Oral presentation

The Effects of Environmental Structure on the Evolution of Modularity in a
Pattern Classifier

Jessica Lowell and Jordan Pollack

DEMO Lab, Brandeis University, Waltham, MA 02453
jessiehl@brandeis.edu

Abstract

We examine hierarchical modularity - modularity on mul-
tiple levels, in which the modules at a lower level of ab-
straction can serve as nodes in a network at a higher level
of abstraction that also has positive modularity - as well
as degree of modularity on a single level of abstraction, in
evolved neural networks in single-task, parallel-subtask envi-
ronments, and sequential-subtask environments, using a com-
mon benchmark problem. We determine that top-performing
networks evolved in the sequential-subtask environment have
both more levels of hierarchical modularity, and a higher de-
gree of modularity within levels, than those involved in either
the single-task or parallel-subtask environment. In the single-
task environment, both single-level and hierarchical modu-
larity tend to rise initially before stagnating and even declin-
ing, while in the sequential-subtask environment, both single-
level and hierarchical modularity tend to rise throughout the
period of evolution.

Introduction

In this paper, we examine the influence of an environment
in which a neural network must perform sequential subtasks
on the emergence of modularity, both single-level and hi-
erarichical. Both many natural and many engineered sys-
tems display modularity, the organization of a system into
a hierarchy of independent but interacting subparts (Koza,
1992; Hartwell et al., 1999). Understanding how modular-
ity emerges has become increasingly important as evolution-
ary systems are used in increasingly complex applications.
Neural networks are commonly used in control and machine
learning applications, and modularity in large neural net-
works is beneficial, as it allows a large and unmanageable
neural network to be reduced to smaller and more manage-
able subnetworks (Azam, 2000). We briefly discuss modu-
larity in evolution, followed by an overview of modularity
in neural networks.

Modularity in Evolution

A variety of natural and engineered systems tend to be
modular, including biological, technical, and organizational
(Schilling, 2002). Modular biological systems include net-
works such as bacterial metabolic networks and biological

neural networks, as well as other kinds of biological sys-
tems that are assembled from smaller parts, such as tissues,
which are assembled from cells. The definition of mod-
ularity is not formalized, and is field-dependent and even
subfield-depdendent, but generally refers to the degree to
which a system is composed of separable, recombinable
components. Schilling (2002) reviews elements of modu-
larity that are common to different fields, including tech-
nology, biology, American studies, psychology, and mathe-
matics. Bolker (2000) attempted to synthesize definitions of
modularity across different abstraction levels and subfields
in biology by defining a list of characteristics of modular-
ity, including the ability to delineate modules from their sur-
roundings, greater internal integration within modules than
external integration between modules, and module func-
tion/performance exceeding the sum of the module’s com-
poonents.

The highest-performing solutions produced by runs of
evolutionary algorithms tend to be nonmodular, though there
are some exceptions, such as the coevolutionary algorithm
of Juillé and Pollack (1996), which found modular solutions
to the intertwined spirals problem using genetic program-
ming. The nonmodular solutions tend to be connected in
complicated ways, and perform better on the tasks for which
they are optimized than modular solutions designed by hu-
mans (Thompson, 2012; Vassilev et al., 2000). While this
produces good results for simple problems, the lack of mod-
ularity makes it difficult for these evolved solutions to solve
complex problems (Kashtan and Alon, 2005). Modular ar-
chitectures are better at certain kinds of modular problems,
such as learning piecewise control structures, than nonmod-
ular ones (Jacobs and Jordan, 1993). Designers can ad-
dress this issue by building the encapsulation of modules
into their algorithms, but this sheds no light on how modu-
larity evolves in nature. It also precludes any design bene-
fit that may arise from modularity emerging naturally rather
than being hard-coded. For example, there is some evi-
dence (Calabretta et al., 1998) that modules that emerge nat-
urally split tasks differently than hard-coded modules. Juillé
(1999) demonstrated a version of this by developing a Mod-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 267

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

ular Inductive Learning system featured automated, rather
than hard-coded, decomposition of tasks. Fitness-sharing
between simulated symbiont organisms that become a com-
posite, which has some conceptual similarity to modular-
ity in that it combines the functionalities of multiple sub-
systems, promotes evolution on hierarchical problems (Wat-
son and Pollack, 2000, 2001). Finally, allowing modules to
emerge through the iterative process of evolution may al-
low for high-performing nonmodular candidate solutions to
develop modularity over time without compromising their
strong performance, resulting in the benefits of both evolu-
tionary algorithms and modularity.

Because of these benefits of understanding and imple-
menting the evolution of modularity, in recent years there
have been several studies on the emergence of modularity
in both natural and artificial systems. These have taken two
main approaches - examining the kinds of environments that
cause modularity to evolve, and the kinds of selection fac-
tors that cause modularity to evolve. In the former cate-
gory, Lipson et al. (2002) suggested using variable rather
than fixed criteria for evolutionary optimization after find-
ing, in a study of minimal substrate modularization, that
modular separation is logarithmically proportional to the en-
vironmental variation rate. Further work on environmental
variation and modularity in computational evolution stud-
ies (Kashtan and Alon, 2005) and natural evolution studies
(Kashtan et al., 2007; Parter et al., 2007) found that modular-
ity evolves in response to varying environments in which an
individual switches between optimizing for different tasks
that are decomposable into common subtasks (modularly
varying goals). In the latter category, Clune et al. (2013) pro-
posed that modular networks evolve in response to selection
pressure to minimize the number of connections between
nodes, representing the energy cost of forming a link in a
physical network. A differently-implemented energy cost
imposed on the NEAT neuroevolution algorithm, on a prob-
lem in which some solutions that evolve are relatively mod-
ular and some are not, has been found to increase consis-
tency in the degree of modularity that emerges (Lowell and
Pollack, 2014). Calcott (2014) reported the emergence of
first-level modularity in a sequential-subtask environment,
but did not elaborate on details of the experiments done or
the results found.

While (Schilling, 2002) found that nearly all fields ex-
amined defined hierarchical nesting as part of the defini-
tion of modularity, and (Variano et al., 2004) found that
hierarchical modularity in networks improved the robust-
ness of network stability, it has not traditionally been ex-
amined in simulated evolution studies of modularity. While
there are a few recent exceptions to this - a study by Lowell
and Pollack (2016) found that developmental encodings pro-
moted the emergence of hierarchical modularity, and work
byMengistu et al. (2016) found that connection cost between
nodes in a network promoted its emergence - it is still not

Oral presentation

well-studied. Furthermore, this existing work on evolving
hierarchical modularity focuses on the hierarchy rather than
the degree to which specific levels of abstraction are mod-
ular, and work on single-level degree of modularity, by ne-
cessity, has looked at modularity only on the lowest level of
abstraction. This paper addresses the emergence of a hier-
archy of modules as well as single-level modularity on each
level of abstraction. To clarify our terminology: at the low-
est level of abstraction, or level of modularity, in a modular
network, the network’s nodes form modules of some lev-
els of strength. If some or all of these modules can in turn
be treated as nodes in a new network, that is a second level
of abstraction, or level of modularity. The strength of the
modules within a given level, the calculation for which is
discussed below, is the single-level modularity for that level.
Hierarchical modularity is defined in this paper as the pres-
ence of multiple levels of abstraction with positive modu-
larity, with a more hierarchically modular network having
more levels.

Methods
NEAT

There are many algorithms for evolving neural networks.
Some of these evolve network topology only, some evolve
weights only, and some evolve both. NeuroEvolution of
Augmenting Topologies, or NEAT (Stanley and Miikku-
lainen, 2002), is an example of a neuroevolution algorithm
that evolves both. It begins with simple, minimal net-
works, and gradually generates more and more complex
ones through three forms of mutation: adding neurons,
adding connections, and modifying connection weights. It
temporarily protects innovations that are sufficiently differ-
ent from existing candidate solutions, in order to give them
the opportunity to cultivate niches and prove evolutionar-
ily useful, by using a speciation mechanism, which isolates
subsets of the population into different reproductive groups
based on topological dissimilarity. Species that perform
well grow and persist, perhaps with new species splitting
off, while poorly-performing species gradually die off. An-
other important aspect of NEAT is that it tracks the history
of innovations through assigning them persisting numbers,
which allows for a working crossover operator by making
it possible to determine which subnetworks can be recom-
bined without producing nonviable neural networks. NEAT
remains one of the most popular neuroevolution algorithms,
and has proven effective in several problem domains, includ-
ing vehicle collision avoidance, evolving a roving eye for
Go, training Al teammates to work together in a video game
(Stanley and Miikkulainen, 2002; Stanley et al., 2005), and
strategic decision-making (Lowell et al., 2011).

The standard NEAT algorithm does not tend to evolve
modularity (Reisinger et al., 2004). Reisinger et al. (2004)
created Modular NEAT, a version of NEAT intended to pro-
duce modular solutions, by requiring their algorithm to reuse

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 268

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

subnetworks in different spatial locations to form complete
neural networks, thereby forcing a predisposition toward
modularity. HyperNEAT (Stanley et al., 2009), an exten-
sion of NEAT that evolves compositional pattern-producing
networks for an indirect encoding, also does not tend to
produce modular networks on its own Clune et al. (2010),
though Verbancsics and Stanley (2011) were able to influ-
ence it toward modularity by seeding with a bias to connect
components which are spatially near each other, a mecha-
nism that, like the previously-discussed work on connection
costs and modularity, relates to the energy costs of connect-
ing nodes, and may play a role in biological modularity. In
this study, we use the NEAT4J open source Java implemen-
tation of NEAT (Simmerson, 2006).

Probability of mutation, crossover, and other network-
related and evolution-related parameters, is set by the user
in NEAT. In Table 1 we list key NEAT parameters used in
all experiments in this paper.

Parameter | Value |
Population size 500
Max number of generations | 2000
P(Mutation) 0.75
P(Crossover) 0.25

Table 1: Parameters used in all experiments.

Calculating Modularity

Many studies of modularity use the metric of () to repre-
sent modularity, defined by the approach of (Newman and
Girvan, 2004). This method is well-suited for networks in
which connections are undirected and binary (i.e. networks
where there is either a connection between two nodes or
there is not) and the phenomenon being studied is single-
level modularity (the modularity at one layer of abstrac-
tion). It does not account for different edge weights be-
tween nodes, as exist in neural networks, nor for directed
networks, as neural networks are. In addition, it is not in-
tended to calculate the number of levels of hierarchical mod-
ularity in a network. In order to better understand the modu-
larity of our evolved neural networks, we used the “Louvain
method,” which was designed to detect hierarchical modu-
larity and maximize community detection while also having
a low runtime and not requiring a predefined number of com-
munities, and which has versions for both undirected and di-
rected graphs, to determine) (Blondel et al., 2008). This
algorithm initially assigns each node in the network to its
own module. For a weighted graph, it calculates modularity
@ using the definition of modularity:

1 . kik:
QZTHZU |:Aij_ 2775]5(61'767‘) (D

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,
(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

Oral presentation

where A;; represents edge weight between nodes 4 and j,
m represents half the sum of the graph’s edge weights, J is
a delta function, ¢; and c¢; are node communities, and k; and
k; are the sums of the weights of all edges attached to node
1 and node j respectively.

Once this value is found, for each node, the algorithm cal-
culates the change in modularity achieved by moving that
node into the module of each of its neighbors. This calcu-
lation of change in () is done for each module that the node
is connected to. The node is then moved into the module
that would result in the greatest modularity increase (or left
in place if no modularity increase is possible). Once there is
no further possible increase, the first result of the algorithm
- the modularity at the lowest level of abstraction of the net-
work - is equal to the current (). These modules can then be
used as nodes in a network one level of abstraction higher,
with subsequent, hierarchical levels of () being calculated in
the same fashion. For the directed version of the Louvain
method, we used Antoine Scherrer’s MATLAB implemen-
tation of directed Louvain (Scherrer, 2008), which uses a
modified definition of modularity developed by Arenas et al.
(2007), and consequently modified change equations, for di-
rected networks:

| — Kk
Q = % ZZ] Aij — J‘| 1) (Ci,Cj) (2)

The Retina Problem

We tested the effect of sequential subtasks on modularity
was the eight-pixel retina problem, a pattern classification
problem developed by Kashtan and Alon (2005) to study
the emergence of modularity on a single level of abstrac-
tion, and which has been used in other modularity studies
(Clune et al., 2010; Verbancsics and Stanley, 2011; Lowell
and Pollack, 2014). In this problem, a pattern recognition
system such as a neural network must recognize two-pixel
by two-pixel patterns in either half of a four-pixel by two-
pixel retina, where certain patterns represent objects and the
rest do not, and return true or false based on whether an
object is present, with performance evaluated by the mean
squared error across all possible combinations of inputs.
There are differences between which patterns are objects in
each half of the retina, as illustrated in Fig.1. These differ-
ences make for a more complex task, as the classifier must
discover both functions and benefits from the ability to sep-
arate into different functional substructures, and advanced
neuroevolution algorithms such as HyperNEAT have strug-
gled with it (Clune et al., 2010). We compare three different
versions of the retina problem. In the first version, there is
only a single task; it is not modularly decomposable, as an
object need only exist on one side of the retina for the cor-
rect answer to be “true.” The second version of the problem
requires an object to be present on both sides of the retina

2m

269

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

[" | "W | [" | "W
™ a " o "
B or & AnD
= "R [il "R [il
| BN o i A | | BN »f i B8 |
Left Right L=ft Right
(a}Objects Objects (b) Objects Objects
R =5 = B
‘tmpi
=« "R [R
| BN o i I |
Left Right
(C)Objects Objects

Figure 1: An illustration of patterns used in the retina prob-
lem, adapted from (Kashtan and Alon, 2005). a) The single-
task version, in which an object need only exist on one side
of the retina for the correct answer to be “true.” b) The
parallel-subtask version, in which the classifier must com-
bine appropriate functions for the left and right sides. c)
The sequential-subtask version, in which the classifer must
assess the left and right sides in sequence.

for the correct answer to be “’true,” meaning that it can be di-
vided into two parallel subtasks. The third version requires
the pattern recognition system to perform the subtasks in se-
quence instead of in parallel. The pattern recognition system
first evaluates the left half of the retina. The error from the
evaluation of the left half of the retina then propagates into
the inputs of the neural network for the evaluation of the
right half of the retina - for example, if input [into the neu-
ral network for the evaluation of the right half of the retina
was to be 0, and the value predicted by the network when
evaluating the left half of the retina was 0.15 off of the ex-
pected value, then I would be assigned a value of 0.15 dur-
ing evaluation of the right half of the retina.

Results

Our comparisons were between a set of 10 trials of NEAT
(with recurrency allowed) on the single-task environment

Oral presentation

Single task

Parallel subtasks 1
Sequenlialsublasksii I
— . . - L I
80O 1000 1200 1400 1600 1800 2000

|

n

o - .
o 200

e L
400

600

Figure 2: The mean Louvain modularity value () in the first
level of modularity, on three different retina problem envi-
ronment versions, for the top-performing neural network of
each generation. Error bars every 100 generations show vari-
ance. At the start, networks produced by NEAT are unmod-
ular, and become more modular in all environments, with
the sequential-subtask environment producing greater mod-
ularity than the single-task or parallel-subtask environments
with P < 0.01.

(problem version), 10 trials on the parallel-subtask envi-
ronment, and 10 trials on the sequential-subtask environ-
ment, each across 2000 generations, as described earlier.
In Fig. 2, which shows mean modularity of the best-
performing member of the population across trials at the
lowest level of abstraction across all 2000 generations, we
see that at first, NEAT is producing nonmodular solutions
for all three environments, and that modularity rises rapidly
to moderate levels (in the @ = 0.3 to @ = 0.4 range) in
early generations. Starting as the generation number ap-
proaches 100, the single-task environment begins to show
a drop, followed by a gradual low rise, followed by a se-
ries of drops. The parallel-subtask environment shows a
steady moderate rise in best-individual modularity, while
the sequential-subtask environment shows a steeper rise.
Looking at modularities across the 2000 generations, the
sequential-subtask environment has greater best-individual
modularity than the parallel-subtask environment, which has
greater best-individual modularity than the single-task envi-
ronment, with P < 0.01. While fitness is not a primary fo-
cus of our study, it was generally similar in parallel-subtask
and sequential-subtask environments, and superior in single-
subtask environments, as the relative difficulty of the differ-
ent tasks would suggest.

In addition to viewing modularity at this lowest level of
abstraction, we also viewed both the emergence of higher
levels of abstraction, and the modularity of those higher lev-
els of abstraction - the emergence of both hierarchical mod-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 270

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

Mean number of levels

Single task
Parallel subtasks
Seguential subtasks

0.5

=}

200 400 600 800 1000 1200 1400 1600 1800 2000
Generation

Figure 3: The mean number of levels of modularity for three
different retina problem environment versions.

ularity, and modularity in the hierarchical modules them-
selves. We see the first of these, the emergence of hierar-
chical modularity, in Fig. 3, which shows the mean number
of levels of modularity in the best-performing individual in
each environment for every generation, as indicated by 2000
data points plotted for each environment’s set of trials. In all
three environments, some cases of hierarchical modularity
start to emerge within the first 200 generations. However, in
the single-task environment, this emergence stagnates and is
then mostly lost. In the parallel-subtasks environment, a sec-
ond level of hierarchical modularity gradually emerges, but
stagnates. In the sequential-subtasks environment, we start
seeing a third level at earlier generations than we do in either
of the other two environments, even reaching the point of a
mean number of three levels at points later in the simula-
tion. So we can see that sequential subtasks, in this problem
space, are more effective at causing hierarchical modularity
to emerge than a single task or parallel subtasks are.

The degree of modularity in these emerging levels of hi-
erarchical modularity is depicted in Fig. 4. In this figure, if
a level does not exist, it is assigned a value of zero. The sec-
ond level, in Fig. 4a, shows a similar pattern to what existed
in the first level of modularity. Mean modularity for best in-
dividuals rises in all three environments, but levels out and
then declines in the single-task environment. It rises in the
parallel-subtask environment, but in the sequential-subtask
environment, it rises more quickly and has a higher asymp-
tote value. In the third level, shown in Fig. 4b, we can see
the starkest differences between the results produced by dif-
ferent environments, in part because the sequential-subtask
environment is the only one in which a third level of hier-
archical modularity consistently emerges. The single-task
environment shows almost no third level. For the parallel-
subtask environment, there is a period of several hundred
generations, late in the evolutionary process, in which there

Oral presentation

o

0.8
N _A.—-—]-
08 R T o e "'"_”"'T %
‘ -
e [|
05 " I TT1
o il B H
A
5 04 1\] q l
= I
- .
0.3
0.2
Single task
0.1 Parallel subtasks
Sequential subtasks
o
o 200 400 600 BOO 1000 1200 1400 1600 1800 2000
Generation
0.8
Single task
0.7 Parallel subtasks
Sequential subtasks
0.6
0.5
o
G 0.4
©
=
0.3
0.z
o |\
i "\ |H' | n
o ZDD 4DD 600 8O0 1000 1200 1400 1600 1800 2000

Generation

Figure 4: Mean Louvain modularity values at upper levels of
abstraction. Error bars represent variance. At the start, net-
works produced by NEAT are unmodular at these levels of
abstraction. At the second level, they become more modu-
lar in all environments, with the sequential-subtask environ-
ment producing greater modularity than the single-task or
parallel-subtask environments with P < 0.01, while at the
third level, the sequential-subtask environment is the only
one to produce modules of nontrivial strength. a) The mean
Louvain modularity value () in the second level of modular-
ity, on three different retina problem environment versions.
If a second level does not exist, the value is set equal to 0. b)
The same value for the third level of modularity.

is a third level, but the modules that have emerged are weak.
While the result for the sequential-subtask environment is
very noisy, it shows a strong upward trend, reaching, at its
peaks, similar mean () values as were found in the first two
levels.

In all environments, there is a pattern at both the first and
second levels of abstraction where, late in the trial, mean
modularity drops and variance increases. This occurs earli-
est in the single-task environment, in which averages drop
to near what they were at the start of the evolutionary pro-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 271

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

80

50

5
5

Number of Nodes
@
=

20

-01 o 01 02 03 o4 05 a8 a7 a8
Modularity Q

Figure 5: Network size (number of nodes) as a function
of first-level modularity for all top-performing networks
produced in the first 500 generations of evolution. As
in other figures, the colors blue, orange, and green repre-
sent networks evolved in single-task, parallel-subtask, and
sequential-subtask environments, respectively.

cess, and latest in the sequential-subtask environment. At
least some of both the drop in mean modularity and the drop
in variance appear to be due to nonmodular outliers. Given
the tendency, in the absence of modularity-promoting fac-
tors, for evolutionary algorithms to produce nonmodular so-
lutions, these outliers may be cases where methods of mod-
ularity promotion have gradually been overcome by this ten-
dency. In the single-task environment, with no environmen-
tal modularity promotion mechanism, this tendency would
make it unsurprising that evolved solutions, whose single-
level modularity never got very much higher than it was
at the start of the evolutionary process, would regress. In
other environments, the environmental modularity promo-
tion mechanism appears to provide at least a partial buffer
against regression.

One potential factor contributing to increased modularity
in more complex environments, with more difficult tasks, is
network size, with greater single-level modularity, or more
levels of hierarchical modularity, appearing as NEAT adds
more nodes to the networks in an attempt at better perfor-
mance. Network size in networks with emerged hierarchical
modularity has previously found not to be a primary factor
in that hierarchical modularity (Lowell and Pollack, 2016).
To assess impacts of network size on single-level modular-
ity, we plotted network size and first-level modularity (as
second-level modularity closely tracked first-level) for best-
of-generation networks in the first 500 generations of every
trial, or 5,000 networks per environment, in Fig. 5. We
show the first 500 generations because differences in module
strength between environments had already clearly emerged
after 500 generations, and first-level modularity was close

Oral presentation

to its apparent asymptote for all environments, as seen in
Fig. 2, while spikes in network size caused by the stalling of
fitness improvements in a difficult environment had not yet
emerged. While there is some correlation between network
size and first-level modularity, there is a visible difference in
the first-level modularity of networks of similar size evolved
in different environments, with those evolved in sequential-
subtask environments being the most modular at this level
and those evolved in single-subtask environments being the
least modular.

Discussion, Conclusion, and Future Work

One interesting aspect of the results is that the neural net-
works in the single-task environment show an early peak in
their first-level modularity, and in their second-level modu-
larity as well as the second level emerges, but they are un-
able to sustain this as evolution progresses, and stagnate or
lose ground. In the sequential-subtask environments, single-
level modularity early in the evolutionary process is actu-
ally somewhat lower than it is in single-task environments.
However, this modularity rises from its lower beginnings
to a much higher value as evolution progresses. The slope
of the curve is steeper, and it approaches what appears to
be a higher asymptote. When we analyzed the effects of
a parallel-subtask environment, single-level network modu-
larity shows a similar but less drastic pattern to that of the
sequential-subtask environment, rising gradually toward a
middle-ground asymptote. It is possible that some factor
causing the early modularity bump in the single-task envi-
ronment then reduces the further evolvability of modularity.

Intuitively, it makes sense that a task that can be de-
composed into multiple parts would be more likely to in-
duce the evolution of modularity, or would promote it
to a greater degree, than would be the case for a non-
decomposable task, with subnetworks evolving to handle
different subtasks. The compartmentalization of one large
task into multiple subtasks limits the possible connections
that each node can make, and as (Clune et al., 2013) demon-
strated, fewer connections between nodes is associated with
greater modularity. It is also associated with greater hi-
erarchy (Mengistu et al., 2016). However, this does not
explain why sequential subtasks promote modularity to a
greater degree than parallel subtasks. One key difference be-
tween sequential-subtask and parallel-subtask environments
is that in a parallel-subtask environment, networks are evolv-
ing to perform well on one simultanous task, whereas in
sequential-subtask environments, networks are performing
two different subtasks at two different times, which requires
them to be reusable. Recombinability and decomposabil-
ity are considered aspect of modularity in most fields that
study it (Schilling, 2002) A reason that modular design is
considered desirable by engineers is that parts can be reused.
This selection pressure for reusability may also be a selec-
tion pressure for recombinability and decomposability, pro-

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 272

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

ducing modularity.

The modularity that emerged was not simply a case of
two modules emerging, one for each subtask, but a hier-
archical network of many modules, sometimes dozens for
larger networks at the lowest level of abstraction. This may
be an effect of NEAT’s bottom-up approach, in which neu-
ral networks start as small as possible and build up grad-
ually through random mutations adding nodes and edges.
The randomness, combined with gradual increase in net-
work size, and environmental inducing of modularity, could
cause small modules to form gradually in different parts of
the network.

The tendency of single-level modularities, in all environ-
ments, to rise toward apparent asymptotes, suggests that en-
vironments can impose constraints on modularity as well as
promoting or not promoting it. As previously mentioned,
the difference in neural networks evolved in parallel-subtask
vs sequential-subtask environments on the retina problem
is that in the latter the apparent asymptote is greater. How
these asymptotes form, how environments constrain as well
as promote modularity, may prove a fruitful area for further
research.

Our results suggest other potentially fruitful areas of fu-
ture research as well. One possibility would be to adjust pa-
rameters within NEAT, or compare it with other neuroevolu-
tion methods, in order to identify algorithm-specific factors
that interact with different environments to promote mod-
ularity. Another possibility would be to combine our en-
vironmental method with a network-intrinsic method such
as the connection cost method developed by (Clune et al.,
2013). Finally, it would be interesting to study the effects
of sequential subtasks in the evolution of actual biological
systems, as (Kashtan et al., 2007) did to complement com-
putational studies on the effects of varying environments on
the evolution of modularity.

References

Arenas, A., Duch, J., Fernandez, A., and Gémez, S. (2007). Size
reduction of complex networks preserving modularity. New
Journal of Physics, 9(6):176.

Azam, F. (2000). Biologically inspired modular neural networks.
PhD thesis, Citeseer.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E.
(2008). Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10):P10008.

Bolker, J. A. (2000). Modularity in development and why it matters
to evo-devo. American Zoologist, 40(5):770-776.

Calabretta, R., Nolfi, S., Parisi, D., and Wagner, G. P. (1998).
Emergence of functional modularity in robots. From animals
to animats, 5:497-504.

Calcott, B. (2014). Chaining distinct tasks drives the evolution of
modularity. In ALIFE 14: The Fourteenth Conference on the

Oral presentation

Synthesis and Simulation of Living Systems, volume 14, pages
701-702.

Clune, J., Beckmann, B. E., McKinley, P. K., and Ofria, C.
(2010). Investigating whether hyperneat produces modular
neural networks. In Proceedings of the 12th annual confer-
ence on Genetic and evolutionary computation, pages 635—
642. ACM.

Clune, J., Mouret, J.-B., and Lipson, H. (2013). The evolutionary
origins of modularity. Proceedings of the Royal Society of
London B: Biological Sciences, 280(1755):20122863.

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W.
(1999). From molecular to modular cell biology. Nature,
402:C47-C52.

Jacobs, R. A. and Jordan, M. I. (1993). Learning piecewise control
strategies in a modular neural network architecture. IEEE
Transactions on Systems, Man, and Cybernetics, 23(2):337-
345.

Juillé, H. (1999). Methods for statistical inference: extending the
evolutionary computation paradigm. dissertation, Brandeis
University.

Juillé, H. and Pollack, J. B. (1996). Co-evolving intertwined spi-
rals. In in Proceedings of the Fifth Annual Conference on
Evolutionary Programming. Citeseer.

Kashtan, N. and Alon, U. (2005). Spontaneous evolution of
modularity and network motifs. Proceedings of the Na-
tional Academy of Sciences of the United States of America,
102(39):13773-13778.

Kashtan, N., Noor, E., and Alon, U. (2007). Varying environments
can speed up evolution. Proceedings of the National Academy
of Sciences, 104(34):13711-13716.

Koza, J. R. (1992). Genetic programming: on the programming
of computers by means of natural selection, volume 1. MIT
press.

Lipson, H., Pollack, J. B., Suh, N. P, and Wainwright, P. (2002).
On the origin of modular variation. Evolution, 56(8):1549—
1556.

Lowell, J., Grabkovsky, S., and Birger, K. (2011). Comparison
of neat and hyperneat performance on a strategic decision-
making problem. In Genetic and Evolutionary Comput-
ing (ICGEC), 2011 Fifth International Conference on, pages
102-105. IEEE.

Lowell, J. and Pollack, J. (2014). The effect of connection cost on
modularity in evolved neural networks. In ALIFE 14: The
Fourteenth Conference on the Synthesis and Simulation of
Living Systems, volume 14, pages 726-733.

Lowell, J. and Pollack, J. (2016). Developmental encodings pro-
mote the emergence of hierarchical modularity. In ALIFE 15:
The Fifteenth Conference on the Synthesis and Simulation of
Living Systems, volume 15, pages 344-352.

Mengistu, H., Huizinga, J., Mouret, J.-B., and Clune, J. (2016).
The evolutionary origins of hierarchy. PLoS Comput Biol,
12(6):€1004829.

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017, 273

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives

4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

Newman, M. and Girvan, M. (2004). Finding and evaluat-
ing community structure in networks. Physical Review E,
69(2):026113.

Parter, M., Kashtan, N., and Alon, U. (2007). Environmental vari-
ability and modularity of bacterial metabolic networks. BMC
evolutionary biology, 7(1):169.

Reisinger, J., Stanley, K. O., and Miikkulainen, R. (2004). Evolv-
ing reusable neural modules. In Genetic and Evolutionary
Computation Conference, pages 69-81. Springer.

Scherrer, A. (2008). Matlab louvain implementation. online, 2008.

Schilling, M. A. (2002). Modularity in multiple disciplines. Man-
aging in the modular age: Architectures, networks and orga-
nizations, pages 203-214.

Simmerson, M. (2006). Neat4j homepage. online, 2006.

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005). Evolv-
ing neural network agents in the nero video game. Proceed-
ings of the IEEE, pages 182-189.

Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009). A
hypercube-based encoding for evolving large-scale neural
networks. Artificial life, 15(2):185-212.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural net-
works through augmenting topologies. Evolutionary Compu-
tation, 10(2):99-127.

Thompson, A. (2012). Hardware Evolution: Automatic design
of electronic circuits in reconfigurable hardware by artificial
evolution. Springer Science & Business Media.

Variano, E. A., McCoy, J. H., and Lipson, H. (2004). Net-
works, dynamics, and modularity. Physical review letters,
92(18):188701.

Vassilev, V. K., Job, D., and Miller, J. F. (2000). Towards the au-
tomatic design of more efficient digital circuits. In Evolvable
Hardware, 2000. Proceedings. The Second NASA/DoD Work-
shop on, pages 151-160. IEEE.

Verbancsics, P. and Stanley, K. O. (2011). Constraining connec-
tivity to encourage modularity in hyperneat. In Proceedings
of the 13th annual conference on Genetic and evolutionary
computation, pages 1483-1490. ACM.

Watson, R. A. and Pollack, J. B. (2000). Symbiotic combina-
tion as an alternative to sexual recombination in genetic al-
gorithms. In International Conference on Parallel Problem
Solving from Nature, pages 425-434. Springer.

Watson, R. A. and Pollack, J. B. (2001). Symbiotic composition
and evolvability. In European Conference on Artificial Life,
pages 480—490. Springer.

Carole Knibbe et al, eds., Proceedings of the ECAL 2017, Lyon, France, 4-8 September 2017,

(Cambridge, MA: The MIT Press, ©2017 Massachusetts Institute of Technology).

This work is licensed to the public under a Creative Commons Attribution - NonCommercial - NoDerivatives
4.0 license (international): http://creativecommons.org/licenses/by-nc-nd/4.0/

Oral presentation

274

	ecal2017_0.pdf
	Table of contents
	Foreword
	Keynote presentations
	1 - What is life? The emergence of life in a mineral world
	2 - Experimenting with computing and in computing: Stretching the traditional notionof experimentation
	3 - The Illusion of Life
	4 - Evolution of complex adaptations
	5 - Synthetic Palaeontology: Reconstructing Ancient Life using Virtual Robots
	6 - Drug addiction and alteration of decision making process
	7 - Swarm Engineering across Scales: From Robots to Nanomedicine

	Contributions selected for an oral presentation
	8 - Structural Coupling of a Potts Model Cell
	Introduction
	Cellular Potts Model
	Morphology-Environment Transition Network

	9 - Criticality as It Could Be: organizational invariance as self-organized criticality in
	Introduction
	Organizational invariants of self-organized criticality
	Results
	Signatures of criticality in the neural controller
	Behavioural transitions in the parameter space

	10 - Signatures of criticality in a maximum entropy model of the C. elegans brain
	11 - An active inference implementation of phototaxis
	12 - Reweighting Rewards in Embodied Evolution
	13 - Delving Deeper into Homeostatic Dynamics of Reaction Diffusion Systems with a General Fluid Dynamics and Artificial Chemistry Model
	Introduction
	Model System
	Results
	Single Species, Stable Temperature
	Single Species, Variable Temperature
	Homeostasis
	The Line Between Survival and Peril
	The Defence Mechanism

	Conclusions
	Future Work
	Acknowledgements

	14 - Choice of robot morphology can prohibit modular control and disrupt evolution
	Introduction
	Evolution
	Results and discussion

	15 - Action and perception for spatiotemporal patterns
	Introduction
	Notation
	Perception-action loop
	Entity action
	Entity perception
	Entity action and perception in the PA-loop
	Conclusion

	16 - MABE (Modular Agent Based Evolver): A Framework for Digital Evolution Research
	Introduction
	MABE Design
	Out of the Box
	Functional Overview

	Modules
	Genomes
	Brains
	Optimizers
	Archivists
	Organisms
	Groups
	Worlds

	Utilities
	Parameters
	DataMaps
	FileManager
	Helper Utilities
	Standalone Tools

	MABE Design Philosophy
	Developing for MABE

	Outlook
	Contributions
	Acknowledgements

	17 - Sexual Selection Promotes Ecological Speciation in Digital Organisms
	Introduction
	Methods
	Experimental Design

	Acknowledgments

	18 - Life-like swarm behavior of multiple chemotactic droplets
	19 - Evolution of a complex anti-predator niche construction in a physical 2D predator-prey simulation and a feature analysis of defensive structures using a deep auto-encoder
	20 - Evolutionary Game-theoretic Modeling of Past Societies’ Social Organization
	21 - Mood Modelling within Reinforcement Learning
	Introduction
	Mood Model
	Social Dilemmas
	Reinforcement Learning

	Mood Model Integration
	Experimental Set-up
	Conclusion

	22 - Dynamic Thresholds for Self-Organizing Predictive Cells
	23 - Spatial resource heterogeneity creates local hotspots of evolutionary potential
	Introduction
	Biological Background
	Methods
	Code and data availability

	Results and Discussion
	Existence of evolutionary hotspots

	Conclusions

	24 - Lag in Situated, Embodied and Dynamical Adaptive Systems
	25 - Evolving Neural Networks with Multiple Internal Models
	Introduction
	Background
	Computational frameworks for multiple internal models
	Evolution of neural modularity

	Experimental Setup
	Object manipulation simulation
	Parameters
	Metrics and Visualization

	Results
	The need for multiple internal models
	Is neural modularity beneficial for multiple internal models?
	The role of modularity in evolved networks

	Conclusion
	Acknowledgements

	26 - Building Physical Self-Replicating Machines
	27 - Effects of Local Communication and Spatial Position in a Collective Decision-Making Model
	28 - Learning Collaborative Foraging in a Swarm of Robots using Embodied Evolution
	29 - Investigating the Effects of Noise on a Cell-to-Cell Communication Mechanism for Structure Regeneration
	30 - Comparing and contrasting functional blueprints for simple self-replicating protocellular and robotics systems
	31 - A Self-Organized One-Neuron Controller for Artificial Life on Wheels
	32 - Simulating multicell populations with an accelerated gro simulator
	Introduction
	CellEngine

	33 - Programmed self-replication & life-cycles of microchip swarming protocells
	34 - Competitive Dynamics in Eco-evolutionary Genetically-regulated Swarms
	35 - Going round in Circles
	36 - Can Social Learning Increase Learning Speed, Performance or Both?
	37 - How Mutation Alters Fitness of Cooperation in Networked Evolutionary Games
	38 - Analysis of Lamarckian Evolution in Morphologically Evolving Robots
	39 - Reservoir Computing with a Chaotic Circuit
	Introduction
	Discussion
	Conclusion

	40 - An Evolutionary Robotics Model of Visually-Guided Braking: Testing Optical Variables
	41 - A Minimal Model of Collective Behaviour Based on Non-reciprocal Interactions
	42 - Criticality of Gene Regulatory Networks and the Resulting Morphogenesis
	43 - Functional grouping analysis of varying reactor types in the Spiky-RBN AChem
	An Activity Measure for Spiky-RBN
	Activity Measures in Terms of Functional Grouping

	Experimental Implementation
	Results
	Conclusion and Future Work

	44 - Evolution-in-Materio Computations: Hierarchies Rising from Electron Dynamics in Carbon Nanotubes
	45 - Gene Duplications Drive the Evolution of Complex Traits and Regulation
	46 - A 4-base model for the Aevol in-silico experimental evolution platform
	47 - The Effects of Environmental Structure on the Evolution of Modularity in a Pattern Classifier
	48 - Learning by Stimulation Avoidance Scales to Large Neural Networks
	49 - Let The Explanation Fit The Theorist - Enactive Explanatory Pluralism And The Representation Debate
	50 - Lexicase Selection Outperforms Previous Strategies for Incremental Evolution of Virtual Creature Controllers
	51 - Effects of Cooperative and Competitive Coevolution on Complexity in a Linguistic Prediction Game
	52 - Improved Adaptation in Exogenously and Endogenously Changing Environments
	53 - Road Detection using Convolutional Neural Networks
	54 - Modeling Patterns of Wealth Disparity in Predynastic Upper Egypt
	55 - The Development of Spatial Recognition and Navigation in Hierarchical Recurrent Neural Networks with Convolution Processing
	Introduction
	Task Design
	Proposed Model
	Architecture of proposed model
	Optimizing the initial states of a slow RNN
	Training
	Training Settings

	Experiment
	Experimental Results
	Closed Loop Generation
	Internal States Analysis

	Discussion
	Conclusion

	56 - Shepherding with Robots That Do Not Compute
	Introduction
	Methods
	Problem Formulation
	Simulation Setup
	Shepherd
	Sheep

	57 - EvoMove: Evolutionary-based living musical companion
	58 - Emergence of hierarchy from the evolution of individual influence in an agent-based model
	59 - The Evolution of Active Droplets in Chemorobotic Platforms
	60 - Investigations into the Evolutionary Origin of Navigation and Learning
	61 - Time as It Could Be Measured in Artificial Living Systems
	Introduction
	Temporal Dynamics: The Algebra of Time
	The Cost of Measuring Time
	Other Relevant Work
	Models of Clocks
	Alternator
	Drop Clock

	Experiments with 1-bit Clocks
	Measuring Large Time Scales
	Composite Clock
	Experiments with the Composite Clock

	Final Comments and Future Work
	Acknowledgements

	62 - Environmental seasonality drives digital populations towards stable cross-feeding
	63 - Locating critical regions by the Relevance Index
	64 - Stochastic sexual interaction facilitates the evolution of asexual cooperation in the social amoeba
	Introduction
	Model
	Population dynamics
	State transition
	Metapopulation dynamics

	Results
	Population scale
	Stable states and the transition
	Metapopulation scale

	Discussion
	Acknowledgements

	65 - Online Fitting of Computational Cost to Environmental Complexity: Predictive Coding with the epsilon-network
	66 - Virtual experience of complex dynamics emerging in a social particle swarm model by sonification
	Introduction
	Sonification
	Selection of chords
	Sonification Method

	67 - Evolution of Recursive Combination Operation
	68 - Transparency Of Execution Using Epigenetic Networks
	69 - A Dynamic Model of the Phosphate Response System with Synthetic Promoters in Escherichia coli
	70 - Lineage selection leads to evolvability at large population sizes
	71 - Development of Morphology Based on Resource Distribution: Finding the Shortest Path in a Maze by Vascular Morphogenesis Controller

	Contributions selected for a poster presentation
	72 - Towards Making a Cyborg: A Closed-Loop Reservoir-Neuro System
	73 - Open-Ended Evolution in Cellular Automata Worlds
	74 - Critical Mutation Rate in a Population with Horizontal Gene Transfer
	75 - Tuning extrinsic noise effects on a small genetic circuit
	76 - An Adaptive Approach for Monitoring Evolutionary Algorithms Behavior for Dynamic Environments
	77 - Better than average: analyzing distributions to understand robot behavior in a multi-agent area coverage scenario
	78 - A Human-in-the-Loop Environment for Developmental Biology
	79 - An architecture for the closed-loop control of droplet thermocapillary motion
	Introduction
	Control-oriented model
	State estimation and parameters identification
	Model-based optimal control
	Experimental results

	Conclusions
	Acknowledgements

	80 - A New Design Principle for an Autonomous Robot
	81 - Tuning Jordan Algebra Artificial Chemistries with Probability Spawning Functions
	82 - The Statistical Thermodynamics of Active Perception
	83 - Complex flocking dynamics without global stimulus
	Introduction
	Reynolds's boids Reynolds1987
	Boids implementations in MABS platforms
	Description of various implementations
	Resulting simulations

	Our flocking model
	IRM4S implementation
	The IRM4S model
	Implementation using GPU delegation

	Experimental results and discussion
	Experimental Protocol
	Results and discussion

	Conclusion

	84 - A Tool to Construct Agent Based Models of BioChemical Cascades
	85 - Animal-guided evolutionary computation in honeybees and robots
	Introduction
	Related research
	Why is evolving interactions with animal groups difficult?
	Honeybees: relevant stimuli and behaviours

	Evolutionary problem
	Results and lessons learned
	Animal habituation
	Animal fatigue
	Heterogeneity of animal response
	Chromosome Evaluation

	Conclusion

	86 - Ortus: an Emotion–Driven Approach to (artificial) Biological Intelligence
	Introduction
	System Design
	Implementation Details
	Learning

	Experimental Design and Results
	Discussion
	Conclusion
	Acknowledgements

	87 - Self-organized criticality in code repositories
	88 - Major Evolutionary Transitions in the Voxelbuild Virtual Sandbox Game
	Introduction
	Background
	Voxelbuild
	Agent Configuration

	Approach
	HyperNEAT
	Novelty Search with Local Competition
	Grid-free QD Collection

	Experiment
	Experiment Parameters
	Fitness and Behavior Characterization

	Results
	Discussion
	Conclusion
	Acknowledgements

	89 - A Curiosity Model for Artificial Agents
	Introduction
	Document Structure

	Curiosity Model
	Scenario
	World
	Objects
	Agents

	Evaluation Procedure
	Free Exploration
	Goal-Driven Exploration
	Finding Objects
	Surprise

	Results
	Free Exploration
	Goal-Driven Exploration
	Finding Objects
	Surprise

	Conclusions

	90 - Role Reassignment and Resource Management in Human Organizations
	91 - On Virtual Machine Architectures for Evolutionary Music Composition
	Introduction
	Related work
	System overview
	Virtual machine architectures
	Von Neumann vs. Harvard architectures
	Register vs. stack-based machines
	Instruction set complexity
	Memory size

	Experiments & results
	Conclusion & future work

	92 - Learning Aquatic Locomotion with Animats
	Introduction
	Related work
	Spiking Neural Networks
	Spike Time Dependent Plasticity

	Reward methods
	Instrumental conditioning
	Results

	Aquatic Locomotion Problem
	MecaCell
	Parameter evolution

	Results
	Discussion

	93 - Threshold for Cooperation on Irregular Spatial Networks
	Introduction
	Theoretical Predictions

	Methods
	Statistical Methods

	Results and Discussion
	Conclusions
	Acknowledgements

	94 - Sense of Presence in Oneiric Virtual Environments: Sketching the necessary and sufficient conditions

