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Abstract

Modularity, often observed in biological systems, does not
easily arise in computational evolution. We explore the effect
of adding a small fitness cost for each connection between
neurons on the modularity of neural networks produced by
the NEAT neuroevolution algorithm. We find that this con-
nection cost does not increase the modularity of the best net-
work produced by each run of the algorithm, but that it does
lead to increased consistency in the level of modularity pro-
duced by the algorithm.

Introduction
As evolutionary systems are increasingly used in a variety
of applications, the organization of the evolved solutions
has become important. Modularity, the organization of a
system into interacting subparts, is observed in both many
natural and many engineered networks (Koza, 1992; Simon,
1996; Hartwell et al., 1999; Wagner and Altenberg, 1996).
We briefly discuss modularity in natural and simulated evo-
lution, as well as the NEAT neuroevolution algorithm, a
widely used evolutionary algorithm.

Modularity
Both biological networks, such as neural networks and bac-
terial metabolic networks, and biological systems in gen-
eral, such as tissues assembled from cells, tend to be mod-
ular. The evolutionary reasons for this are still unclear, es-
pecially because computational models of biological evolu-
tion tend to produce nonmodular solutions. The nonmodular
solutions produced by network-evolving algorithms are of-
ten connected in complicated ways and better-performing on
the specific task for which they are optimized than modular
solutions designed by humans (Thompson, 1998; Vassilev
et al., 2000). However, this lack of modularity in computa-
tional evolution means that while it can produce highly opti-
mized solutions for simple problems, it has difficulty solving
more complex problems (Kashtan and Alon, 2005).

Some work has been done on creating modularity through
evolutionary algorithms by building the encapsulation of
modules into the algorithms (Garibay et al., 2004; Wiegand

et al., 2009). This is sufficient if the goal is simply to cre-
ate modular solutions. However, if the goal is to understand
how modularity evolves in nature, imposing modularity on
the algorithm does not suffice. Furthermore, even if the goal
is an engineering one rather than one of biological discov-
ery, allowing the evolutionary process to discover modular-
ity naturally ensures that high-performing species of solu-
tions are not excluded from the search space from the start
because they began as strongly nonmodular and took many
generations to evolve modularity.

How modularity evolves in both natural and simulated
evolution is a complex problem that may involve multiple
forces whose contributions must be teased out. A major hy-
pothesis is that it evolves in response to varying environ-
ments (called modularly varying goals), in which solutions
must perform different tasks with common subtasks (Kash-
tan and Alon, 2005; Kashtan et al., 2007). This effect was
proposed by Lipson et al. (2002) in a study of minimal sub-
strate modularization which found that modular separation is
logorithmically proportional to rates of environmental vari-
ation, and suggested that evolutionary design of engineered
systems should use variable rather than fixed fitness critiera.
The effect of modularly varying goals has been observed in
both computational (Kashtan and Alon, 2005) and natural
(Kashtan et al., 2007; Parter et al., 2007) evolution stud-
ies. An alternative hypothesis, supported by the work of
Clune et al. (2013), is that modular networks evolve in re-
sponse to a ”connection cost”, or small decrease in fitness for
each connection in the network, analagous to the energy cost
of forming a physical link between two cells, organisms,
or other nodes in the biological network. The debate over
which of these hypotheses, if either, plays the larger role in
the evolution of modularity, is ongoing. We investigated the
connection cost hypothesis as applied to NeuroEvolution of
Augmenting Topologies (NEAT), a major method for evolv-
ing artificial neural networks. Future work may compare
both hypotheses on NEAT or another neuroevolution algo-
rithm.



NEAT
There are numerous algorithms for evolving neural net-
works, some of which evolve topology only or weights only,
and some of which evolve both. NEAT (Stanley and Mi-
ikkulainen, 2002) is an example of a neuroevolution al-
gorithm that evolves both topology and weights. It starts
with very simple networks and gradually complexifies can-
didate solutions using crossover and three forms of muta-
tion: adding neurons, adding connections, and changing
connection weights. To protect innovations long enough to
see if they will be evolutionarily useful, it also uses specia-
tion, which isolates subsets of the population into reproduc-
tive groups based on how different they are topologically.
Finally, it tracks the history of innovations through histori-
cal innovation numbers to mitigate the competing conven-
tions problem. NEAT has proven useful in several problem
domains (Stanley and Miikkulainen, 2002, 2004), and is one
of the most popular neuroevolution algorithms.

The standard NEAT algorithm does not tend to produce
modular solutions (Reisinger et al., 2004). Reisinger et al.
(2004) created Modular NEAT, a version of NEAT that does
produce modular solutions, but forced the algorithm’s pre-
disposition toward modularity by requiring it to reuse neu-
ral substructures in different spatial locations to form com-
plete neural networks. Clune et al. (2010) found that Hyper-
NEAT, a variant of NEAT, did not tend to produce modular
networks. Verbancsics and Stanley (2011) were able to in-
fluence HyperNEAT toward modularity by seeding it with
a bias toward local connection - the connection of compo-
nents that are spatially near each other - which is another
force, besides those previously mentioned, that may play a
role in biological modularity.

In this paper, we take the connection cost hypothesis and
apply it to NEAT in order to study whether it influences the
emergence of modularity in networks produced by NEAT in
the same way that it influenced the emergence of modularity
in other problem domains in (Clune et al., 2013). This in-
cludes the level of modularity, but it also includes variance
in modularity. In other words, we ask whether connection
cost makes the amount of modularity emerging from NEAT
more consistent from trial to trial, in addition to looking at
its influence on the overall amount of modularity.

Methods
To test the effect of connection cost on modularity in NEAT,
we used two different versions of the eight-pixel retina prob-
lem, which was developed by Kashtan and Alon (2005) for
studies on the emergence of modularity, and which has been
used in other studies on the emergence of modularity (Clune
et al., 2010; Verbancsics and Stanley, 2011). In the retina
problem, neural networks attempt to recognize certain pat-
terns (objects) in an four-pixel by two-pixel retina, and re-
turn true or false based on whether those objects are present.
The first is modularly decomposable, in that the neural net-

Figure 1: Illustration of left and right objects in th eight-
pixel retina problem (adapted from Kashtan and Alon
(2005)).

work has to determine whether objects exist on each of the
left and right sides (which each contain four pixels) in order
to determine whether objects exist on both sides. The sec-
ond version of the problem is not modularly decomposable,
in that an object need only exist on one side in order for the
function to return an output of true. Which patterns count as
objects are slightly different for the left and right sides of the
retina for both versions of the problem. This is illustrated in
Fig. 1.

We ran the NEAT evolutionary process on both versions
of the problem, using the NEAT4J open source Java imple-
mentation of NEAT (Simmerson, 2006) as a basis, with and
without connection cost. The parameters used are listed in
Table 1.

Problem Version Trials Connection Cost
Modular 20 0
Modular 20 1.0× 10−5

Nonmodular 20 0
Nonmodular 20 5.0× 10−5

Table 1: Retina problem versions and parameters used.

The connection cost for each problem was determined by
testing several different orders of magnitude for connection
cost, and then several different connection costs in intervals



of 0.00001, looking for the highest cost that consistently
allowed solutions to evolve performance improvements of
10% or greater over the first-generation solution, a fully-
connected network of eight input and one output neurons
with no hidden layer.

Each run of the NEAT algorithm used a population of
500 neural networks evolving over 2000 generations. Fit-
ness was measured by mean standard error on the problem,
meaning that a lower fitness number indicated better perfor-
mance.

We quantified modularity by using the metric Q, defined
by the approach of Newman and Girvan (2004). This ap-
proach determines Q by looking at the percentage of edges
in the network that connect nodes in the same module, and
substracts the expected value for that percentage in a net-
work with the same number of modules but random con-
nections. The modules are defined by a previous part of the
algorithm that splits the network into the modules that would
maximize Q. Mathematically, the equation for Q is:

Q =
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where L is the number of edges, K is the number of mod-
ules, ds is the sum of degrees of nodes in module s, and ls
is the number of edges in that module.

To determine whether variances in modularity were equal
in our sets of results, we used Levene’s test, a statistic
for assessing the equality of variances across two or more
groups. We used Levene’s test rather than an F-test of equal-
ity of variances because the F-test is highly sensitive to non-
normality of distribution, while Levene’s test is robust to
non-normality.

Results and Discussion
Our first comparisons were between a set of 20 trials with-
out a connection cost and 20 trials with a connection cost
of 1.0 × 10−4 per connection, with mutation probability =
0.25 and crossover probability = 0.2. In Fig.2, we can see
that the best solutions produced in the trials with no connec-
tion cost had a variance in modularity of 0.0449, while those
produced in the trials with a connection cost had a variance
of only 0.0177 - more than 60% lower. This difference in
variance was statistically significant (P = 0.001803).

We examined the possibility that the difference in vari-
ances was caused by interactions between crossover and
connection cost, rather than connection cost alone. When we
removed crossover but kept all other parameters the same,
we obtain similar results, as seen in Fig.3. In this case, the
variance in modularity for the trials with no connection cost
is 0.0455, while the variance with connection cost is 0.0182.

When we underwent the same process using the nonmod-
ular version of the retina problem, we still saw decreases

Figure 2: The addition of a connection cost to NEAT, with
both mutation and crossover, on the modularly decompos-
able retina problem produces a decrease in variance across
trials. Number of trials N = 20, P = 0.001803

Figure 3: The addition of a connection cost to NEAT,
with mutation but without crossover, on the modularly de-
composable retina problem produces a decrease in variance
across trials. Number of trials N = 20, P = 0.006627

in variance, but they were just below the level of statistical
siginficance, in the P = 0.06-0.07 range.

With both mutation and crossover, the variance without
connection cost was 0.0189 and the variance with a connec-
tion cost of 5.0 × 10−4 per connection was 0.0098 (Fig.4).
With mutation but no crossover, the variance without con-
nection cost was 0.0189 and the variance with a connection
cost of 5.0× 10−4 per connection was 0.0078 (Fig.5).

We also examined the effect of crossover itself on mod-
ularity, in order to further separate any of its effects from
those of connection cost. There was no significant differ-
ence between the variances of any set of trials with crossover
and the otherwise-equivalent set without crossover (P =
0.617905).

This reduction in variance caused by connection cost rep-
resents an increase in predictability. In the presence of con-
nection cost, different runs of NEAT are more likely to pro-
duce similarly modular solutions. This suggests that in sit-
uations where connecting between nodes involves a physi-
cal link and thus an energy cost, there may be an optimal



Figure 4: The addition of a connection cost to NEAT, with
mutation and crossover, on the non-modularly decompos-
able retina problem produces a sub-statistically-significant
decrease in variance across trials. Number of trials N = 20,
P = 0.061516

Figure 5: The addition of a connection cost to NEAT,
with mutation but without crossover, on the non-modularly
decomposable retina problem produces a sub-statistically-
significant decrease in variance across trials. Number of tri-
als N = 20, P = 0.062036

level of modularity, a balance between modularity and effi-
cient use of space. Such a balance may be related to work
on wiring economy in the human brain described by Bull-
more and Sporns (2012), which found that the brain balances
modularity with efficient use of space and that an imbalance
in either direction causes neurological disorders.

We include images of a few sample networks from our ex-
periments, with varying structures and amounts of modular-
ity. Fig. 6 is a network with Q = 0 (all nodes are found to be
part of a single module by the Newman-Girvan algorithm),
produced by running NEAT4J on the modularly decompos-
able test problem with no connection cost. Fig. 7 was also
produced by running NEAT4J on the modularly decompos-
able test problem with no connection cost, and is a large
network with a high modularity of Q = 0.4567, divided by
the Newman-Girvan algorithm into 13 modules. Fig. 8 is a
small network with a moderate modularity of Q = 0.1760,
produced on the nonmodularly decomposable test problem

Figure 6: Example network created by running NEAT4J on
modularly decomposable test problem with crossover. Q =
0, 37 neurons.

Figure 7: Example network created by running NEAT4J on
modularly decomposable test problem with crossover. Q =
0.4567, 61 neurons, 13 modules.

with a connection cost, divisible into 6 modules. In these
images, input neurons are pink, output neurons are orange,
neurons that are not connected to any input neuron are green,
and all other neurons are gray.

An observer can see from these networks that modularity
is not necessarily a function of network size. However, con-
nection cost did appear to promote smaller networks - in ex-
periments with crossover, average network sizes on the mod-
ularly decomposable problem were 47.1 neurons with con-
nection cost vs 62.75 neurons without, and average network
sizes on the nonmodularly decomposable problem were 30.6
neurons with connection cost vs 38.4 without. It is pos-
sible that the connection cost is preventing new nodes and
links from being formed, which we might expect since it
slightly penalizes connections between nodes, without nec-
essarily increasing modularity in the process. One reason
that connection cost may promote the evolution of modular-
ity in some cases is that in a modular system there are fewer
connections between nodes. When nodes and links evolve
together, fewer links may also encourage fewer nodes.

It is worth considering whether connection cost had an ef-
fect on fitness itself, since if NEAT could maintain fitness in
the presence of connection cost, this would present a prob-
lem for using connection cost for engineering purposes. As
we previously stated, fitness was represented by mean stan-
dard error, with a lower fitness being better. On the nonmod-
ularly decomposable problem, fitnesses ranged from 0.0777
to 0.3807, while on the modularly decomposable problem,
they ranged from 0.0408 to 0.2856. Connection cost made
no statistically significant difference to either the variances
of fitnesses or the mean fitness on either problem. Fitness



Figure 8: Example network created by running NEAT4J on
modularly decomposable test problem with crossover. Q =
0.1760, 16 neurons, 6 modules.

Figure 9: Mean modularity across 20 trials for all exper-
imental conditions, with direct comparisons in the same
color. MD represents the modularly decomposable retina
problem version, NMD represents the nonmodular, ”Xover
0” indicates that crossover was not used as an evolutionary
operator. No direct comparisons showed statistically signifi-
cant differences. Comparisons of sets with statistically equal
variances were done using an unpaired t-test, others were
done using Welch’s t-test.

was maintained, though not improved, in the presence of
connection cost.

There was no statistically significant effect of connection
cost on the magnitude of modularity for either version of
the retina problem (Fig.9). This may seem rather surprising
given the apparent contradiction with the results of Clune
et al. (2013), discussed earlier. This raises the possibility
that some aspect of the NEAT algorithm itself prevents con-
nection cost from increasing modularity.

A possible explanation for this difference with previous
work on connection cost and modularity is NEAT’s built-in
protections against bloat, which do not exist in many other
evolutionary algorithms. NEAT complexifies its structures
slowly, and separates sufficiently different topologies into
species so that they do not interfere with each other. The spe-
ciation also means that as long as simpler networks are com-
petitive, they will survive in the population, as their suffi-

ciently complex offshoots will branch into different species.
Connection cost and bloat reduction both make it less ben-
eficial for the evolutionary algorithm to form the large,
intricately-wired, highly-nonmodular networks that are of-
ten the result of evolutionary algorithms, and so the effect of
connection cost on the modularity of solutions produced by
NEAT may be somewhat redundant.

While none of the results in Fig. 9 were statisti-
cally significant, it is interesting to note that for the
nonmodularly-decomposable problem there was a trend to-
ward higher modularity with connection cost, but that with
the modularly-decomposable problem the trend ran in the
opposite direction, with connection cost correlating with
lower modularity. The latter trend may be a side effect of the
lowering of variance - in a relatively small population, there
were fewer high-modularity outliers to bias the mean up-
ward. However, it may also suggest that modularity emerges
differently on modularly decomposable and nonmodularly-
decomposable problems.

As we previously mentioned, Verbancsics and Stanley
(2011) were able to increase the modularity of networks pro-
duced by HyperNEAT, a generative, hypercube-based, ex-
tension of NEAT, by starting the algorithm with a bias to-
ward local connectivity. Local connectivity is also a part of
the basis for the hypothesis that connection cost increases
modularity in general. The fact that this failed to happen in
our experiments with NEAT raises the question of whether
local connectivity has different effects on evolution of mod-
ularity depending on whether the network being evolved has
a generative or indirect representation, as is the case with
HyperNEAT, or a direct representation, as is the case with
NEAT. One possible reason for this is that in generative and
indirect systems, the evolution of modularity-promoting fac-
tors and performance-promoting factors can be separated
- for example, in the aforementioned extension of Hyper-
NEAT, weights and connection expression patterns can be
evolved separately.

In these experiments, we used a form of connection cost
that assumes a constant cost per connection, rather than one
that assumes a greater cost for a longer connection (for in-
stance, one based on the principle that in a physical brain
there would be a greater energy cost in creating an axon
and synapse between two neurons that are far apart than in
creating them between two nearby neurons). We made this
choice because Clune et al. (2013), using both forms of con-
nection cost, found that there was little difference between
them in promoting modularity, and because NEAT does not
have a built-in concept of physical distance between neu-
rons. It may be that if an extension of NEAT that did have
this concept built-in was developed, different forms of con-
nection cost would have different effects on the evolution
of modularity in NEAT-produced networks. In order to ob-
tain the modularity-promoting benefits of indirect represen-
tations, as was done with HyperNEAT, the geometry of the



network would need to be evolved separately from other as-
pects of the network.

These results suggest multiple possible directions for fu-
ture work. We have already mentioned the possibility of
developing a version of NEAT that contains a concept of
physical distance between neurons and studying how con-
nection cost that is weighted by distance affects the evolu-
tion of modularity compared to simple connection cost per
link. Another possibility is to investigate whether connec-
tion cost leads to more predictability in modularity in gen-
eral, rather than just when NEAT is the evolutionary algo-
rithm used. Still another is to study the effect of connection
cost on populations of neural networks, rather than just the
best network produced by each run of the algorithm. Since,
as we have discussed, there may be properties particular to
NEAT that influenced our results, it could be clarifying to
see if the results are similar if a different neuroevolution al-
gorithm is used. Finally, it may be worth testing further how
modularity is influenced differently when evolution is oc-
curring on modularly vs nonmodularly decomposable prob-
lems.

In the results reported here, we find that adding a connec-
tion cost to the NEAT algorithm does not significantly affect
the modularity of the top networks produced by NEAT. We
speculate that this lack of effect is caused by NEAT’s pro-
tections against bloat. We find, however, that it does reduce
the variance in that modularity, leading to a more consistent
level of modularity in the resulting networks, and thus more
predictability in the outcome of the algorithm.
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