displayed. We see that for the 4.0 and 1.0 error cases, across most trials, there is a

strong negative change in the Hausdor� distance, meaning an improvement. However for the

0.5 and 0.25 error cases, the changes do not seem as signi�cant and unilateral. One obvious
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explanation for this e�ect might be that a larger initial error would bring a greater perceived

improvement. However this still does not account for the skew in these graphs, which may

be due to the large initial jumps in the gradient descent algorithm and the non-linear nature

of the error landscape.

The graphs in �gure 4.5 suggest that in many cases the algorithm is driving towards

the global minimum, as opposed to local minima. This is seen most clearly in the error

function graph, where most of the �nal network coded attractors have an error near zero,

meaning they are close to the desired attractor. Across the other two measures this migration

towards zero is present but less obvious. We would expect it be most conspicuous in the

error function which is closest to the measure used in the actual gradient descent.

In physically examining the results across the di�erent attractors, it appears that the

algorithm performs better on non-overlapping transforms and spatially distinct attractors.

This makes sense because there is less ambiguity with respect to the transformation in

relation to the self similarity of the attractor.

This algorithm represents the �rst step in harnessing fractal attractors of recurrent neural

networks for computation. There are still many avenues of exploration with this error

function. For example, manipulating the error constant decay in ways appropriate to the

degree of error, running simulations on di�erent categories of attractors, using ensemble

techniques, as well as modifying the error function itself.

These network fractal attractors can be used in di�erent applications. Obviously they

can be used to store images. But they can also represent operating ranges and domains.

For example an attractor may represent the range of freedom of a joint or the �eld of vision

from a vantage point. The main advantage of using fractal attractors is their inherently

very compact coding of visual information. For this reason we believe that this approach

warrants further research in the context of neural storage of visual information.
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Figure 4.3: This �gure shows some example run results, on 16 by 16 attractors. The �rst
for examples are subjective successes, while the last two leave something to be desired.
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Figure 4.4: This is a histogram of changes in the Hausdor� distance after running the
gradient descent algorithm. It was compiled across all 4000 trials. Each of the di�erent
graphs represent trials at di�erent initial error levels.
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Figure 4.5: Each graph represents a histogram of either the initial or �nal error across each
of the three error measures. These were conducted for an initial error level of 4.0.



Chapter 5

RAAM for In�nite Context-Free

Languages

The recurrent neural network in the previous chapter was interpreted as encoding an image

in its fractal attractor. In order to extract a network's memory it was iterated repeatedly

to generate the points that made up its attractor. The exact order in which these attractor

points were generated (the dynamics) was not important to that representation, only what

the points were. In this chapter we look at another interpretation of the same network in

which both the attractor and the dynamics play a role. In fact this is a new dynamical

systems perspective on a representation interpretation of recurrent networks that has been

around for over a decade [60], RAAM.

RAAM is a bridge between connectionist and symbolic systems, in its ability to represent

variable sized trees in recurrent networks. In the past, due to limitations in our understand-

ing of how dynamics in�uenced computation in this model, its development plateaued. By

examining RAAM from a dynamical systems perspective we overcome most of the problems

that previously plagued it. In fact, using a dynamical systems analysis we now prove that

not only is RAAM capable of generating parts of a context free language, anbn, but is ca-

pable of expressing the whole language. Thus demonstrating the inherent capacity of this

paradigm.

This material was published in the proceedings of the IJCNN 2000 conference, and

formed the basis of a paper in COGSCI 2000.

99



CHAPTER 5. RAAM FOR INFINITE CONTEXT-FREE LANGUAGES 100

Left X Left Y Right X Right Y

X Y
Figure 5.1: An example RAAM decoder that is a 4 neuron network, parameterized by
12 weights. Each application of the decoder converts an (X;Y ) coordinate into two new
coordinates.

5.1 Introduction to RAAM

A Recursive Auto-Associative Memory or RAAM [60] decoder is a highly recurrent neural

network that maps an input into a data-structure, in this case into a binary tree. Thus,

from this perspective, each location in the input space encodes for a speci�c tree.

An example RAAM decoder used in this chapter is shown in �gure 5.1, consisting of

four neurons that each receive the same (X;Y ) input. The output portion of the network is

divided into the right and left pairs of neurons. This network is described by the following

equations:

LeftX =
1

1 + e�(wLXXx+wLXY y+wLX)

LeftY =
1

1 + e�(wLYXx+wLY Y y+wLY )

RightX =
1

1 + e�(wRXXx+wRXY y+wRX)

RightY =
1

1 + e�(wRYXx+wRY Y y+wRY )
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Before using the decoder, the part of the input space that consists of just single node

trees is prespeci�ed. This is called the terminal set , as it acts to terminate the decoding

process, as will be described. If we wish, we can also assign labels to these di�erent leaves,

to give them additional meaning. Note the action of deciding whether a point belongs to

the terminal set is called the terminal test.

The decoding starts with a location in the input space, for this network an (X,Y), two-

dimensional coordinate. This initial coordinate represents the root of the tree. What the

decoding step does is to �nd the sub-trees on the left and right branch of this initial root

node.

The decoder can be decomposed into two transformations, one for the left branch and

one for the right branch. Applying one of these transforms to a coordinate in the space

generates a new coordinate. Thus, when both transforms are applied to the initial root

coordinate they generate two new coordinates that correspond to the roots of the sub-trees

on the left and right branches of the initial coordinate.

It is fairly evident how the process can be made recursive. Each of the these new coordi-

nates is recursively rerun through the network, generating twice as many new coordinates,

in order to generate the next level of the tree. This recursion continues, diverging into

new branches with each iteration, unless these new coordinates are part of the terminal set.

When a branch lands on a point in the terminal set it indicates that we have reached a leaf

of the tree, and the recursion is stopped.

Figure 5.2 illustrates this process for a small tree. In the �gure the terminal set is shown

as the darkened shape. It consists of two parts in two shades of gray, where each part is

associated with a di�erent leaf label. The circle in the top portion of the screen indicates

the initial root coordinate. Arrows emanating from this circle point to the new coordinates

generated by applying the two network transform to this initial coordinate. Note how one

of the transforms immediately leads to the terminal set, causing the left branch of this tree

to terminate on a leaf with the symbol "1". The other branch continues to a non-terminal

part of the space, and thus causes the reapplication of the transforms to this new coordinate

in order to generate its branches, as evidenced by the two arrows emanating from this
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(1 (1 2))
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Figure 5.2: The dynamics of a RAAM decoder as it decodes the tree (1 (1 2)) and its
daughter tree (1 2). The left transform is shown as a dashed line, and the right transform
as a straight line.

coordinate. As both of these new arrows land on parts of the terminal set this signi�es the

end of the recursion process, and the complete decoding of the tree.

5.2 Problems in RAAM

Although RAAM has found wide use in demonstration and feasibility studies, and in philo-

sophical discussions of what could be done with networks using symbolic representations,

our understanding of what RAAM could do and HOW it works has been incomplete. De-

pending on some factors like the trees themselves and the dimensionality of the network,

learning parameters, etc., the system might or might not converge, and even when it con-

verged it might not be reliable. Several studies of sequential RAAM demonstrated that the

network could �nd variable-valued codings which were understandable [10]. Douglas More-

land discovered that under certain conditions sequential RAAM had a very high counting

capacity [57] similar to subsequent work by Rodriguez et al [64].
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The decoder works in conjunction with a terminal test, which answers whether or not

a given representation requires further decoding. The default terminal test merely asks

if all elements in a given code are boolean, e.g. above 0.8 or below 0.2. This analog-to-

binary conversion was a standard interface in back-propagation research of the late 1980's

to calculate binary functions from real valued neurons. However, although it enabled the

initial discovery of RAAM training, it led to several basic logical problems which prevented

the scaling up of RAAM:

1. The �In�nite Loop� problem is that there are representations which �break� the decoder

by never terminating. In other words, some trees appear �in�nitely large� simply

because their components never pass the terminal test. This behavior breaks computer

program implementations or requires depth checking.

2. The �Precision vs. Capacity� problem is that tighter tolerances lead to more decoding

errors instead of a greater set of reliable representations.

3. The �Terminating Non-Terminal� problem arises when there is a �fusion� between a

non-terminal and a terminal, such that the decoding of an encoded tree terminates

abruptly.

Various people have noticed problems in the default terminal test of RAAM and have come

up with alternatives, such as simply testing membership in a list, or simultaneously training

a �terminal test network� which classi�es representations as terminal or nonterminal. [18].

In addition, there are attempts at increasing capacity through modularization and serial-

ization [47; 81].

In the rest of this chapter we present a new formulation of RAAM decoders based on an

analysis of the iterated dynamics of decoding, that resolves all these problems completely.

This formulation leads to a new �natural terminal test�, a natural labeling of terminals, and

an inherent higher storage capacity. We then continue the dynamical systems analysis to

prove that based on a prototype anbn RAAM decoder generated by hill-climbing, we can

generate a competence class of parameterized decoders that not only exclusively generate

a
n
b
n sequences but in some cases are capable of generating the full in�nite language.
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5.3 New RAAM Formulation

In the operation of the decoder the output from each pair of neurons is recursively reapplied

to the network. Using the RAAM interpretation, each such recursion implies a branching of

a node of the binary tree represented by the decoder and initial starting point. However, this

same network recurrence can also be evaluated in the context of dynamical systems. This

network is a form of iterated function system (IFS) [4], consisting of two pseudo-contractive

transforms which are iteratively applied to points in a two dimensional space.

In the past we have examined the applicability of the IFS analogy to other interpretations

of neural dynamics, as in the previous chapter and in [61; 44]. But unlike these previous

cases, in the context of RAAMs the main interesting property of contractive IFSes lies in

the trajectories of points in the space� when we take a point and recursively apply the

transforms to it (applying both or randomly choosing between them) where will the point

eventually end up? For contractive IFSes the space is divided into two sets of points: The

�rst set consists of points located on the underlying attractor (fractal attractor) of the IFS.

Points on the attractor never leave it. That is, repeated applications of the transforms to

points on the attractor only moves them within the attractor� e�ectively coercing them to

take on orbits within its con�nes. The second set is the inverse of the �rst, points that

are not on the attractor. The trajectories of points in this second set are characterized by

a gravitation towards the attractor. Finite, multiple iterations of the transforms have the

e�ect of bringing the points in this second set arbitrarily close to the attractor.

As noted before, problems 1 and 3 arise from a problematic terminal test. To solve them,

there needs to be a clear separation between terminals and non-terminals, such that for any

non-terminal starting point a terminal test must eventually �catch� a trajectory delineated

by the decoder's dynamics. Since some trajectories never leave the attractor and all others

eventually hit the attractor, a terminal test must contain points on the attractor. There is

no guarantee that a trajectory on the attractor will hit all parts of the attractor, therefore

the only terminal test that guarantees the termination of all trajectories of the RAAM (IFS)

is a test that includes all the points of the attractor itself.
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By taking the terminal test of the decoder network to be �on the attractor�, not only

are problems of in�nite loops and early termination corrected, but it is now possible to

have extremely large sets of trees represented in small �xed-dimensional neural codes. The

attractor, being a fractal, can be generated at arbitrary resolution (see the previous chapter

or [4] for how the attractor is generated). In this interpretation, each possible tree, instead

of being described by a single point, is now an equivalence class of initial points sharing

the same tree-shaped trajectories to the fractal attractor. For this formulation, the set of

trees generated and represented by a speci�c RAAM are a function of the weights, but are

also governed by how the initial condition space is sampled, and by the resolution of the

attractor construction. Note that the lower resolution attractors contain all the points of

their higher dimensional counterparts (they cover them), therefore as a coarser terminal

set they terminate trajectories earlier and therefore act to �pre�x� the trees of the higher

dimensional attractors.

Two last pieces complete the new formulation. First, the encoder network, rather than

being trained, is constructed directly as the mathematical inverse of the decoder. The

terminal set of each leaf of a tree is run through the inverse left or right transforms, and then

the resultant sets are intersected and any terminals subtracted. This process is continued

from the bottom up until there is an empty set, or we �nd the set of initial conditions which

encode the desired tree.

Second, using the attractor as a terminal test also allows a natural formulation of as-

signing labels to terminals. Barnsley [4] noted that each point on the attractor is associated

with an address which is simply the sequence of indices of the transforms used to arrive

on the attractor point from other points on the attractor. The address is essentially an

in�nite sequence of digits. Therefore to achieve a labeling for a speci�c alphabet we need

only consider a su�cient number of signi�cant digits from this address.

5.4 Hill-Climbing an a
n
b
n decoder

We used hill-climbing to arrive at a set of RAAM decoder weights for the simple non-regular

context-free language anbn; that is, the set of strings consisting of a sequence of a's followed
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by an equal-length sequence of b's. Two ways to represent the targets for hill-climbing would

be either a set of strings in anbn: ab, aabb, aaabbb, : : : , or a set of parenthesized expressions

representing binary-branching trees having those strings at their frontiers: (ab), ((a(ab))b),

((a((a(ab))b))b), : : : . RAAM is a method for representing structure, and not just strings

of symbols. Therefore, we chose the latter, tree-based representation. Speci�cally, we used

trees generated by a simple context free grammar which generates anbn. We were guided by

the assumption that this choice would drastically restrict the set of possible solutions to be

explored and allow our hill-climbing RAAM to build upon existing structure as it navigated

the space of decoder weights.

For the hill-climbing, both the initial random weights and the random noise added to

each weight came from a Gaussian distribution with zero mean and a standard deviation of

5.0. Starting with 12 random decoder weights, we explored the space of weights by adding

random noise to each weight and using the resulting weights to generate trees on a 64-by-

64 fractal RAAM. That is, the attractor was generated at that resolution and the initial

starting point space was also sampled at that resolution. The terminals of these trees were

addressed with an a or a b, using the scheme described in the section above. We used 10

trees representing strings from a
n
b
n and an+1bn with n = 1, 2, 3, 4, and 5 which had subpart

relationships (e.g., the tree for a2b2 is a subpart of the a3b3 tree) for our learning set.

About a third of the trials were able to mutate successfully into patterns that �covered�

the training set, yielding all ten tree structures, as well as trees of the form a
n
b
n+1, plus

additional, ill-formed trees. Though we were able to generate many di�erent weight set

solutions to cover the training data, �gure 5.3 shows that all the solutions had a dramatic

"striping" pattern of tree equivalence classes, in which members of a single class were located

in bands across the unit square. (Recall that any point not on the attractor represents a

tree.) So, for example, the wide gray band occupying most of the top of the image at right

represents the equivalence class for the tree (ab). Furthermore (and less noticeable in the

�gure), the attractor for these hill-climbed weights was located on or toward the edge of the

unit square. In the �gure below, the b attractor points are the white squares on the right

side of the image at left.
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Figure 5.3: The equivalence classes of two solutions to anbn found by hill-climbing.

Beyond the 64-by-64 resolution for training, the RAAM did not generalize deeply. How-

ever, the dramatic consistency in the solution patterns led us to wonder whether there was

an underlying formal solution toward which our anbn hill-climbing RAAM was striving. As

we discuss in the next section, the answer to this question turned out to be positive.

5.5 Competence model and proof

We claim that the RAAM evolved by our hill-climbing experiment is indicative of a class

of RAAM competence models which generate anbn+1 and a
n+1

b
n languages. We justify

our claim by demonstrating how an analysis of the speci�c RAAM dynamics garners the

principles to design a parameterized class ofanbn+1 and a
n+1

b
n RAAMs, some of which, in

the in�nite case generate the whole languages.

The dynamics of our RAAM can be examined by an arrow diagram. Starting from an

initial point, we apply both transformations, and plot arrows to designate the new points

thus generated. This process is continued until all new points are on the terminal set.

In �gure 5.4 we see a typical example of an arrow diagram from our evolved RAAM. The

initial point is marked by a circle. The terminal points on the left side are the 0 terminals

and the terminals on the right side are the 1 terminals. The solid lines correspond to the

right transform, and the dashed lines correspond to the left transform. By examining the

dynamics we can discern a few speci�c properties:

1. The top right and bottom left corners are both terminals. From any initial starting

point, at least one of the transforms goes to a corner terminal.
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Figure 5.4: An arrow diagram of a tree starting at (0.7,0.3).

2. The left transform always takes us to the left side. The right transform always takes

us to the right side.

3. On the left side, the left transform takes us to the bottom left corner terminal. On

the right side the right transform takes us to the upper right corner terminal.

The e�ect of these properties is to generate a very speci�c variety of trees. By property

1, we see that from any initial point our tree will immediately have one of its branches

terminate. By property 2 we see that the continuing branch will hit one of the sides. But

by property 3 we see that this branch will also lose one of its sub-branches, only continuing

the tree across one branch.

We can characterize this behavior as follows: The tree dynamics consist of a zigzag line

which goes between the left side and right side. At each side one of the transforms goes

to a terminal, while the other continues the zigzag. This continues until the zigzag hits a

terminal on one of the sides.

The e�ect of these zigzag dynamics is that at each successive tree level we get an alter-

nating 0 or 1. In �gure 5.5 we see what such a tree might look like.
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1
0

1
0

1
0

0
Figure 5.5: A typical tree generated by a zigzag RAAM.

It is apparent that any set of transforms which obey properties 1,2 and 3 will generate

trees of this sort. In order to demonstrate the existence of a competence model we need to

show that such transforms exist for any resolution, and that they can generate arbitrarily

sized trees.

Let " > 0 be the width of a terminal point. Properties 1 and 2 mandate a parameter

dependency on " . This is due to the transform being composed of a sigmoid function, hence

it can never quite reach 0 or 1, but can be made arbitrarily small, so no single transform

can ful�ll properties 1 and 2 for any ".

By property 3, in the rectangular region de�ned by the coordinates (0; 0) � ("; 1) the

left transform goes to the bottom left corner (x; y � ") and in the rectangular region

(1� "; 0)� (1; 1) the right transform goes to the upper right corner (x; y � 1� "). Therefore

to ful�ll property 1 as well we can divide the space into two regions, de�ned by the line that

connects ("; 1) and (1 � "; 0). On the upper half of the line the right transform will go to

the upper right corner, and on the bottom half of the line the left transform will go to the

bottom left corner. See �gure 5.6.

The equations that de�ne this RAAM were shown in the introduction. Since the X-

transforms always take us to their respective sides, we can make them constant by setting
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ε

ε 1−ε

1−ε

Figure 5.6: The line that divides the space of points that go to the upper right and lower
left.

wLXX = wLXY = wRXX = wRXY = 0, wLX = � log
1�"
"

and wRX = � log
"

1�"
. Thus the

left x-transform will always take us to " and the right x-transform will always take us to

1� ".

The line from ("; 1) to (1� "; 0) can be parameterized by cx+ c(1� 2")y� c(1� ") = 0,

where c is a constant. If we set c > 0, then we can plug these values directly into our

transforms. We need to set wLY X = wRY X = c, wLY Y = wRY Y = c(1� 2") and to adjust

the constants to wLY = �c(1� ")� log
1�"
"

and wRY = �c(1� "))� log
"

1�"
. These weights

guarantee the right transform takes all points above the line to the upper right terminal

and vice-versa for the left transform. These weight are dependent on ", thus we have

demonstrated the existence of weights which obey all three properties for any resolution.

To show the existence of arbitrarily sized trees we need to examine the terminal set

locations and the speci�c dynamics of the zigzag line. In �gure 5.7 you see an arrow diagram

for the points on the terminal set for a particular setting of c and ". This diagram shows what

points on the attractor go to what other points on the attractor. We see a few interesting

characteristics of the terminal set: Initially, we see that out of the two terminal corners we
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Figure 5.7: A terminal point arrow diagram for " = 1=64 and c = 5:703.

get a zigzag line which seems to generate the terminal set points for the upper and lower

part of the space. Both of these zigzags terminate before intersecting. Since these zigzags

always go to the corners on their respective sides, they are in fact orbits of di�erent lengths

which include a corner. The only other terminals are a pair of points somewhere in between

the termination of the two zigzags. These points just go back and forth between themselves.

We can analyze these di�erent properties by treating the zigzag as a one-dimensional

map. From every point on the left side, the application of the right and then left transform

brings us to a new point on the left side. In �gure 5.8 we see two one dimensional maps

which both have an " value of 1=256 but two values of c, 6.3 and 7. By drawing the line of

slope 1 through these maps we see that they have 3 �xed points. Two of these are stable,
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Figure 5.8: A one-dimensional map diagram of the zigzag line for two values of c.

attractive �xed points (this can be shown by linearizing about the �xed points). We can see

that the attractor zigzags which emanate out of the corner terminals go towards these �xed

points and terminate on them. The third �xed point in the center, is unstable, so zigzag

trees above it will head towards the upper half of the space and zigzags below it will head

towards the bottom half of the space.

As can be seen in 5.8 the location of this unstable �xed point is dependent on c. Since

this dependence is continuous, and between c = 6:3 and 7 the location of the �xed point

moved by more than 1=256, then by the mean value theorem we know that there exists a c

such that the location of the unstable �xed point is at an integer multiple of " . Assume that

we are discretizing by �ooring to the nearest integer multiple of ", then since the unstable

�xed point is at an integer multiple of ", we can pick an initial tree starting point on the left

side, below it, which is arbitrarily close to it. The unstable �xed point represents an orbit

which never reaches the other terminal points. If it were not a terminal it would correspond

to an in�nite tree. By coming from below it we are guaranteed not to hit it. But by coming

arbitrarily close to it we can generate arbitrarily long zigzag trees, which hover in its vicinity
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for an arbitrary number of iterations before heading towards the attractive �xed point below

it. Thus we can create trees of any size, and this model can generate the whole language in

an in�nite resolution sense.

5.6 Discussion

By examining the underlying dynamics, we have presented a new approach to understanding

RAAM. This approach allows us to describe the �natural terminal test� of a RAAM decoder

as well as represent trees in accordance with the intrinsic dynamics. The most serious

problems of the original RAAM are solved by this new reformulation, allowing a RAAM

decoder to provably terminate for any input and potentially generate an in�nite grammar.

Speci�cally, based on initial weights generated by a evolved decoder, we have general-

ized and proven that there exist a set of 12 weights for a RAAM decoder which not only

exclusively generate words from the an(+1)bn(+1) language, but are capable of generating

the whole language. In fact in the region of the unstable �xed point, the RAAM exhibits a

monotonic behavior. As we approach the �xed point, the size of the generated trees increases

divergently. The signi�cance of this is not only in the context of RAAM but in the context

of connectionist processing in general, since we have demonstrated how a monotonically

increasing continuously varying input (initial starting point) can incrementally generate the

members of a context free grammar, within the con�nes of a neural substrate. Thus we

have shown how a smooth mapping could exist between the tonic varying outputs of a

single neuron and the generativity of a context-free grammar.

With this reformulation of RAAM, we have a new and deeper connection between con-

nectionist and symbolic representational and generative theories. In the future we expect to

examine the fuller potential of this model, including the expressiveness of other grammars

and modes of lexical assignment, as well as more informed learning methods.
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Discussion

In this thesis we have explored both feed-forward and recurrent neural networks from the

perspective of understanding how they represent information. In this section we discuss

some of the consequences of this work, while exploring questions and future work that it

suggests.

The DIBA algorithm for the �rst time allowed us a complete glimpse into the compu-

tation performed by an MLP. Using DIBA, we explored questions about the computational

complexity of representation extraction from MLPs in general. Concurrently, we examined

example networks to understand the decision region structure of good and bad generaliza-

tion, as well as the sources and form of noise in networks. Thus, the main goal of using the

DIBA algorithm to further our understanding of computation and representation in feed-

forward networks has been achieved. In so doing, issues about generalization and learning

were brought to light that warrant further exploration. It was shown that a great deal of

combinatoric complexity, in the form of face-sharing, exists as an intrinsic part of these

models. Learning experiments suggested that most of this complexity is not exploited by

typical learning algorithms like back propagation. Rather, this complexity typically man-

ifests itself as undesired artifactual decision regions. Can this complexity be used? This

question has both a conceptual and practical component to it. From a practical perspective,

assuming that we have a particular decision region structure in mind, the question becomes,

how can a learning/construction algorithm be made that can e�ciently navigate through

the large quantity of combinatoric options available to it. The conceptual question may be

114
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more di�cult, but probably more interesting. Face-sharing is a generalization mechanism,

a way to express a pattern using the intersections of boundaries; the conceptual question

is, when is this a useful generalization strategy? What kind of problem invariances could

be captured e�ectively by face-sharing? And then, how would we detect that training data

suggests the use of face-sharing for generalization?

DRCA is a new method to analyze decision region based classi�cation models. The

DRCA method focuses on the �relevant complexity� of a model as it pertains to the de-

cision region's relationships that a model imposes on its training data. As such, the po-

tentially exponential complexity of models and perceptual limitations in high-dimensional

visualization�two large obstacles imposed by the curse of dimensionality on model analysis�

are uniquely and directly addressed. In a �eld with an overwhelming number of models,

with very few relevant ways to choose between them, this method is not only a real tool to

look inside their workings, but it acts as a common denominator. Irrespective of a model's

functional form, if it generalizes using decision regions its classi�cation strategy can be com-

pared with any other model that uses decision regions. There is a particularly urgent need

for such comparability, as models, rather than becoming more comprehensible, are going in

the other direction quickly. This is evidenced by a current trend in the state of the art,

the migration towards combined models, or ensemble techniques. Techniques such as bag-

ging [12] and boosting [26] build models which can be the combination of hundreds of other

models. These combined models consist of thousands to millions of parameters, making

them impervious to any decompositional analysis technique. However, as these models are

almost linear compositions of decision region type models, there is no reason to think that

these models do anything more than generalize using decision regions. Thus, DRCA natu-

rally complements the current trends in model development, and allows extremely complex

models to be analyzed with the same facility as a decision tree. This has applications to

Data Mining, a �eld that because it mandates an explanatory ability for its models has been

forced to adhere to simple models, until now.

In truth, the fact that most of these models have similar underlying functionality, cou-

pled with the clear transparent understanding that this method o�ers, allows us to ask a
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more interesting question aside from ranking models. We can now examine the benchmark

datasets and in an unequivocal manner analyze the generalization strategies that seem to

succeed on the data. The importance of this is that it would allow us to better understand

the actual problems that are motivating some of the machine learning �eld. Namely, to get

a better handle on what the di�cult problems really are, the problems where signi�cantly

di�erent and hopefully interesting approaches may be needed for their solution.

Another interesting avenue that is opened up by this work is the ellipsoid model con-

struction method, a method that demonstrated how a new model may be constructed based

on a connectivity graph generated in another context. The ellipsoid model uses the connec-

tivity graph as a blueprint for how to enclose data points. Thus, it acts to abstract away the

model construction problem, to the problem of building a graph, connecting the data points

(not addressing the margin issue). This raises many questions for exploration, such as, can

we hand construct connectivity graphs with speci�c properties directly from the data, or

can they be constructed by synthesizing multiple models?

Neural fractal memory is an exciting perspective on how information can be encoded in

recurrent networks. The work presented demonstrated that it is a viable model, a model that

despite its roots in chaos is learnable by continuous parameter modi�cation, in the form of

a gradient descent error function. This is really a novel perspective on how recurrent neural

networks can compute and learn, as such, rather than �lling voids in existing approaches to

recurrent neural computation, it opens the doors to research in this uncharted territory. As

with any new computational paradigm there are two parallel courses of research. The �rst is

to explore the theoretical boundaries of the paradigm. Possible theoretical questions might

ask, how do the number of transforms, their activation function, and dimensionality, impact

what the network can represent and learn. The second course of research is applied, to try

and apply this approach to real problems which may bene�t from this representation. For

instance, it is well suited to a problem requiring a more �holistic� visual approach, such as

object recognition. This application would probably be a hybrid, including a neural fractal

memory component as a �holistic� memory/feature detector.

RAAM is an interesting model, in that it conceptually demonstrates how generative
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grammatical information can be encoded in a recurrent network. The competence model

proof showing that a RAAM can encode for an entire in�nite context-free language was

important as it accentuated underlying principles of how recurrent dynamics can be har-

nessed for grammatical generativity. This work is in line with the similar questions posed

about grammar representation in other recurrent models [84; 64; 56]. Thus it is part of a

research trend trying to understand how recurrent neural computation can be coupled with

grammar and language processing. In that vein, a natural continuation to this work is to

�nd RAAM models that suggestively code for other interesting languages (as we did for the

hill-climbed RAAMs used in the analysis) and to analyze them to �nd other components

of dynamical mechanisms that allow this grammatical coding. The loftier goal would be to

not only enumerate these di�erent mechanisms, but to �nd the underlying meta-principles

that may allow us to generalize this topic and may lead to e�cient learning in these models.
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