
Multiassociative Memory
John F. Kolen

Jordan B. Pollack

The Laboratory for AI Research
Department of Computer and Information Science

The Ohio State University
Columbus, OH, 43210

Telephone:(614)292-7402
kolen-j@cis.ohio-state.edu
pollack@cis.ohio-state.edu

Abstract
This paper discusses the problem of how to implement many-to-many, or
multi-associative, mappings within connectionist models. Traditional sym-
bolic approaches wield explicit representation of all alternatives via stored
links, or implicitly through enumerative algorithms. Classical pattern associ-
ation models ignore the issue of generating multiple outputs for a single input
pattern, and while recent research on recurrent networks is promising, the
field has not clearly focused upon multi-associativity as a goal. In this paper,
we define multiassociative memory MM, and several possible variants, and
discuss its utility in general cognitive modeling. We extend sequential cas-
caded networks (Pollack 1987, 1990a) to fit the task, and perform several ini-
tial experiments which demonstrate the feasibility of the concept.

This paper appears inThe Proceedings of the Thirteenth Annual Conference of the
Cognitive Science Society. August 7-10, 1991.

Multiassociative Memory1

John F. Kolen
Jordan B. Pollack

The Laboratory for AI Research
Department of Computer and Information Science

The Ohio State University
Columbus, OH, 43210

Telephone:(614)292-7402
kolen-j@cis.ohio-state.edu
pollack@cis.ohio-state.edu

Abstract
This paper discusses the problem of how to implement
many-to-many, or multi-associative, mappings within
connectionist models. Traditional symbolic approaches
wield explicit representation of all alternatives via
stored links, or implicitly through enumerative algo-
rithms. Classical pattern association models ignore the
issue of generating multiple outputs for a single input
pattern, and while recent research on recurrent networks
is promising, the field has not clearly focused upon
multi-associativity as a goal. In this paper, we define
multiassociative memory MM, and several possible
variants, and discuss its utility in general cognitive mod-
eling. We extend sequential cascaded networks (Pollack
1987, 1990a) to fit the task, and perform several initial
experiments which demonstrate the feasibility of the
concept.

Introduction
In associative memory models, a function is applied to a
pattern which transforms it to another pattern. This trans-
formation, or association from a domain set of noisy or par-
tial patterns to a range set of correct patterns is often offered
as a model of memory retrieval or recall. Several connec-
tionist models of associative memory exist, such as linear
associators (Kohonen, 1972;Anderson, 1972), Hopfield net-
works (Hopfield, 1982), and feed-forward networks
(Rumelhart, Hinton & Williams, 1986), each assuming a
many-to-one mapping from domain to range Figure 1a. For
noisy or partial memory retrieval, or for perceptual catego-
rization, this assumption might prove valid, however, many
other tasks exist, each indescribable within associative
frameworks. Consider associating a word with its possible
lexical categories or meanings, a chess position to possible
next moves, or a category to prototypical members; each in-
put can have a multitude of possible outputs. Even categori-
zation itself is known to vary over time in individual
subjects (McCloskey and Glucksberg, 1978).

In an attempt to address the issue of multiple output re-
sponses, this paper discusses the nature ofmultiassociative
memories capable of responding with one output from a set
of possible outputs to an input. The theoretical basis of this
class of models is the many to many mapping. Standard as-

sociative models use many to one mappings, where several
input patterns can elicit the same output pattern. Any sys-
tem with an internal state, such as a recurrent network, can
be viewed as a many to many mapping, and this is our ini-
tial choice of model (Figure 1b).

This paper begins by presenting formal definitions of
mappings, establishing the relationship between many to
many mappings and multiassociative memories, and identi-
fying several problems in cognitive science which exhibit
many to many mapping properties. The discussion will then
turn to the relative computational and psychological merits
of two opposing implementation strategies, namely explicit
storage and enumeration. After establishing the practical
superiority of enumeration, this strategy will guide the im-
plementation of a multiassociative memory system using a
sequential cascaded network, a high-order recurrent con-
nectionist architecture. Reflection on the implementation
process and its results suggests possible difficulties with the
recurrent network, indicating directions for further work.

Many to Many Mappings
Associative memories take input patterns, process them,
and return output patterns (Kohonen, 1984). One way of de-
scribing this operation is as a mapping from input patterns
of the domain set to the generated output patterns the range
set. Mappings come in four varieties based on the relations
between domain and range: one to one, many to one, one to
many, and many to many. A simple example of a many to
many mapping is (A-> {B, C}, B-> {C, E}, C->{E, F}, D-
>{E, F)} with domain set {A, B, C, D} and range set {B, C,
E, F}.

To capture such an association, a multiassociative memo-
ry system must be correct and complete. Thus the multias-
sociative memory acquisition problem is:

Given a many to many mapping from a set of input
patterns to output patterns, find a system that can
associate each domain element to at least one ele-
ment from its range set during any memory access
(correctness) and also eventually generate all cor-
rect range elements within a finite number of
memory accesses (completeness).

It is quite trivial to implement this concept exercising
conventional symbolic means, employing either explicit
storage or enumeration of the associations. One just explic-

1. This work supported by office of Naval Research grant
number N00014-89-J1200.

itly stores associations as a linked-list in random-access
memory, and retrieve either all the outputs, or keep a
counter and get one at a time. This “explicit storage” meth-
od does not generalize to very large systems, like chess
moves, where it is impractical to store all associations in a
memory. Secondly, it is too powerful to be a good cognitive
model in that it has no distinction between “recognition”
and “recall”. Consider the daunting task of recalling the
names of all fifty states, as opposed to the trivial problem of
recognizing “New Mexico” as one of them.

Connectionist models also have explicit storage solu-
tions. Through the manipulation of output patterns, the
power set approach involves allocation of one output node
for each element in the range (Figure 1c). Thus, any possi-
ble subset of the range can be captured by this representa-
tion. This localist approach has been used to encode
possible moves in a tic-tac-toe game (McClelland and
Rumelhart, 1986) and the spreading of activation in a se-
mantic network (Collins and Loftus, 1975). Unconstrained
representational power, however, is not without its costs.
Since individual elements of a range of units can be ade-
quately represented with a binary pattern of length ,
using units is exponentially more expensive than a se-
quential retrieval model.

A possible circumvention to this exponential explosion is
to limit the size of the subsets of the range by allocating a
fixed number of output fields(slots, registers, or buffers) to
hold the representations of the elements. Figure 1d illus-
trates a system capable of outputting at most three range el-
ements for a given domain element. But determining the
needed resourcesa priori may be difficult, or in principle
impossible: What’s the maximum number of possible
moves from any given chess board configuration, or the
maximum number of words in a sentence? Overestimation
wastes resources and underestimation might fail at a critical
point.

Enumerative approaches bypass this storage problem by

n
lg n()

n

Input

Output

Figure 1a:

Range Element

Domain Set

Many to One

State Input

Output

Figure 1b:

next
state

next
output

Domain Set

Range
Elements
over time

State Machine Conceptualization

Input

O

Figure 1c:

Domain Set

Range Set

Power Set Approach

Figure 1d:

Input

Range

Domain Set

Output Output

Element
Range

Element
Range

Element

Output

Field Approach

not explicitly operating on the possible responses them-
selves, rather they calculate the desired responses sequen-
tially. Since only one range element has to be stored at a
time, memory usage will be lower. Such a system must
have an “internal state” (or counter) that can be used to
keep track of the enumeration algorithm, and suitably pow-
erful computational means to compute the output set.

Connectionist Implementations
A connectionist implementation of Multiassociative Memo-
ry (MM) using enumeration would have an underlying state
machine, which can be implemented as a recurrent network.
Many such networks exist (e. g. Jordan, 1987; Elman, 1988;
Pollack, 1987) and already exhibit many to many mapping
ability. When the input remains stable long enough to estab-
lish an periodic attractor (a fixed point or limit cycle) in the
output, each element of the attractor corresponds to one of
the correct associations to the input pattern. Such a “tempo-
ral MM” accesses the range set in a particular order for each
input, whereas an “atemporal MM” just guarantees access
to the proper range subsets through an aperiodic attractor
(aka strange attractor).

To illustrate temporal/atemporal distinction, consider an
implementation of a many to many mapping using a recur-
sive auto-associative memory (RAAM) (Pollack, 1990b). A
RAAM consists of two functions, an encoder and a decoder.
The encoder takes two input patterns and combines them
into a single output pattern. The decoder takes one input
pattern and generates the two patterns the encoder used to
build it. Since all patterns have the same size, the strategic
application of the encoder and decoder can construct repre-
sentations of recursive data structures such as trees and
stacks. A MM can be built around a RAAM by assigning
non-terminal symbols to the domain elements which even-
tually decode into elements in the image (see Figure 2). A
counter, or random number generator, could be used as the
internal state mechanism specifying a unique decoding
paths,i. e. whether the left or right decoding would be re-

Multiassociative MemoryMultiassociative MemoryAssociative Memory Multiassociative Memory

u t p u t

Figure 2: Using a RAAM for Multiassociative Memory

A -> {A, B, C, D}

non terminal pattern of A

A B C DTerminal Patterns:

State
00
01
10
11

Output
A
B
C
D

0

0 0

1

1 1

Input Nodes

Context

Nodes

Output Nodes

Weights

State Output Nodes

Figure 3: A Sequential Cascaded Network SCN

tained for further expansion. The counter implementation
introduces temporal relationships between outputs since it
would periodically visit every decoding path, while the ran-
dom number generator ensures little or no correlation be-
tween two successive outputs by randomly varying the
paths.

A drawback of this implementation is that tree structure
and state organization must be specifieda priori. A more
interesting approach involves the evolution of state organi-
zation through learning. Learning, for a MM problem, has
two constraints. First, no “reset” information can be provid-
ed to the network between changing inputs. Second, only a
small number of examples will be available to the learning
procedure. The system must be able to generalize its inter-
nal state machine to have acceptable behavior over finite
but unbounded sequences of inputs. Sequential cascaded
networks have exhibited such inductive capabilities, as
demonstrated in (Pollack, in press), and therefore been se-
lected for this initial study.

The sequential cascaded network (SCN) is a higher order
(sigma-pi) recurrent network. The weights are stored in a
three-d array (Context Network) that is multiplied by the
current state yielding a weight matrix. This matrix, called
the Function Network, is multiplied by the input vector re-
sulting in a net input vector. A sigmoid function is applied
to elements of this vector, yielding the next state and output
vectors. SCN’s were originally used in a formal language
decision task, in which the network observed a sequence of
symbols from a two symbol alphabet (0 and 1) and calculat-
ed a single output value plus a recurrent state vector. The

desired output value was 1 if the input string seen so far was
contained in the language, and 0 otherwise. Figure 3 con-
tains a schematic representation of a SCN.

This paper extends the sequential usage of the cascaded
network by utilizing an output vector longer than a single
element. Increasing the output width from a single value
necessitates a slight modification to the learning rules de-
scribed in (Pollack, 1990). More output nodes imply each
will contribute error to the context node error. The new er-
ror function derivative with respect to the weights feeding
into the state output nodes is

and the error derivative for the weights leading to the output
units is

In both equations, is the output of unit at time ,
 is the input at time , is the derivative of the

nonlinear squashing function in terms of the activation of
the unit, is the desired output for output unit from the
set of output nodes, and is the standard sum of squared
error function. The simulations below use baseline back

E∂
wijk∂

za n() da−() g za n()() yl n()walk
l

∑()
a A∈
∑()=

g zi n 1−()()yj n 1−()zk n 2−()

E∂
wajk∂

za n() da−() g za n()()yj n()zk n 1−().=

zi n() i n
yi n() i th n g x()

da a
A E

propagation (gradient descent with momentum) to modify
the weights in the network.

The training paradigm used in this paper attempts to ex-
ploit the inductive ability of this system by limiting the
number of exemplar sequences. One way to develop an
SCN training set for a particular mapping is to train the net-
work sequence through the associated range elements while
the input to the SCN remains constant with the input vector
for the domain element. For instance, the association A ->
{B, C} give rise to the sequences

Since SCN’s have shown induction of similarly un-
bounded sequences from short initial sequences, only two
such cycles for each domain element are presented to the
network during training. Figure 4a shows the training se-
quences used to capture a small many to many mapping.
This training set, along with domain and range element pat-
tern vectors, was presented to the SCN learning program
and after 10 passes through the training set (weight update
occurred after presentation of all sequences) the network
demonstrated that it could reproduce the training set within
tolerance. Tolerance was one half the difference of the max-
imum and minimum values. Table 1 describes network pa-
rameters used for this experiment and the next. In this
experiments, the input and output symbols were converted
to fixed width random binary patterns. At this point the net-
work captures only the explicit sequences in the training
set. To generalize, the learning program mustovertrain the
network. Overtraining forces the network to go through
phase changes, drastic alterations in its behavior, as it tries
to separate the outputs more and more. Pollack (In press)
demonstrates the characteristic shift in behavior with a net-
work which learns successively larger finite subsets of the
parity language (even number of 1’s in the input string) un-
til it suddenly acquires the parity language for any length
input string. In this experiment, the learning procedure
stopped only when 10 consecutive overtraining passes oc-
curred.2 Figure 4b illustrates the response of the SCN to the
string A20B20C20D20A20.

2. During an overtraining pass weights are modified, even
though the all of the outputs are with tolerance of their de-
sired values.

AAAAAAAAAAAA...

BCBCBCBCBCBC...

Input:

Output:

Input

BCBCBCDEDEDEEFEFEFEFEFEFBCBCBCOutput:
** stands for 16 more input cycles

AA**AABB**BBCC**CCDD**DDAA**AA

Input Sequences:

Training Sequences:

AAAA BBBB CCCC DDDD

BCBC DEDE EFEF EFEF

Figure 4a: Sample MM training set

Figure 4b: Output From SCN as a MM

Sequence:

The next experiment demonstrates the possibility of stor-
ing visual images as many to many mappings. The domain
of this mapping is the set {TRIANGLE, SQUARE}, repre-
sented as binary patterns, {(0,1), (1,0)}. The range set of
each of these symbols is the vertices of that object as shown
in Figures 5a and 5b. A similar training method was em-
ployed and Figures 5c, 5d, and 5e illustrate the results of
presenting the input string TRIANGLE20SQUARE20TRI-
ANGLE20.

Discussion and Conclusion
In both studies, the network created for itself a periodic out-
put attractor for each input pattern utilizing hidden state in-
formation (which will be explored in a longer paper). We
observed different organizations of internal state in differ-
ent training runs due to back propagation’s sensitivity to the
initial weights (Kolen & Pollack, 1990). In most cases, we
also observed that quickly switching between symbols can
lead to several cycle delays of the correctness condition as
the output dances around the target response. We believe
this parallels the “tip of the tongue” phenomena and sug-
gests that enumerative multiassociative memories could
provide a useful foundation for modeling this psychological
phenomena and others. Nature’s solution to the scaling is-
sue, which affects all connectionist models, may turn out to
be tied to the distinction between recall and recognition. As
has been pointed out in the past, inverting a categorization
model or an associative memory is a difficult problem, be-
cause it requires a many-to-many mapping, not supplied by
the standard architectures (Williams, 1986). The inversion
of a multiassociative memory would remain a multiassocia-
tive memory.

The main difficulty with our initial MM model, and with
most recurrent back propagation systems is the reliance on
global state information and synchronous update of that in-
formation (Grossberg, 1987). As nature teaches us, it is
much cheaper to build asynchronous and local parallel pro-
cessing, which unfortunately can be quite unstable. The
multiassociative task is well-suited for an asynchronous and
local treatment. Following Hanson 1990, we have been ex-
perimenting with a model in which each weight in a system
is a dynamical system, loosely coupled to nearby connec-
tions, asynchronously changing over time. Learning does
not constrain the network to taking on particular values, but
of meeting the necessary functionality of the network in
terms of an atemporally multiassociative memory.

By focusing on the many-to-many mapping as a cogni-

Table 1: Training Parameters

Letters
0.1
0.3
10
1.0
-1.0
tanh
1.0
3
3

Figures
0.1
0.4

1.0 & see fig. 4
20

-1.0 & see fig. 4
tanh
0.125

4
2

Learning rate
Momentum rate
Overtraining
High Symbol Value
Low Symbol Value
Squashing Function
Error Tolerance
State Width
Pattern Width

0.9 0.25Initial State Value

tive task, implemented in an enumerative rather than ex-
plicit storage memory, we see a new general-purpose
connectionist model beyond the categorization and associa-
tive memory of feed-forward and relaxation models, and
the prediction and sequence generation of recurrent net-
works.

Acknowledgments
Discussions with members of the LAIR connectionist group
have been invaluable. Comments from Mary Jo Carnot
helped round out the paper and make it more accessible.

References
Anderson, J. A. 1972. A simple neural network generating
an interactive memory.Mathematical Biosciences, 14:197–
220.
Collins, A. M. and Loftus, E. F. 1975. A spreading
activation theory of semantic processing.Psychological
Review, 82:240–247.
Elman, J. L. 1988. Finding structure in time. Technical
Report CRL 8801, University of California, San Diego.
Grossberg, S. 1987. Competitive learning: From interactive
activation to adaptive resonance.Cognitive Science, 11:23–
63.
Hopfield, J. J. 1982. Neural networks and physical systems
with emergent collective computational abilities.
Proceedings of the National Academy of Sciences USA,
79:2554–2558.
Jordan, M. I. 1987. Supervised learning and systems with
excess degrees of freedom. Technical Report COINS
Technical Report 88-27, Massachusetts Institute of

Technology, Boston.
Kohonen, T. 1972. Correlation matrix memories.IEEE
Transactions on Computers, C-21:353–359.
Kohonen, T. 1984. Self-Organization and Associative
Memory. Springer-Verlag.
Kolen, J. and Pollack, J. 1990 Back-Propagation is sensitive
to Initial Conditions.Complex Systems 4, 269-280.
McClelland J., & Rumelhart, D. 1986Parallel Distributed
Processing: Explorations in the Microstructure of
Cognition. Cambridge, MIT Press, II, 48-53.
McCloskey, M. and Glucksberg, S. 1978. Natural
categories: Well defined or fuzzy sets?Memory and
Cognition, 6:462–472.
Pollack, J. B.1987. Cascaded back propagation on dynamic
connectionist networks. InProceedings of the Fourth
Annual Cognitive Science Conference. Seattle, WA, 391-
404.
Pollack, J. B. 1990. Language acquisition via strange
automata. InProceedings of the Twelfth Annual Conference
of the Cognitive Science Society. Cambridge, MA, 678-685.
Pollack, J. B. 1990. Recursive autoassociative memories.
Artificial Intelligence, 46, 1, 77-105.
Pollack, J. B. In press The acquisition of dynamical
recognizersMachine Learning,1991.
Rumelhart D. Hinton, G., and Williams R. 1985. Learning
representations by back-propagating errors.Nature, 323,
533-536.
Williams, R. 1986 Inverting a connectionist network
mapping by back-propagation.Proc. Eight Annual Conf. of
the Cognitive Science Society,Amherst. 859-865.

-1 1

-1

1

-1 1

-1

1

-1 1

-1

1

-1 1

-1

1

Figure 5a: SQUARE training data Figure 5b: TRIANGLE training data

-1 1

-1

1

Figure 5: Training Sets and Output displays for the {TRIANGLE, SQUARE} problem.

Figure 5c: cycles 1-20 Figure 5e: cycles 41-60Figure 5d: cycles 21-40

