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Abstract

We examine hierarchical modularity - modularity on mul-
tiple levels, in which the modules at a lower level of ab-
straction can serve as nodes in a network at a higher level
of abstraction that also has positive modularity - as well
as degree of modularity on a single level of abstraction, in
evolved neural networks in single-task, parallel-subtask envi-
ronments, and sequential-subtask environments, using a com-
mon benchmark problem. We determine that top-performing
networks evolved in the sequential-subtask environment have
both more levels of hierarchical modularity, and a higher de-
gree of modularity within levels, than those involved in either
the single-task or parallel-subtask environment. In the single-
task environment, both single-level and hierarchical modu-
larity tend to rise initially before stagnating and even declin-
ing, while in the sequential-subtask environment, both single-
level and hierarchical modularity tend to rise throughout the
period of evolution.

Introduction

In this paper, we examine the influence of an environment
in which a neural network must perform sequential subtasks
on the emergence of modularity, both single-level and hi-
erarichical. Both many natural and many engineered sys-
tems display modularity, the organization of a system into
a hierarchy of independent but interacting subparts (Koza,
1992; Hartwell et al., 1999). Understanding how modular-
ity emerges has become increasingly important as evolution-
ary systems are used in increasingly complex applications.
Neural networks are commonly used in control and machine
learning applications, and modularity in large neural net-
works is beneficial, as it allows a large and unmanageable
neural network to be reduced to smaller and more manage-
able subnetworks (Azam, 2000). We briefly discuss modu-
larity in evolution, followed by an overview of modularity
in neural networks.

Modularity in Evolution

A variety of natural and engineered systems tend to be
modular, including biological, technical, and organizational
(Schilling, 2002). Modular biological systems include net-
works such as bacterial metabolic networks and biological

neural networks, as well as other kinds of biological sys-
tems that are assembled from smaller parts, such as tissues,
which are assembled from cells. The definition of mod-
ularity is not formalized, and is field-dependent and even
subfield-depdendent, but generally refers to the degree to
which a system is composed of separable, recombinable
components. Schilling (2002) reviews elements of modu-
larity that are common to different fields, including tech-
nology, biology, American studies, psychology, and mathe-
matics. Bolker (2000) attempted to synthesize definitions of
modularity across different abstraction levels and subfields
in biology by defining a list of characteristics of modular-
ity, including the ability to delineate modules from their sur-
roundings, greater internal integration within modules than
external integration between modules, and module func-
tion/performance exceeding the sum of the module’s com-
poonents.

The highest-performing solutions produced by runs of
evolutionary algorithms tend to be nonmodular, though there
are some exceptions, such as the coevolutionary algorithm
of Juillé and Pollack (1996), which found modular solutions
to the intertwined spirals problem using genetic program-
ming. The nonmodular solutions tend to be connected in
complicated ways, and perform better on the tasks for which
they are optimized than modular solutions designed by hu-
mans (Thompson, 2012; Vassilev et al., 2000). While this
produces good results for simple problems, the lack of mod-
ularity makes it difficult for these evolved solutions to solve
complex problems (Kashtan and Alon, 2005). Modular ar-
chitectures are better at certain kinds of modular problems,
such as learning piecewise control structures, than nonmod-
ular ones (Jacobs and Jordan, 1993). Designers can ad-
dress this issue by building the encapsulation of modules
into their algorithms, but this sheds no light on how modu-
larity evolves in nature. It also precludes any design bene-
fit that may arise from modularity emerging naturally rather
than being hard-coded. For example, there is some evi-
dence (Calabretta et al., 1998) that modules that emerge nat-
urally split tasks differently than hard-coded modules. Juillé
(1999) demonstrated a version of this by developing a Mod-
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ular Inductive Learning system featured automated, rather
than hard-coded, decomposition of tasks. Fitness-sharing
between simulated symbiont organisms that become a com-
posite, which has some conceptual similarity to modular-
ity in that it combines the functionalities of multiple sub-
systems, promotes evolution on hierarchical problems (Wat-
son and Pollack, 2000, 2001). Finally, allowing modules to
emerge through the iterative process of evolution may al-
low for high-performing nonmodular candidate solutions to
develop modularity over time without compromising their
strong performance, resulting in the benefits of both evolu-
tionary algorithms and modularity.

Because of these benefits of understanding and imple-
menting the evolution of modularity, in recent years there
have been several studies on the emergence of modularity
in both natural and artificial systems. These have taken two
main approaches - examining the kinds of environments that
cause modularity to evolve, and the kinds of selection fac-
tors that cause modularity to evolve. In the former cate-
gory, Lipson et al. (2002) suggested using variable rather
than fixed criteria for evolutionary optimization after find-
ing, in a study of minimal substrate modularization, that
modular separation is logarithmically proportional to the en-
vironmental variation rate. Further work on environmental
variation and modularity in computational evolution stud-
ies (Kashtan and Alon, 2005) and natural evolution studies
(Kashtan et al., 2007; Parter et al., 2007) found that modular-
ity evolves in response to varying environments in which an
individual switches between optimizing for different tasks
that are decomposable into common subtasks (modularly
varying goals). In the latter category, Clune et al. (2013) pro-
posed that modular networks evolve in response to selection
pressure to minimize the number of connections between
nodes, representing the energy cost of forming a link in a
physical network. A differently-implemented energy cost
imposed on the NEAT neuroevolution algorithm, on a prob-
lem in which some solutions that evolve are relatively mod-
ular and some are not, has been found to increase consis-
tency in the degree of modularity that emerges (Lowell and
Pollack, 2014). Calcott (2014) reported the emergence of
first-level modularity in a sequential-subtask environment,
but did not elaborate on details of the experiments done or
the results found.

While (Schilling, 2002) found that nearly all fields ex-
amined defined hierarchical nesting as part of the defini-
tion of modularity, and (Variano et al., 2004) found that
hierarchical modularity in networks improved the robust-
ness of network stability, it has not traditionally been ex-
amined in simulated evolution studies of modularity. While
there are a few recent exceptions to this - a study by Lowell
and Pollack (2016) found that developmental encodings pro-
moted the emergence of hierarchical modularity, and work
byMengistu et al. (2016) found that connection cost between
nodes in a network promoted its emergence - it is still not
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well-studied. Furthermore, this existing work on evolving
hierarchical modularity focuses on the hierarchy rather than
the degree to which specific levels of abstraction are mod-
ular, and work on single-level degree of modularity, by ne-
cessity, has looked at modularity only on the lowest level of
abstraction. This paper addresses the emergence of a hier-
archy of modules as well as single-level modularity on each
level of abstraction. To clarify our terminology: at the low-
est level of abstraction, or level of modularity, in a modular
network, the network’s nodes form modules of some lev-
els of strength. If some or all of these modules can in turn
be treated as nodes in a new network, that is a second level
of abstraction, or level of modularity. The strength of the
modules within a given level, the calculation for which is
discussed below, is the single-level modularity for that level.
Hierarchical modularity is defined in this paper as the pres-
ence of multiple levels of abstraction with positive modu-
larity, with a more hierarchically modular network having
more levels.

Methods
NEAT

There are many algorithms for evolving neural networks.
Some of these evolve network topology only, some evolve
weights only, and some evolve both. NeuroEvolution of
Augmenting Topologies, or NEAT (Stanley and Miikku-
lainen, 2002), is an example of a neuroevolution algorithm
that evolves both. It begins with simple, minimal net-
works, and gradually generates more and more complex
ones through three forms of mutation: adding neurons,
adding connections, and modifying connection weights. It
temporarily protects innovations that are sufficiently differ-
ent from existing candidate solutions, in order to give them
the opportunity to cultivate niches and prove evolutionar-
ily useful, by using a speciation mechanism, which isolates
subsets of the population into different reproductive groups
based on topological dissimilarity. Species that perform
well grow and persist, perhaps with new species splitting
off, while poorly-performing species gradually die off. An-
other important aspect of NEAT is that it tracks the history
of innovations through assigning them persisting numbers,
which allows for a working crossover operator by making
it possible to determine which subnetworks can be recom-
bined without producing nonviable neural networks. NEAT
remains one of the most popular neuroevolution algorithms,
and has proven effective in several problem domains, includ-
ing vehicle collision avoidance, evolving a roving eye for
Go, training Al teammates to work together in a video game
(Stanley and Miikkulainen, 2002; Stanley et al., 2005), and
strategic decision-making (Lowell et al., 2011).

The standard NEAT algorithm does not tend to evolve
modularity (Reisinger et al., 2004). Reisinger et al. (2004)
created Modular NEAT, a version of NEAT intended to pro-
duce modular solutions, by requiring their algorithm to reuse
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subnetworks in different spatial locations to form complete
neural networks, thereby forcing a predisposition toward
modularity. HyperNEAT (Stanley et al., 2009), an exten-
sion of NEAT that evolves compositional pattern-producing
networks for an indirect encoding, also does not tend to
produce modular networks on its own Clune et al. (2010),
though Verbancsics and Stanley (2011) were able to influ-
ence it toward modularity by seeding with a bias to connect
components which are spatially near each other, a mecha-
nism that, like the previously-discussed work on connection
costs and modularity, relates to the energy costs of connect-
ing nodes, and may play a role in biological modularity. In
this study, we use the NEAT4J open source Java implemen-
tation of NEAT (Simmerson, 2006).

Probability of mutation, crossover, and other network-
related and evolution-related parameters, is set by the user
in NEAT. In Table 1 we list key NEAT parameters used in
all experiments in this paper.

Parameter | Value |
Population size 500
Max number of generations | 2000
P(Mutation) 0.75
P(Crossover) 0.25

Table 1: Parameters used in all experiments.

Calculating Modularity

Many studies of modularity use the metric of () to repre-
sent modularity, defined by the approach of (Newman and
Girvan, 2004). This method is well-suited for networks in
which connections are undirected and binary (i.e. networks
where there is either a connection between two nodes or
there is not) and the phenomenon being studied is single-
level modularity (the modularity at one layer of abstrac-
tion). It does not account for different edge weights be-
tween nodes, as exist in neural networks, nor for directed
networks, as neural networks are. In addition, it is not in-
tended to calculate the number of levels of hierarchical mod-
ularity in a network. In order to better understand the modu-
larity of our evolved neural networks, we used the “Louvain
method,” which was designed to detect hierarchical modu-
larity and maximize community detection while also having
a low runtime and not requiring a predefined number of com-
munities, and which has versions for both undirected and di-
rected graphs, to determine ) (Blondel et al., 2008). This
algorithm initially assigns each node in the network to its
own module. For a weighted graph, it calculates modularity
@ using the definition of modularity:

1 . kik:
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where A;; represents edge weight between nodes 4 and j,
m represents half the sum of the graph’s edge weights, J is
a delta function, ¢; and c¢; are node communities, and k; and
k; are the sums of the weights of all edges attached to node
1 and node j respectively.

Once this value is found, for each node, the algorithm cal-
culates the change in modularity achieved by moving that
node into the module of each of its neighbors. This calcu-
lation of change in () is done for each module that the node
is connected to. The node is then moved into the module
that would result in the greatest modularity increase (or left
in place if no modularity increase is possible). Once there is
no further possible increase, the first result of the algorithm
- the modularity at the lowest level of abstraction of the net-
work - is equal to the current (). These modules can then be
used as nodes in a network one level of abstraction higher,
with subsequent, hierarchical levels of () being calculated in
the same fashion. For the directed version of the Louvain
method, we used Antoine Scherrer’s MATLAB implemen-
tation of directed Louvain (Scherrer, 2008), which uses a
modified definition of modularity developed by Arenas et al.
(2007), and consequently modified change equations, for di-
rected networks:

| — Kk
Q = % ZZ] Aij — J‘| 1) (Ci,Cj) (2)

The Retina Problem

We tested the effect of sequential subtasks on modularity
was the eight-pixel retina problem, a pattern classification
problem developed by Kashtan and Alon (2005) to study
the emergence of modularity on a single level of abstrac-
tion, and which has been used in other modularity studies
(Clune et al., 2010; Verbancsics and Stanley, 2011; Lowell
and Pollack, 2014). In this problem, a pattern recognition
system such as a neural network must recognize two-pixel
by two-pixel patterns in either half of a four-pixel by two-
pixel retina, where certain patterns represent objects and the
rest do not, and return true or false based on whether an
object is present, with performance evaluated by the mean
squared error across all possible combinations of inputs.
There are differences between which patterns are objects in
each half of the retina, as illustrated in Fig.1. These differ-
ences make for a more complex task, as the classifier must
discover both functions and benefits from the ability to sep-
arate into different functional substructures, and advanced
neuroevolution algorithms such as HyperNEAT have strug-
gled with it (Clune et al., 2010). We compare three different
versions of the retina problem. In the first version, there is
only a single task; it is not modularly decomposable, as an
object need only exist on one side of the retina for the cor-
rect answer to be “true.” The second version of the problem
requires an object to be present on both sides of the retina
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Figure 1: An illustration of patterns used in the retina prob-
lem, adapted from (Kashtan and Alon, 2005). a) The single-
task version, in which an object need only exist on one side
of the retina for the correct answer to be “true.” b) The
parallel-subtask version, in which the classifier must com-
bine appropriate functions for the left and right sides. c)
The sequential-subtask version, in which the classifer must
assess the left and right sides in sequence.

for the correct answer to be “’true,” meaning that it can be di-
vided into two parallel subtasks. The third version requires
the pattern recognition system to perform the subtasks in se-
quence instead of in parallel. The pattern recognition system
first evaluates the left half of the retina. The error from the
evaluation of the left half of the retina then propagates into
the inputs of the neural network for the evaluation of the
right half of the retina - for example, if input [ into the neu-
ral network for the evaluation of the right half of the retina
was to be 0, and the value predicted by the network when
evaluating the left half of the retina was 0.15 off of the ex-
pected value, then I would be assigned a value of 0.15 dur-
ing evaluation of the right half of the retina.

Results

Our comparisons were between a set of 10 trials of NEAT
(with recurrency allowed) on the single-task environment
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Figure 2: The mean Louvain modularity value () in the first
level of modularity, on three different retina problem envi-
ronment versions, for the top-performing neural network of
each generation. Error bars every 100 generations show vari-
ance. At the start, networks produced by NEAT are unmod-
ular, and become more modular in all environments, with
the sequential-subtask environment producing greater mod-
ularity than the single-task or parallel-subtask environments
with P < 0.01.

(problem version), 10 trials on the parallel-subtask envi-
ronment, and 10 trials on the sequential-subtask environ-
ment, each across 2000 generations, as described earlier.
In Fig. 2, which shows mean modularity of the best-
performing member of the population across trials at the
lowest level of abstraction across all 2000 generations, we
see that at first, NEAT is producing nonmodular solutions
for all three environments, and that modularity rises rapidly
to moderate levels (in the @ = 0.3 to @ = 0.4 range) in
early generations. Starting as the generation number ap-
proaches 100, the single-task environment begins to show
a drop, followed by a gradual low rise, followed by a se-
ries of drops. The parallel-subtask environment shows a
steady moderate rise in best-individual modularity, while
the sequential-subtask environment shows a steeper rise.
Looking at modularities across the 2000 generations, the
sequential-subtask environment has greater best-individual
modularity than the parallel-subtask environment, which has
greater best-individual modularity than the single-task envi-
ronment, with P < 0.01. While fitness is not a primary fo-
cus of our study, it was generally similar in parallel-subtask
and sequential-subtask environments, and superior in single-
subtask environments, as the relative difficulty of the differ-
ent tasks would suggest.

In addition to viewing modularity at this lowest level of
abstraction, we also viewed both the emergence of higher
levels of abstraction, and the modularity of those higher lev-
els of abstraction - the emergence of both hierarchical mod-
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Figure 3: The mean number of levels of modularity for three
different retina problem environment versions.

ularity, and modularity in the hierarchical modules them-
selves. We see the first of these, the emergence of hierar-
chical modularity, in Fig. 3, which shows the mean number
of levels of modularity in the best-performing individual in
each environment for every generation, as indicated by 2000
data points plotted for each environment’s set of trials. In all
three environments, some cases of hierarchical modularity
start to emerge within the first 200 generations. However, in
the single-task environment, this emergence stagnates and is
then mostly lost. In the parallel-subtasks environment, a sec-
ond level of hierarchical modularity gradually emerges, but
stagnates. In the sequential-subtasks environment, we start
seeing a third level at earlier generations than we do in either
of the other two environments, even reaching the point of a
mean number of three levels at points later in the simula-
tion. So we can see that sequential subtasks, in this problem
space, are more effective at causing hierarchical modularity
to emerge than a single task or parallel subtasks are.

The degree of modularity in these emerging levels of hi-
erarchical modularity is depicted in Fig. 4. In this figure, if
a level does not exist, it is assigned a value of zero. The sec-
ond level, in Fig. 4a, shows a similar pattern to what existed
in the first level of modularity. Mean modularity for best in-
dividuals rises in all three environments, but levels out and
then declines in the single-task environment. It rises in the
parallel-subtask environment, but in the sequential-subtask
environment, it rises more quickly and has a higher asymp-
tote value. In the third level, shown in Fig. 4b, we can see
the starkest differences between the results produced by dif-
ferent environments, in part because the sequential-subtask
environment is the only one in which a third level of hier-
archical modularity consistently emerges. The single-task
environment shows almost no third level. For the parallel-
subtask environment, there is a period of several hundred
generations, late in the evolutionary process, in which there
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Figure 4: Mean Louvain modularity values at upper levels of
abstraction. Error bars represent variance. At the start, net-
works produced by NEAT are unmodular at these levels of
abstraction. At the second level, they become more modu-
lar in all environments, with the sequential-subtask environ-
ment producing greater modularity than the single-task or
parallel-subtask environments with P < 0.01, while at the
third level, the sequential-subtask environment is the only
one to produce modules of nontrivial strength. a) The mean
Louvain modularity value () in the second level of modular-
ity, on three different retina problem environment versions.
If a second level does not exist, the value is set equal to 0. b)
The same value for the third level of modularity.

is a third level, but the modules that have emerged are weak.
While the result for the sequential-subtask environment is
very noisy, it shows a strong upward trend, reaching, at its
peaks, similar mean () values as were found in the first two
levels.

In all environments, there is a pattern at both the first and
second levels of abstraction where, late in the trial, mean
modularity drops and variance increases. This occurs earli-
est in the single-task environment, in which averages drop
to near what they were at the start of the evolutionary pro-
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Figure 5: Network size (number of nodes) as a function
of first-level modularity for all top-performing networks
produced in the first 500 generations of evolution. As
in other figures, the colors blue, orange, and green repre-
sent networks evolved in single-task, parallel-subtask, and
sequential-subtask environments, respectively.

cess, and latest in the sequential-subtask environment. At
least some of both the drop in mean modularity and the drop
in variance appear to be due to nonmodular outliers. Given
the tendency, in the absence of modularity-promoting fac-
tors, for evolutionary algorithms to produce nonmodular so-
lutions, these outliers may be cases where methods of mod-
ularity promotion have gradually been overcome by this ten-
dency. In the single-task environment, with no environmen-
tal modularity promotion mechanism, this tendency would
make it unsurprising that evolved solutions, whose single-
level modularity never got very much higher than it was
at the start of the evolutionary process, would regress. In
other environments, the environmental modularity promo-
tion mechanism appears to provide at least a partial buffer
against regression.

One potential factor contributing to increased modularity
in more complex environments, with more difficult tasks, is
network size, with greater single-level modularity, or more
levels of hierarchical modularity, appearing as NEAT adds
more nodes to the networks in an attempt at better perfor-
mance. Network size in networks with emerged hierarchical
modularity has previously found not to be a primary factor
in that hierarchical modularity (Lowell and Pollack, 2016).
To assess impacts of network size on single-level modular-
ity, we plotted network size and first-level modularity (as
second-level modularity closely tracked first-level) for best-
of-generation networks in the first 500 generations of every
trial, or 5,000 networks per environment, in Fig. 5. We
show the first 500 generations because differences in module
strength between environments had already clearly emerged
after 500 generations, and first-level modularity was close
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to its apparent asymptote for all environments, as seen in
Fig. 2, while spikes in network size caused by the stalling of
fitness improvements in a difficult environment had not yet
emerged. While there is some correlation between network
size and first-level modularity, there is a visible difference in
the first-level modularity of networks of similar size evolved
in different environments, with those evolved in sequential-
subtask environments being the most modular at this level
and those evolved in single-subtask environments being the
least modular.

Discussion, Conclusion, and Future Work

One interesting aspect of the results is that the neural net-
works in the single-task environment show an early peak in
their first-level modularity, and in their second-level modu-
larity as well as the second level emerges, but they are un-
able to sustain this as evolution progresses, and stagnate or
lose ground. In the sequential-subtask environments, single-
level modularity early in the evolutionary process is actu-
ally somewhat lower than it is in single-task environments.
However, this modularity rises from its lower beginnings
to a much higher value as evolution progresses. The slope
of the curve is steeper, and it approaches what appears to
be a higher asymptote. When we analyzed the effects of
a parallel-subtask environment, single-level network modu-
larity shows a similar but less drastic pattern to that of the
sequential-subtask environment, rising gradually toward a
middle-ground asymptote. It is possible that some factor
causing the early modularity bump in the single-task envi-
ronment then reduces the further evolvability of modularity.

Intuitively, it makes sense that a task that can be de-
composed into multiple parts would be more likely to in-
duce the evolution of modularity, or would promote it
to a greater degree, than would be the case for a non-
decomposable task, with subnetworks evolving to handle
different subtasks. The compartmentalization of one large
task into multiple subtasks limits the possible connections
that each node can make, and as (Clune et al., 2013) demon-
strated, fewer connections between nodes is associated with
greater modularity. It is also associated with greater hi-
erarchy (Mengistu et al., 2016). However, this does not
explain why sequential subtasks promote modularity to a
greater degree than parallel subtasks. One key difference be-
tween sequential-subtask and parallel-subtask environments
is that in a parallel-subtask environment, networks are evolv-
ing to perform well on one simultanous task, whereas in
sequential-subtask environments, networks are performing
two different subtasks at two different times, which requires
them to be reusable. Recombinability and decomposabil-
ity are considered aspect of modularity in most fields that
study it (Schilling, 2002) A reason that modular design is
considered desirable by engineers is that parts can be reused.
This selection pressure for reusability may also be a selec-
tion pressure for recombinability and decomposability, pro-
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ducing modularity.

The modularity that emerged was not simply a case of
two modules emerging, one for each subtask, but a hier-
archical network of many modules, sometimes dozens for
larger networks at the lowest level of abstraction. This may
be an effect of NEAT’s bottom-up approach, in which neu-
ral networks start as small as possible and build up grad-
ually through random mutations adding nodes and edges.
The randomness, combined with gradual increase in net-
work size, and environmental inducing of modularity, could
cause small modules to form gradually in different parts of
the network.

The tendency of single-level modularities, in all environ-
ments, to rise toward apparent asymptotes, suggests that en-
vironments can impose constraints on modularity as well as
promoting or not promoting it. As previously mentioned,
the difference in neural networks evolved in parallel-subtask
vs sequential-subtask environments on the retina problem
is that in the latter the apparent asymptote is greater. How
these asymptotes form, how environments constrain as well
as promote modularity, may prove a fruitful area for further
research.

Our results suggest other potentially fruitful areas of fu-
ture research as well. One possibility would be to adjust pa-
rameters within NEAT, or compare it with other neuroevolu-
tion methods, in order to identify algorithm-specific factors
that interact with different environments to promote mod-
ularity. Another possibility would be to combine our en-
vironmental method with a network-intrinsic method such
as the connection cost method developed by (Clune et al.,
2013). Finally, it would be interesting to study the effects
of sequential subtasks in the evolution of actual biological
systems, as (Kashtan et al., 2007) did to complement com-
putational studies on the effects of varying environments on
the evolution of modularity.
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