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ABSTRACT

Infinite RAAM: Initial Explorations into a Fractal Basis for Cognition

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Simon D. Levy

This thesis attempts to provide an answer to the question “What is the mathematical basis

of cognitive representations?” The answer we present is a novel connectionist framework
called Infinite RAAM. We show how this framework satisfies the cognitive requirements of
systematicity, compositionality, and scalable representational capacity, while also exhibiting
“natural” properties like learnability, generalization, and inductive bias.

We begin with the requirements for cognitive representations, including traditional criti-
cisms about the inability of standard connectionist models to satisfy these requirements.
We then review some recent connectionist approaches and their limitations, and describe
Pollack’s Recursive Auto-Associative Memory (RAAM) a recurrent neural network model of
hierarchical symbolic structure that addresses some of these limitations successfully. Scal-
ability problems with RAAM lead us to an exploration of the network’s behavior as an
iterated function system (IFS), focussed on the concept of the attractor, which describes
the behavior of the IFS in the limit. We show how exploiting the attractor overcomes the
practical limitations of RAAM, leading to a model with provably infinite representational
capacity, which we call Infinite RAAM, or IRAAM.

The subsequent chapters detail how the model can represent trees over a potentially in-
finite lexicon of terminals; the “bias” that the model exhibits in the relationship between
these terminals and the tree structures; and the direct mechanism that the model provides
for the unification algorithm. We then present experiments on IRAAM learning, followed
by some applications of IRAAM to logic programming and language representation. We
conclude with a discussion of the implications and current limitations of the model, with
prospects for overcoming these limitations in future work.

The contributions of this work are twofold: First, Infinite RAAM shows how connectionist
models can exhibit infinite competence for interesting cognitive domains like language. Sec-
ond, our attractor-based learning algorithm provides a way of learning structured cognitive
representations, with robust decoding and generalization. Both results come from allowing
the dynamics of the network to devise emergent representations during learning.

An appendix provides Matlab code for the experiments described in the thesis.
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Chapter 1

Introduction

1.1 An adequate substrate for symbolic computation

Melnik [64] provides the following key insight about neural networks and computational

paradigms in general:

Even though neural networks are an example of a Turing equivalent compu-
tational system [68]..., in the real world, this theoretical equivalence is of only
minor significance, as different computational paradigms may be suited for com-
pletely different tasks. What fundamentally distinguishes what a computational
paradigm is suited for, is how it represents information and how it manipulates
it. Thus, analyzing and characterizing the types of information that neural net-

works can encode efficiently is at the core of understanding neural computation.

Hence, any approach to a computational problem, such as language, must concern itself
with efficient representation of the computational structures best suited to that problem,
and efficient implementation of operations on those structures.

For symbolic computation, the representations and operations of interest include:

1. Atoms, or irreducible symbols. These correspond to dictionary items in a natural

language, letters of the alphabet in a formal language, predicates and atomic arguments
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in predicate calculus, tokens in a programming language, etc.

2. Structures built recursively from those atoms and from other structures. These
correspond to phrases and sentences in a natural language, strings (or trees) in a
formal language, literals in predicate calculus, programs in a programming language,

etc.

3. Rules that relate structures to each other. Examples include the syntactic transfor-
mations of transformational generative grammar [13|, like passive (John loves Mary
= Mary is loved by John), and quantified rules in predicate calculus

(Y z human(z) — mortal(x)).

Atoms and structures support the requirements that Fodor [33] lays out for cognitive
representations in his “language of thought”. Systematicity dictates that the representation
of an object in a language must be the same in all contexts which refer that object. Thus the
representation of the person John must be identical in John loves Mary, Mary loves John,
etc. Compositionality requires that representations be built up from other representations.
The sentence John loves Mary must in some meaningful sense contain the representations
for John, Mary, and his feelings for her.

Compositionality leads to the requirement that representations be recursive; that is,
representations must be able contain other representations. Since any limit on the size
of such representations (e.g., “no more than twelve embeddings”) are necessarily arbitrary,
argues Fodor, the fact that real human thoughts and linguistic utterances are generally
not deeply nested must come from system-external constraints such as limits on short-term
memory.! As Fodor points out, the exact structure of this language is of little concern to

the main argument that the language must be systematic, compositional, and recursive.

'or, in a digital computer, the size of the push-down stack. Chomsky [12]has made similar arguments for
the infinite generative potential of natural language.



1.2. CONNECTIONISM AND ITS DISCONTENTS 3

1.2 Connectionism and its discontents

As a radical alternative to this “symbols-and-rules” approach, the connectionist field has
offered a broad variety of cognitive models having in common the strategy of using (roughly)
neuron-like units and the connections between them as a way of modeling systems like
reasoning and language. The motivations for using these neural networks? range from the
very practical (it is difficult to model many complicated systems using even a large number
of symbols and rules) to the deeply philosophical (this is more like how the brain works, so
it is closer to the truth).

Though it has roots going far back into the Western philosophical tradition [19], connec-
tionism’s most complete formulation to date came in the mid 1980’s, with the publication
of a collection of papers summarizing the ideas and work of the Parallel Distributed Pro-
cessing (PDP) Research Group at USCD, Carnegie Mellon, and other institutions. [88|.
One paper in particular involved a network that the authors claimed was able to “learn” the
past tense of regular and irregular English verbs in a way similar to the manner in which
children acquire those verbs, including an initial pure memorization phase, an intermediate
phase involving overgeneralization of regularity, and a final, stable phase approximating the
behavior of the linguistically competent adult. [87]. This result suggested the possibility of
abandoning linguistic rules in favor of a “sub-symbolic” network approach, in conjunction
with a learning mechanism such as back-propagation [86].

This work was criticized from a methodological standpoint as mischaracterizing what
the network was actually doing, the conclusion being that traditional linguistic rules must
still play a central role in modeling the acquisition and use of language[69]. Furthermore,
the entire connectionist endeavor represented by the PDP group was called into question
as being merely associationist, and therefore not adequate to the tasks of syntactic and

semantic representation involved in human cognition as a whole. [36]

*We use the terms neural and connectionist interchangeably in referring to these networks.
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The problem boils down to two facts about neural networks that at first glance seem
fundamentally incompatible with important properties of language. First, connectionist
representations (at least, those of the sort promoted by the PDP group) are distributed. The
representation of a given entity or concept is not localized in some particular piece of memory,
but is instead spread over the entire network, or a large part of it, somewhat similarly to
the way that the identity of a number is distributed over its binary representation. This
non-locality severely constrains the traditional computer-science use of pointers to refer to
particular locations in memory, making the implementation of data structures a seeming

impossibility.

Second, neural networks encode information in fized-width representations. This prop-
erty has led to the rather embarrassing situation of networks that can produce or accept,
for example, sentences of only a certain length, with the number of units required growing
polynomially in the number of words. Although people seem to be constrained in the size
of the sentences they can utter and understand, such human limitations do not appear to
be an all-or-nothing affair; instead, ability seems to fall off gradually with the size of the
informational load. Given the connectionist argument for such “graceful degradation” as a
crucial, appealing property of neural network models [62], the fixed-width limitation seems

especially problematic.

The second problem has been addressed by a host of connectionists who have over the
past fifteen years investigated network models which support generativity through recur-
rent (feedback) connections [29][50][113]. As in finite-state automata [44], such connections
enable a neural network to travel through an unbounded number of states, and hence to
recognize and generate strings of arbitrary length. Not surprisingly, then, one focus of
recurrent-net research has been on the formal properties of the languages (sets of strings)
that these networks can handle [83]. Nevertheless, despite analysis of how a network’s dy-

namics contribute to its generativity, it is often uncertain whether the dynamics can support
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generation of well-formed strings beyond a certain length. That is, it is unknown whether the
network has a true “competence” for the language of which it has learned a few exemplars,
or is merely capable of generating a finite, and hence regular, subset of the language.

The first problem, that of representing structured information, has also received attention
in the connectionist community, most notably in the guise of the SHRUTT project of Shastri
[95][96], who is interested in answering the same fundamental question addressed by this

thesis:

How can a system of slow neuron-like elements represent a large body of knowl-

edge and perform a wide range of inferences with such speed?

SHRUTI attempts to answer this question with a network architecture that essen-
tially encodes the traditional role/filler models of classical Al and cognitive science [92][32].
SHRUTT combines this kind of model with the usual neural-net weighted connections and
continuous-valued activation functions, resulting in a system in which the truth-value of
propositions (e.g, “John gave Mary a book”) is a matter of degree, rather than an absolute
true/false distinction. This kind of “soft computing” is a standard feature of connectionist
models; the unique contribution of SHRUTTI is to represent the bindings of fillers to their
roles (GIVER = John) via synchronous temporal firing of the nodes representing the roles
and fillers, which the authors cite as consistent with evidence from the neurophysiological
literature[27].

Although SHRUTTI does successfully address the issues of systematicity and composi-
tionality mentioned earlier, fundamental features of the model cast doubt on its ability to
satisfy the requirements of a truly connectionist solution to the language-of-thought prob-
lem. First, representations in SHRUTI are extremely local: each role is represented by a
single node, as is each filler, and each relation (e.g. GIVE) is represented as a “focal cluster”
of such nodes. Although the authors argue that there is no inherent reason why a whole

set of nodes could not be dedicated to to single item, this sort of representation is not truly
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distributed in any meaningful sense. The actual mechanism by which SHRUTI performs
inferences is potentially highly parallel, via breadth-first traversal of an “inferential depen-
dency graph”; however, this kind of parallelism is also available to traditional localist graph
representations as well. Considered as a Parallel Distributed Representation, SHRUTT thus
seems parallel but not distributed.

Second, SHRUTT’s inference mechanism is limited in its depth of recursion. The authors
present this feature as a psychologically motivated and therefore desirable feature of the
model, putting them clearly in the ranks of cognitive scientists who do not see the language
of thought as potentially infinite. The literature contains well-reasoned arguments on both
sides of this issue3, and contributing to the discussion is not an aim of this thesis. Never-
theless, it seems that a convincing response to connectionism’s critics would involve a model

that was at least in principle capable of infinite representations.

1.3 Taking the anti-connectionists seriously

The story so far* leaves us looking for a connectionist model that is both truly compositional,
i.e., capable in principle of representing infinite recursive structure, as well as distributed,
that is, not based on a “grandmother cells” scheme in which a single unit or local cluster
of units represents a single entity or idea. Three such models found in the connectionist
literature are the BoltzCONS model of Touretzky, the Tensor Product model of Smolensky;,
and the Holographic Reduced Representations model of Plate. A fourth model, Infinite
RAAM, is the subject of this thesis.

3With respect to natural language, Rounds et al. [84] argue for “finite approximations to an infinite
language,” whereas Savitch [91], on the basis of Occam’s Razor, upholds an “essentially infinite” view . From
a programming languages perspective, the later approach certainly makes more sense: although the storage
of any physical machine is necessarily finite, nearly all modern programming languages are built using some
variant of context-free grammars and make liberal use of “essentially infinite” recursive data structures,
vastly simplifying the work of the programmer.

4This brief review is not meant to be a complete encapsulation of the history of connectionism, of which
several excellent summaries already exist, such as [72]. Rather, my aim here is to highlight some milestones
in the issue of representing compositional (linguistic) structure in a connectionist framework.
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1.3.1 BoltzCONS

Touretzky’s BoltzCONS [109] takes its inspiration from LISP[105], the lingua franca of Al
The basic data type of LISP is the linked list, which is build up recursively from a single
item, called the CAR or head of the list, and a CDR or tail, which is itself a (possibly null)
list. The operation that attaches the CAR to the CDR is called CONS, which together with
the Boltzmann Machine learning algorithm [43] used to train the model, gives BoltzCONS
its name . To this CAR/CDR representation, BoltzCONS adds a unique tag symbol,which
functions like a traditional pointer, except that it accesses memory by associative retrieval,
rather than being an address into a sequential memory. All representations in BoltzCONS
consist of such <TAG,CAR,CDR> tuples. Having the CAR and/or CDR to be another tag
allows this representational scheme to encode arbitrary list and tree structures. All such
structured “knowledge” is distributed among a 2000-unit “tuple memory”, using a coarse-
coded representation [42], in which several representations can be present in the same vector,
under certain assumptions of linear independence. Hence, BoltzCONS seems to satisfy the
connectionist requirement of being distributed, as well as the criteria of systematicity and

compositionality laid out earlier.

1.3.2 Tensor Products

Smolensky’s Tensor Product model[101] is a general connectionist framework for modeling
role/filler relations. In this framework, the bindings between a set of roles and their fillers
are represented as the tensor (outer) product of a filler vector and a role vector. Unlike
SHRUTI, however, the Tensor Product model is not necessarily localist. As Smolensky
explains, Tensor Product representations are as distributed as the representations of the
roles and fillers. Under the assumption of linear independence of the role vectors, the binding
operation can be inverted by an “unbinding vector,” allowing the original representations of

the roles and their fillers to be recovered. Conjunction of bindings is represented by vector
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addition, which supports “graceful saturation” of the number of bindings that the system
can represent. Smolensky describes how this scheme can be used to implement the stack

operations PUSH and POP, as well as the aforementioned LISP operations CAR and CDR.

1.3.3 Holographic Reduced Representations

Like Smolensky’s Tensor Products model, Tony Plate’s Holographic Reduced Representa-
tions, or HRRs [70], use fixed-dimensional real-valued vectors to encode role/filler relations.
For a given N-dimensional role vector A and N-dimensional filler vector B, the binding C
of B to A is computed as the circular convolution C=A®B , defined as ¢; = Zz;é agb;_.
Extraction of the role and filler vectors from a given role/filler binding is done using the
mathematical inverse of this operation, called circular correlation: D = A#C , defined as
d; = Zz;é aycjtk- For typical applications, the vectors are quite large, e.g., N = 512, mak-
ing the model ideal for a parallel architecture, but rather slow on a typical serial computer®

HRRs have several features that make them appealing as distributed representations of
cognitive processes. Most notably, unlike tensor products, HRR’s use fixed-size represen-
tations, so the size of the representation does not grow as more information is encoded.
Further, an HRR can be computed by a recurrent network [71], adding to their biological
plausibility. These features have led a number of researchers to adopt HRRs as a cognitive
models of “lower-level” processes like vision [80], olfaction [100], and audition [58], as well as
behaviors traditionally seen as beyond the capabilities of connectionism, such as structural

analogy (28] .

1.3.4 Summary

BoltzCONS, Tensor Products, and HRRs all satisfy the requirements of compositionality and

systematicity, using distributed representations. Hence these models provide a principled

5The authors of [28|report “run times... on the order of days” for their HRR application to analogical
reasoning.
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answer to the claims of Fodor and others about the inadequacy of connectionism.

Still, all three models suffer from limitations that call into question their ability to scale
up to larger compositional problems. As Pollack [73] notes, coarse-coded representations can
only simultaneously represent a comparatively small number of elements without sacrificing
accuracy, but they require a comparatively large set of units to represent even those items.
Although HRR’s do not suffer from the “potentially prohibitive growth” that Smolensky
observes in Tensor Products [101], the reduced nature of HRRs requires a “clean-up” oper-
ation (dot product) in order to recognize the extracted vectors obtained by the correlation
operators. From a more theoretical standpoint, BoltzCONS, with its direct encoding of tra-
ditional symbolic operations CAR, CDR, PUSH, and POP, seems to fall into the category
of “mere implementation” to which connectionism is relegated by its strongest critics [36].

This thesis presents an attempt to address both sets of questions, the practical and
theoretical,by means of an architecture called Infinite RAAM. Representing a new fusion
between recurrent neural networks and fractal geometry, Infinite RAAM allows us to un-
derstand the behavior of these networks as dynamical systems, and to overcome the current
limitations in connectionist modeling of compositional structure. To see how Infinite RAAM
accomplishes these goals, however, we need to understand the original version of RAAM,

which is the subject of the next chapter.
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CHAPTER 1. INTRODUCTION



Chapter 2

RAAM

2.1 The model

Recursive Auto-Associate Memory, or RAAM [73] is a method for encoding tree structures in
fixed-width, real-valued vectors.! A RAAM network (or more simply, a RAAM) is identical
in structure to a simple feed-forward neural network with one hidden layer [85]. A RAAM is
trained as an auto-associator [1] [21], with the input—hidden weights treated as an encoder
(compressor), and the hidden—output weights treated as a decoder (reconstructor). The
goal of training is to obtain a set of encoder and decoder weights that will yield an output
pattern identical to the input pattern. Figure 2.1 shows the layout of a typical autoassociator
network.

The basic insight of RAAM is that the hidden-layer activations of an autoassociator net-
work can be used to encode combinations of distinct items presented on the input layer, and
can therefore be fed back into the input layer to encode structure recursively. Given a D-
dimensional vector representation of of an atom (such as fred, wilma, or loves), a RAAM

encodes the combination of K such atoms by (1) concatenating the reprentations of the

"When RAAM is implemented on a digital computer the vectors contain floating-point numbers, but
nothing in the RAAM or IRAAM models depends on the distinction.

11
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Figure 2.1: An auto-associator network. Solid lines represent encoder weights, dashed lines
decoder weights. The filled unit at lower right is a bias input, whose value is always unity.

atoms into a KD-element vector, (2) placing this vector on the input layer, (3) multiplying
the vector by the K D? input-to-hidden weights, (4) adding in a vector of D hidden-layer bi-
ases, and (5) passing the resulting KD-element vector through the logistic-sigmoid squashing
function f(z) =1/(1 + e *) . The hidden vector now contains a D-element representation
of the depth-one tree having the atoms at its leaves; e.g., (fred loves wilma). This tree
representation can now be fed back into the encoder and treated just like the represen-
tation of an atom. Given, for example, an intensional verb like knows, we can represent
the sentence (barney knows (fred loves wilma)) by concatenating the D-element vec-
tor representations of the atoms barney and knows with the D-element vector representation
of the sentence (fred loves wilma), and passing the resulting $D-element vector through

the encoder as described above. Figure 2.2 illustrates this encoding process, for D = 4.

The RAAM decoder inverts the effect of the encoder, “breaking out” encoded repre-
sentations into their K constituent parts. This process is illustrated in Figure 2.3, which

continues the example from the preceding figure.

Continuing the example from these figures, here is the procedure for training a RAAM

to represent the tree (barney knows (fred loves wilma)):
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(fred |l oves wlm)

fred 1001
wilma 0010
barney 0110
| oves 0001
(barney knows (f.l1.W.)) |, one 0100

bar ney

knows (f.1

Figure 2.2: A RAAM encoding the sentences (fred loves wilma)and (barney believes
(fred loves wilma)). Vertical lines between inputs are for clarity and do not correspond
to anything in the input vector. The key shows the hypothetical binary encodings of various
atoms. Note that the representations encoding the trees are real-valued in the range (0,1),
as indicated by the grayscale shading of the hidden units.
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Figure 2.3: A RAAM decoding the representations from Figure 2.2. Note the absence of a

| oves
bias input on the hidden layer during the decoding phase;
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hidden-unit values are set directly

7

by feedback from the output units during decoding.
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. Concatenate the representations for fred, loves, and wilma, and place the resulting

vector on the input layer.

. Compute the activation at the hidden and output layers.

. Compare the activation at the output layer with the encoding on the input layer. This

difference is the error for the first pattern.

. Take the hidden-layer activation of (fred loves wilma) from step (3), concatenate

it after the representations for barney and knows, and place the resulting vector on

the input layer.

. Compute the activation at the hidden and output layers.

. Compare the activation at the output layer with the encoding on the input layer. This

difference is the error for the second pattern.

. If the the average of the errors from steps (3) and (6) falls below a pre-determined

error threshold, stop; otherwise, go to (1).

Of course, a real training set would consist of more than just one tree, but this small example

gives a sense of how the learning algorithm works.

Using a 48-16-48 RAAM (48 inputs, 48 outputs, and 16 hidden units), Pollack was able to

encode and decode a set of 14 such ternary propositional structures, including non-trivially

nested ones representing complex facts like The short man who thought he saw John, saw

Pat. In addition, he trained a 20-10-20 RAAM (branching factor K = 2)to represent seven

natural-language syntactic structures like ((Det. (Adj. Noun)) (Verb (Prep. (Det. Noun))), as

The tall man ran around the room. A third result was the ability of a 30-25-30 RAAM to rep-

resent letter sequences with repeated sub-patterns (banana, barbarian). This result directly

addressed the criticism by Pinker and Prince [69]of the three-letter “Wickelphone”encoding
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used in the Rumelhart and McClelland past-tense model [87], in which such repetitions

cannot be represented.

As with any learning model, however, the crucial test is generalization, or how the
model behaves in response to novel input. For RAAM, this test is performed by taking trees
from outside the training set, passing them through the encoder, and passing the resultant
encoding out through the decoder. If the decoder correctly reconstructs the new trees, the
network is considered to have generalized successfully on the novel input represented by

their combination.

Using this generalization test, Pollack found that the 20-10-20 natural-language RAAM
correctly encoded and decoded 31 syntactic trees, beyond the original seven in the training
set. Of these 31 novel trees, 19 were grammatical, suggesting some degree of generativity.

Similar results were obtained for the propositional and letter-sequence sets.

There is a subtlety in the generalization process that bears mentioning. Unlike training,
generalization required the use of a terminal test on the decoder’s output, to decide when to
halt the feedback of outputs to the hidden layer. The reason is that, unlike the encoder, the
decoder doesn’t “know” the composition of the tree that it is supposed to be decoding. Given
the encoding of terminals (atoms) as binary strings, a practical solution to this problem is
to adopt the neural-net convention of treating values below a certain threshold (say, 0.2)
as a zero, and values above a certain threshold (0.8) as a one. This is the convention that
Pollack adopted for the primary RAAM terminal test. For each of the KD elements of the
output vector, if all the values in that element were below 0.2 or above 0.8, the element was
treated as a terminal; otherwise, it was treated as a non-terminal and fed back to the hidden

layer for further decoding.
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2.2 RAAM'’s early successes

RAAM answered the challenge of showing how neural networks could represent composi-
tional structures in a systematic way, and led to much fruitful discussion by philosophers
[111][45], as well as several novel applications. In general, these applications worked by give
some special status one part of the input/output layer. The Sequential RAAM or SRAAM
model of Kwasny and Kalman [56] treated the first several bits of these layers as a symbol,
and the remaining bits as a stack, thereby turning RAAM into an architecture for learn-
ing lists. Sperduti’s LRAAM [102] extended SRAAM by treating the initial symbol bits
as graph labels and the remaining bits as graph pointers, thereby implementing general
labeled graphs. Chrisman [16] modified SRAAM into a “dual-ported” RAAM that he used
for natural language translation between Spanish and English. The model built up similar
distributed representations for both languages on its hidden layer, and successfully decoded

these representations to the corresponding sentences in each language.

2.3 Problems with RAAM

Nevertheless, the model seemed applicable to only a small set of trees [11][16], and attempts
to extend it to larger sets met with mixed results [8]. The question remained whether RAAM
could scale up to industrial-sized applications of the sort handled by classical symbolic Al

The source of the problem, and the answer to the question, lies in the behavior of the de-
coder. As described in the preceding section, the RAAM decoder works in conjunction with
a logical “terminal test,” which determines whether or not a given representation requires
further decoding. The default terminal test used in the primary set of experiments merely
asked whether all elements in the code were above 0.8 or below 0.2. This “analog-to-binary”
conversion was standard in back-propagation research of the late 1980’s, but it led to several

basic logical problems that prevented the scaling-up of RAAM:
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1. The Infinite Loop problem in which there are representations that “break” the re-

constructor by never terminating.

2. The Precision versus Capacity problem in which using tighter tolerances slow down
convergence of training, while looser tolerances allow quicker conversion but lead to

reduced representational capacity.

3. The Terminating Non-Terminal problem involving a “fusion” between a discov-
ered non-terminal and a given terminal, such that the decoding of an encoded tree

terminates early, resulting in an error.

Other researchers noticed problems in the default terminal test and came up with alter-
natives, such as simply testing membership in a list, or simultaneously training a “terminal-
test network” to classify representations as terminal or non-terminal [16][106] . Neverthe-
less, scaling-up remained a problem, leading to the question of whether there was a “nat-
ural’behavior of a RAAM decoder that was not being taken advantage of. The answer to

this question is the subject of the next chapter.



Chapter 3

IFS RAAM

[W]e take Smolensky to be claiming that there is some property D, such that

if a dynamical system has D its behavior is systematic....

happen if we are to have a substantive connectionist account of systematicity s:

first, it must be made clear what property D is, and second it must be shown that

D 1is a property that connectionist systems can have by law.

— J. Fodor and B.P. McLaughlin,

“Connectionism and the Problem of Systematicity” [35]

3.1 Iterated Function Systems

The least that has to

Counsider again the RAAM decoder in Figure 2.3. The behavior of this decoder can be

described by the set of equations:
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where Ty, k € {1,2,3} is the set of transforms that decodes the left, middle, and right part
of the tree encoded on the hidden layer. The square-matrix elements wy;; and vectors
Wi 4,4 € {1,2,3,4} are the set of weights and biases for that transform; andfis the logistic-
sigmoid squashing function f(z) = 1/(1 + e~®) .This set of equations bears a striking
similarity to an Iterated Function System (IFS) , for example, the equations that generate

the well-known Sierpinski Gasket:!

T 05 0 T 0
T = - (3.2)
i) 0 0.5 Hi) 0
I 0.5 0 I 0
Ty = + (3.3)
To 0 0.5 T9 0.5
T 05 0 1 0.5
Ty = + (3.4)
) 0 0.5 Z9 0.5

Iterated Function Systems get their name from the fact that, starting with some initial
conditions for the x; , each of these transforms is applied iteratively to its own output or to
the output of one of the other transforms, the choice of which transform to apply being made
either deterministically or by non-deterministic probabilities associated with each transform.
Starting on the unit square, all three transforms of the Sierpinski Gasket IFS scale the z
and y coordinates of the square by one-half. The first transform 73 leaves this contracted
copy of the square in its original position at the origin (lower-left quadrant); the second
transform T, translates (shifts) this copy to the top-left corner of the unit square, and the
third transform 73 translates the copy to the top-right corner. The second application of

the transforms does the same thing to the three unit-square copies.

!The Sierpinski Gasket is usually shown with an equilateral triangle as its initial conditions; the version
here, modified from the equations in [4], uses the unit square instead, to highlight the similarity with fractal
RAAM.
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The limit of this process as the number of iterations N approaches infinity is called the
attractor of the IFS. Viewed as a set, the attractor is the fixed point of the IFS transforms,
because the transforms take all points in the attractor to themselves or to other points in
the attractor. An IFS has an attractor if and only if all of its transforms are contractive
[4], meaning that for any two points z and y, and a distance metric d, there is a constant
s, 0 < s < 1, such that d(Ty(z),Tk(y)) < sd(z,y). For a linear IFS like the Sierpinski
Gasket, it is straightforward to determine whether a transform is contractive, by computing
the eignvalues of the square matrix part of the transform. If the largest magnitude of the

eigenvalues is less than one, the transform is contractive.

Figure 3.1 shows a representation of the Sierpinski Gasket attractor. The image is nec-
essarily an approximation, because the actual attractor is a discontinuous dust of distinct
points that exists only in the limit as the number of iterations IV approaches infinity. The
image in the figure, and the other attractor images in this thesis, were generated from a

pixelized representation of the unit square, using the following algorithm 2:

*In displaying algorithms we have adopted the conventions of [20]
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ATTRACTOR(T, S)

1 Apew < UNIT-SQUARE(S x S)

2 Aold(_(b

3 while Aold # Anew

4 Anew — @

5 fork+ 1to K

6 do Apew ¢ Apew U Tk (Aold)

\]

Aold — Anew

8 return A,y

Starting with an S x S-pixel representation of the unit square, this algorithm applies
the two transforms to unit square, takes the union of the transformed images, and iterates
until no new points are generated. The resulting shape is called a fractal, a name credited
to Mandelbrot, who applied such shapes to the study of patterns in nature, such as clouds
and coastlines [60]. Unlike traditional geometrical objects like circles and cubes, a fractal
typically does not a have a dimension that is a whole number; instead, as its name suggests,
its dimension is a fraction (more accurately, a non-integer real). As described in [93], for an
IFS this Hausdorff dimension can be computed as the ratio of the logarithm of the number
of transforms to the logarithm of their scaling factor; the Sierpinski Gasket therefore has a

Hausdorff dimension of log(3)/log(2) ~ 1.58.
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Figure 3.1: The Sierpinski Gasket attractor

3.2 RAAM as an IFS

Consider the following RAAM decoder, with K = D = 2:

T —1.272 —4.914 T 2.964
Ty =f + (3.5)
To —1.569 -—1.515 To 4.272
1 —4.399 5.813 T 3.019
Ty =f + (3.6)
T —2.018 —-0.791 To —3.372

Each transform of the decoder has the form T'(z) = f(g(z)), where g is a linear function
identical in form to an IFS transform, and f is the the non-linear logistic-sigmoid activation
“squashing” function. The range of f is the closed interval (0,1). Therefore, even if the
linear component of the transform is non-contractive, the point z is always “brought back”
into the unit square by the squashing function. This property makes RAAM decoder trans-
forms pseudo-contractive: although a transform may not necessarily move two points closer

together, it will shrink the successive areas of the images of the unit square on successive
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Figure 3.2: The Galaxy attractor

iterations. 3

In fact, the non-linearity of the decoder yields a surprisingly rich variety of attractors,
as compared with contractive linear IFS’s. Figure 3.2 shows one such attractor, for the
decoder in (3.5) and (3.6). This decoder was evolved to look like a galaxy, using a “blind

watchmaker” paradigm|25].

3.3 The attractor as a terminal test

We are now in a position to answer the question that ended the last chapter. Treating the
RAAM decoder as an IFS, the terminal test for a given point (vector) corresponds to asking
the question “is this point on the attractor?” If the answer is yes, we treat the point as a

terminal (primitive) and stop decoding; if not, we continue:

3This is easiest to see for a one-dimensional (D=1) RAAM. The equation for each transform is of the form
T(z) = f(az + b). Let a = 5,b = —2, and consider what happens to the two points z; = 0.4 and z» = 0.6.
The Euclidean distance between these points is 0.2. Their transforms are f(x1) = 0.5, f(z2) = 0.7311; the
Euclidean distance between these two transformed points is 0.2311 > 0.2. Nevertheless, the images of the
unit line-segment decrease monotonically in length under this transform.
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TREE-AT-POINT(z,y, A, S)

1i« [S-z]; j [S-yl

2if 4,;=1

3 then return TERMINAL-TREE

4 else left-tree + TREE-AT-POINT(T1(z,y), A, S)

5 right-tree < TREE-AT-POINT(T»(z,y), A, S)

6 return NON-TERMINAL-TREE (left-tree, right-tree)

Given a random initial condition, any sequence of left/right decodings will ultimately
put the output on the attractor; therefore, any initial condition not on the attractor will
have a structured transient to the attractor.

The encoder under this formulation is simply the mathematical inverse of the decoder:
given a decoder transform 7T; having weight-matrix A and bias vector b, the encoder for that
transform is expressed as T} '(z) = [f~!(z) — b] x A™!, where A~! is the matrix inverse of
A, and f~!(z) = —In(1/x — 1). This inverse transform is expansive, so it will map a single
pixel to a set of one or more contiguous pixels.*Given two D-dimensional pixels z and y
encoding respectively the terminals a and b, applying the left inverse transform Tl_lto  and
the right inverse transform T, lto y gives us a set of pixels representing the sets of points
that contract to z and y on the “forward” transforms T} and T5. Intersecting these sets (by
taking the set of pixels common to both), and subtracting out any attractor points in the

intersection®, gives us the pixels that decode to the tree (ab).

“The inverse transform is still a function, because it is in reality mapping a single region in R”to another
region in that space. Procedurally, we can take the pixel boundaries, pass them through the inverse map,
and re-pixelize the resulting region, or we can maintain a lookup table mapping each point to the set of its
inverses.

5The attractor is the fixed point of the IFS transforms, so applying an inverse transform to an attractor
point can produce a point that is also on the attractor. Such a point is by definition not a non-terminal, so
it must be removed from the inverse set.
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X (X X) X)((X (X X)) X))
(X X) (X X)(X ((X (X X)) X)))
(X X) X) (X X) X)((X (X X)) X))
(X (X X)) (X (X (X X)))((X (X X)) X))
(X X)(X X)) (X X) X)((X (X X))(X X)))
(X (X X))(X X)) (X X)(X X)) ((X (X X)) X))
(X (X (X X)) X)) (X X)(X X)) ((X (X X))(X X)))
(X (X ((X (X X)) X))) (X (X (X X)))(X X))((X (X X)) X))
(X (X (X X)))(X X)) (X X)(X ((X (X X)) X)))(X (X (X X)) X)))
(X X) X)(X (X X))) (X (X X)) (X X)(X ((X (X X)) X)))(X (X (X X)) X))))
(X X)(X (X (X X)) X))) | (X X)(X (X (X X)) X)))(X (X (X X)) X))X (X (X X)) X)))

Table 3.1: Trees decoded by the Galaxy system at 10x10 pixels. X indicates a terminal.

Hence we can fully understand the problems described at the end of Chapter 2:

1. By not using the attractor as the terminal test, decoding a random initial condition
could lead to an infinite loop of decodings which are on the attractor yet never satisfy

the “logical” terminal test.

2. Because the training allowed non-terminals to float around, some non-terminal could

float into regions defined as terminals, leading to the early termination problem.

3. Finally, because the attractor has a fractal nature, it could not be easily modeled by

a simple thresholding terminal test.

This new terminal test solves a fundamental problem in RAAM, resulting in decoders whose
capacity seems extraordinarily high, as compared with the apparent limitations or original
RAAM. For example, even at the comparatively low resolution of 10x10 pixels, the Galaxy
RAAM was able to decode the 22 trees shown in Table 3.1.

Because each point (pixel) decodes to a unique tree, the new terminal test also gives
us a spatial mapping between regions in the unit square and the trees that they decode.
In this interpretation, each possible tree, instead of being described by a single point, is

now an equivalence class of initial points sharing the same tree-shaped trajectories to the
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Figure 3.3: Map of tree locations for Galaxy, § = 100. Pixels of a given color decode to the
same tree, pixels of different colors to different trees.

fractal attractor. Figure 3.3 shows the set of tree equivalence classes, for the Galaxy decoder

sampled at S = 100.

3.4 Scaling behavior

Generative grammars contain recursive rules whose application to their own output produces
structures (derivation trees) of increasing size. The ability of such systems to produce
arbitrary numbers of such structures, of arbitrary size, accounts for much of their popularity
as models of human language and related cognitive phenomena. Any candidate model
of language, connectionist or otherwise, must likewise offer a mechanism by which novel
structures can be decoded by a fixed-size model.

IFS RAAM offers two such mechanisms: iteration and resolution. The ATTRACTOR
algorithm above is parametrized by a resolution argument S, and simulates an “infinite”
number of IF'S iterations via a while loop, which terminates when no new points are decoded.

This loop could however be replaced by a for loop, which would terminate after some fixed
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number of iterations specified by an additional input parameter N. This parameter limits
the depth of the trees that the IFS can decode; in fact, that number is exactly equal to V.
6 With a high enough resolution S, increasing values of N should give us a good idea of
how the actual number of decoded trees scales up with increased iterations.

As an informal exploration of these two scaling parameters, we examined the scaling
behavior of four different IFS RAAM decoders: (1) the Galaxy decoder; (2) a decoder with
random weights in the same range as the Galaxy; (3) a decoder hill-climbed to maximize
the proportion of left-branching trees”; and (4) a decoder hill-climbed to maximize the total
number of trees. Figure 3.4 depicts the results of this experiment as a log/log plot of number
of trees against pixel resolution, using the “infinite iterations” method. The figure shows that
the random-weight and left-branching systems scale up rather modestly with increased pixel
resolution. This result suggests that mediocre scaling is the baseline, or “un-biased” behavior
of the IFS RAAM decoder. Because the left-branching network was trained to decode only
one tree at a given depth — an infinitesimal fraction of the total number of possible trees at
that depth — this network likewise fails to exhibit dramatic scaling behavior.

More interesting, however, is the behavior of the Galaxy decoder and the “Max” decoder
trained to yield a larger number of trees. Both of these decoders show dramatic scaling with
increased pixel resolution. Unsurprisingly, the Max decoder exhibits higher capacity than
the Galaxy, across various resolutions. Intriguingly, however, the Galaxy is not far behind,
and keeps pace with the Max decoder as the resolution increases, despite the fact that
the criterion for producing the Galaxy network was aesthetic, making no explicit reference
to tree capacity. This result points to the possibility of a deep correspondence between the

visual notion of “interesting” images and the linguistic notion of generativity, related perhaps

5Proof by induction on N. Basis: N = 0, in which case whole unit square is attractor, so max tree depth
is 0. Inductive step: For N > 0, assume max tree depth is V. Iterating once more means that some points
on the attractor are now off the attractor but go to the attractor on one more iteration. These points were
the leaves of the depth-NV trees, which are now depth IV + 1. In practice, the number of trees can sometimes
decrease slightly because of aliasing caused by finite pixel resolution.

"i.e., trees of the form (X (X X)), (X (X (X X))), (X (X (X (X X)))), etc.
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to the degree of self-similarity exhibited by the IFS attractor.

Figure 3.5 shows the number of decoded trees as a function of the number of IFS itera-
tions, at a fixed resolution of 256x256 pixels. The scaling properties here are similar to those
of the previous figure, with a clear separation between the high-capacity Max and Galaxy
decoders and the low-capacity left-branching and random decoders. The important and ob-
vious difference is the leveling-off of the random network, as compared with the other three
networks, after five iterations. Essentially, a random set of weights has no “inductive bias”
to produce trees according to some (grammar-like) pattern, so at a fixed pixel resolution it
rapidly reaches its maximum tree capacity.

It is also interesting to ask whether a particular decoder has a constant “scaling coeffi-
cient” that describes how the number of trees changes with increased resolution or iterations.
Figures 3.6 and 3.7 show the scaling coefficients for the four decoders, defined as the square
root of the number of trees decoded at a given resolution® (Figure 3.6) or the number of
trees decoded at a given number of iterations (Figure 3.7). For pixel resolution, the results
seem fairly clear. After an initial startup transient at low resolutions, the random and left-
branching decoders pattern together, with a coefficient of around 0.05. This low value for
the random decoder makes sense, as there is no reason to assume that an arbitrary set of
decoder weights will exhibit interesting scaling properties. As for the left-branching decoder,
an “ideal” network for left-branching trees would decode only one tree at a given number of
iterations, regardless of pixel resolution; therefore, any decent approximation to that ideal
is not expected to show interesting scaling properties with resolution. The Galaxy is next,
with a coefficient of around 0.5, and the Max decoder scales up the fastest, with a coefficient
of 0.9. The pattern is similar for scaling over iterations (Figure 3.7), although the tendency
there is less clear than for scaling by resolution. The downward trend of the curves over

iterations can probably be explained as an artifact of the fixed pixel resolution at which the

8The square root is taken in order to account for the fact that the number of possible trees goes up as
the square of the pixel resolution, for two-dimensional networks like these.
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Figure 3.4: Number of trees as a function of pixel resolution, for four different IFS RAAM
decoders

number of trees was computed. In the limit as the pixel resolution approaches infinity, the

number of trees decoded per iteration might be expected to level off to a single value.

3.5 Discovering the competence of IFS RAAM

As Figures 3.4 - 3.7 demonstrate, treating the RAAM decoder as an IFS produces a neural
network model capable of representing very large numbers of fixed-arity tree structures
(and therefore very long strings at the tree frontiers), without the addition of any nodes
to the network. IFS RAAM thus addresses the previously discussed inability of traditional
connectionist language models to handle larger structures without prohibitive growth in
the network size. We might therefore tentatively suggest the IFS attractor principle as a
potential candidate for Fodor’s “Property D” — a property which allows a dynamical system
to have systematic behavior, and which connectionist systems can have by law.

The ability of IFS RAAM to represent such large number of trees leads one to wonder

whether there is some grammar-like constraint on the set of trees that a given RAAM can
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decode. Does a RAAM, like a generative grammar, have some “competence” for representing
an infinite set of recursively enumerable structures, the actual “performance” of the RAAM
being constrained by the pixel resolution at which the attractor and trees are represented?’

The answer to this question is the subject of the next chapter.

°For the competence/performance distinction, see [14].



Chapter 4

Infinite RAAM

4.1 Representing formal languages

Although there has been some research into the properties of tree-generating systems [38],
the bulk of knowledge in formal language theory comes from investigations of the set of
strings that a given device (grammar, finite automaton) can generate or recognize|44|. Such
investigations typically use strings over alphabets with more than one symbol, because
single-symbol alphabets do not allow very fine-grained distinctions in computational com-
plexity! Hence, investigating the formal string-generating properties of IFS RAAM requires
a principled method for labeling the terminals

Fortunately, using the attractor as a terminal test also allows a natural formulation of
assigning labels to terminals. Barnsley [4] notes that each point on an IFS attractor is
associated with an address which is simply the sequence of indices of the transforms used
to arrive on that point from other points on the attractor. The address is essentially an
infinite sequence of digits. Therefore to achieve a labeling for a specific alphabet we need
only consider a sufficient number of significant digits from this address; in the present study,

we need just one. All pixels reachable from the attractor on the left transform are arbitrarily

'A context free grammar over a one-symbol alphabet is regular. See [90] for proof.

33
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labeled a, and all pixels reachable on the right transform are labeled b. Figure 4.1 illustrates
this process for the the Galaxy decoder, showing sample derivations for the trees (a b) and
(a (a b)). The addressing algorithm is given below:

ADDRESS-POINTS(T, 4, S, K, N)

1 B + ZERO-MATRIX S x S

2 for i« 1to KN

3 doj«i—1

4 for k« 1 to N
5 do P, < MOD (j,K) + 1
6 j<+ Li/K]

7  C +TRANSFORM(T, A, P, K)

8 C+ C- K1

9 B+ B+C

10 return B

In this algorithm, T is the set of IFS transforms, A is the attractor, S is pixel resolution,
K is the number of transforms, and N is the number of digits to use for computing the
addresses. The TRANSFORM function called in line 7 accepts a sequence P of transforms
(the “path”) and returns an image computed by applying the successive transforms in P to

the initial image A :
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TRANSFORM(T, A, P, K)

1 fori<1to K

2 A<+ Tp(A)

3 return A

C contains the image computed by TRANSFORM. C' is an S x S matrix containing zeros
and ones, so multiplying it by successive powers of K (line 8) produces an image containing
zeros and integer addresses (1,2,4,8,...). In line 9, C is added into the (initially all zero)
SzS matrix B, performing the desired accumulation of “impure” (overlapped) addresses.
The algorithm returns an SzS matrix A containing the original attractor, but with positive
integer values instead of ones for the “on” pixels. These values can then be used as indices
into symbol table or dictionary, as they are in the two-symbol a¢™b™ hill-climbing described

below.

4.2 Resolution as induction

Under the IFS formulation of RAAM, the set of trees generated and represented by a specific
decoder is a function of the weights, but is also governed by how the initial condition space is
sampled, and by the resolution of the attractor construction. The lower-resolution attractors
contain all the points of their higher-dimensional counterparts (they cover them); therefore,
as a coarser terminal set, they terminate trajectories earlier and so act to “prefix” the trees of
the higher-resolution attractors, as illustrated in Figure 4.2.2 Furthermore, a finite sampling
means that each tree equivalence class takes up some finite percentage of the space. Hence,

despite the well-established difficulty of inducing grammars in the general case |2][37][39],

2This behavior is reminiscent an L-System [53], a type of rewriting system which contains rules for
replacing one symbol with a list of symbols drawn from the same alphabet. As formal grammars are a more
common approach to the analysis of recurrent networks than are L-Systems, the former approach is taken
here.
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(a(ab))

(ab)

Figure 4.1: The Galaxy attractor, showing derivation of the tree (a (a b)) and its daughter
tree (a b). Attractor points with addresss a, reachable from the attractor on the left
transform, are colored dark gray; points with address b, reachable on the right transform,
are light gray. The left transients to the attractor are shown as dashed lines, and the right
transients as solid lines.

an IFS RAAM that has “learned” a small set of exemplars from an infinite language and can
generate longer exemplars of that language at an increased resolution, may be seen as an
inherently probabilistic grammar for that language. This situation can be contrasted with
traditional stochastic grammars, in which a stochastic component (transition probabilities)
is added to a existing deterministic formalism (context-free grammar), as in [47]. We explore

the issue of induction in subsequent chapters.

4.3 Hill-climbing an a"b" decoder

So far, we have seen that the IFS interpretation of RAAM supports extremely large numbers
of distinct tree structures. What is interesting however about real languages is not merely
that they consist of large numbers of structures (or strings), but rather the fact that these

structures conform to some set or properties, as expressed in a grammar or other generative
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f\\ Afbb
a | b AT

Figure 4.2: Lower-resolution attractor prefixes trees of higher-resolution attractor, in a
hypothetical example. Same starting point decodes to tree (a b) at lower resolution (left),
and to tree ((a a) b) at higher resolution (right).

mechanism. A logical next step would therefore be to ask whether an IFS RAAM can
represent (and learn) some (perhaps infinite) language of trees or strings conforming to a

grammatical rule or rules. This leads to the question of which languages to use as targets.

A classic result in formal language theory is Chomsky’s demonstration that a finite-
state automaton is incapable of generating (recognizing) a certain set of natural language
constructions, including nested if... then clauses and subject-verb agreement [12]. Because
of the necessity of matching each if with its corresponding then (or each subject with its
verb), such constructions are equivalent in complexity to the language L = {a™b"}, that
is, the set of strings consisting of a sequence of a’s followed by an equal-length sequence of
b’s. Hence, a finite-state automaton, which cannot count beyond a fixed number, cannot
generate or recognize such strings. Therefore, this language has been used by others as a
minimally non-trivial criterion for adequacy of connectionist language models [83], and is a

good candidate for exploring the capacity of IFS RAAM.

Hill-climbing was used to arrive at a set of RAAM decoder weights for the language
L = {a™b"}. Two ways to represent the targets for hill-climbing would be either a set of

strings in L : {ab, aabb, aaabbb, ...} , or a set of parenthesized expressions representing binary-
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branching trees having those strings at their frontiers: {(a b), ((a (a b)) b), ((a ((a (a b))
b)) b), ...}. RAAM is a method for representing structure, and not just strings of symbols.
Therefore, the latter, tree-based representation was chosen. Specifically, trees generated by
a simple context free grammar for L were used, under the assumption that this choice would
drastically restrict the set of possible solutions to be explored and allow the hill-climbing
RAAM to build upon existing structure as it navigated the space of decoder weights.

For the hill-climbing, the initial random weights came from a Gaussian distribution with
zero mean and a standard deviation of 5.0. Starting with 12 random decoder weights, the
space of weights was explored by adding random noise with zero mean and 5.0 standard
deviation to each weight and using the resulting weights to generate trees on a 64 x 64
fractal RAAM. That is, the attractor was generated at that resolution and the initial start-
ing point space was also sampled at that resolution. The terminals of these trees were
addressed with an a or a b, using the scheme described in the section above. The training
set consisted of 10 trees representing strings from {a™b"} U {a" 16"} with n = {1,2,3,4,5}
which had subpart relationships (e.g., the tree for aabb is a subpart of the aaabbb tree) for
the learning set®. Training was halted when the fraction of trees learned failed to increase
after 30 random mutations. Note that successful representation of a single large tree, e.g.,
((a (a((a ((a (a b)) b)) b) b)) b), would entail representation of all its smaller, well-formed
sub-parts (and hence substrings). Hence, this single large tree could have been used as
the sole member of the training set. Nevertheless, such a large structure would provide no
“useful bias”[48] for hill-climbing, making the task extremely difficult. For this reason, we
chose to present all the intermediary trees as well.

About a third of the trials were able to mutate successfully into patterns that “covered”
the training set, yielding all ten tree structures, as well as trees of the form a™b"*!, plus

additional, ill-formed trees. Although hill-climbing generated many different weight set

3We included the strings in {a"*'b"

in the target language.

} because they helped provide a gradient between successive strings
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Figure 4.3: The equivalence classes of two solutions to L = a™b"found by hill-climbing

solutions to cover the training data, Figure 4.3 shows that all the solutions had a dramatic
"striping" pattern of tree equivalence classes, in which members of a single class were located
in bands across the unit square. (Recall that any point not on the attractor represents a
tree.) So, for example, the wide gray band occupying most of the top of the image at right
represents the equivalence class for the tree (a b). Furthermore (and less noticeable in the
figure), the attractor for these hill-climbed weights was located on or toward the edge of the
unit square. In the figure, the b attractor points are the white squares on the right side of
the image at left.

Beyond the 64 x 64 resolution for training the RAAM did not generalize deeply. However,
the dramatic consistency in the solution patterns led us to wonder whether there was an
underlying formal solution toward which our a™b™ hill-climbing RAAM was striving. As we

discuss in the next section, the answer to this question turned out to be positive.

4.4 Competence model

The RAAM evolved by this hill-climbing experiment is indicative of a class of RAAM com-
petence models which generate the languages Ly = a™b"'and Ly = a™'b". This claim

can be justified by demonstrating how an analysis of the specific RAAM dynamics garners
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‘ ‘ Wy ‘ Way ‘ We H Wyx ‘ Wyy ‘ Wy ‘
Left -32.7 0.442 | -5.037 9.838 | -6.989 | -5.349
Right | 28.138 | -7.534 | 29.634 | 10.273 | -6.866 | 2.258

Table 4.1: Transform weights for the first attractor in Figure 4.3. Biases are in italics.

the principles to design a parameterized class of Liand Ly RAAMs, some of which, in the
infinite case, generate the whole languages.

Table 4.1 shows the transform weights for the attractor on the left side of Figure 4.3.
Looking at these weights, it is not easy to discern an immediate pattern. A plot of the IFS
dynamics, as in Figure 4.4, makes the effect of the transforms much more apparent. This
figure shows what the left and right transforms do to various points in the unit square. For
the a™b" system, the dynamics reveal an attractor in the lower-left of the unit square (0, 0),
and one in the upper-right (1,1), corresponding to the left and right transforms, respectively.
All points move toward the left side on the left transform, and points already on the left
side move toward the bottom. Conversely, all points move right on the right transform, and
points already on the right move toward the top. *

Returning to the transform weights in Table 4.1, it is now easier to see what is going
on. Looking first at the left transform, it is apparent that the overall large negative weight
(-32.7, 0.442) and negative bias (-5.037) on the X coordinate mean that any point in the
interval (0,1) will map to a value close to zero under the logistic sigmoid function. Similarly
the overall very large positive weight (28.138, -7.534) and bias (29.634) on the X coordinate
for the right transform guarantee that any point in that interval will map to a value close to
one. Focusing on the Y coordinate, we see that the corresponding weights for both the left
(9.838,-6.989) and right (10.273,-6.866) transforms are very similar to each other, but the
biases differ in sign: -5.349 for the left transform, versus 2.258 for the right. This difference

in the biases means that the left transform tends to push all points downward toward zero,

“This pattern differs dramatically from the dynamics of the Galaxy, in which the left transform has an
attractor at roughly the point (0.75, 0.45), and the right transform as an attractor at roughly (0.5, 0.35).
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Figure 4.4: System dynamics for the a"b™ decoder. Left transforms are shown by solid
arrows, right transforms by dotted arrows.

and the right transform pushes them up toward one.

More precisely, one can imagine a diagonal line between the upper-left and lower-right
corners of the unit square. All points to the left of (below) this line go to the lower-left corner
on the right transform, and all points the the right of (above) this line to the upper-right
corner on the right transform. This behavior gives rise to the diagonal bands of equivalence
classes in the first image of Figure 4.3.

With these dynamics in mind, an explanation of the functioning of the a™b™ decoder is
close at hand. The left transform of a given point (z,y) will take the point to the left side of
the unit square. From there, the left transform will take this (0,y) point to the a attractor
at (0,0). The right transform of the (0,y) point will take this point to the right side of the
unit square. The right transform of this (1,y) point will take this point to the b attractor
at (1,1), and the left transform will take it back to the left side, starting another iteration
of the process. Put more simply, the dynamics specify an algorithm that says “go the the

left, drop off an a , then go the right and drop off a b, the return to the left and drop off
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| X [ Weo [way | we  [wye | wyy | Wy |
Left 0 0 |- ¢ [e(1—2¢) | c(1—¢€)+uw,
Right | 0 0 In & c | c(1—2€) |c(l—€)—wy

Table 4.2: Idealization of the first set of decoder weights in Table 4.1

another a, then ....”

This account of the a™b" decoder leads to the question of whether there is a “pure” set
of weights which guarantee the correct dynamics at any resolution. Table 4.2 displays these
weights, as a function of the pixel size € and a scaling factor ¢ that parametrizes the diagonal
line between the upper-left and lower-right corners. A recent paper of ours [65] explains the
derivation of these weights, and gives a formal proof that they induce the entire language
L = a™b™ under any choice of ¢, for ¢ > 0.

The existence of this set of pure weights allows us to consider the RAAM decoder as
not merely an approrimation to the context-free language a™b", but rather as a full-blown
competence model for that language. Our network is just as capable of generating all strings
of this language as is a context-free grammar for the language, such as S — aSblab. For
this reason, we have chosen the name “Infinite RAAM” or “IRAAM” to describe this model
and work arising from it, which forms the topic of this thesis.

These results may also be understood in the context of related work in the encoding
of grammars by dynamical systems. Crutchfield and Young [22] found that at a “critical”
parameter value, the quantized outputs of the logistic map formed an indexed context-free
language; such a language is part of the same qualitative class of “slightly context-sensitive”
languages.® A more general result has been obtained by Tabor [107], who discusses a general
class of gated linear recurrent networks he calls Dynamical Automata. Tabor provides
a proof that these automata can recognize context-free languages using rational weights,

and context-sensitive languages using irrational weights. The non-linearity of the RAAM

activation function makes this sort of analysis more difficult; however, our results with the

®We discuss the behavior of RAAM on one such language, in the next chapter.
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a™b" network, and the networks discussed in the next chapter, are consistent with Tabor’s

analysis.

4.5 Hill-climbing an ambiguous decoder

Another major feature of natural language noted in Chomsky’s seminal 1956 paper [12] is
syntactic ambiguity; i.e., the ability of a single NL sentence or phrase to correspond to two or
more representational structures®. Chomsky’s example They are flying planes, corresponding
to the parses [Theyn [[areavx flyingy| planesy]| and [Theyn [arey |flyingaps planesy]]],
can be derived from the following grammar, in which flying is ambiguously a verb or an
adjective:”

S — NP VP

VP — V NP | IP NP

NP — (ADJ) N

IP — AUX V-ing

AUX — are

V — are | fly

ADJ — flying

N — they | planes

Traditional connectionist models, which are deterministic maps from input to output

vectors, are in principle unable to deal with this sort of indeterminism. In IRAAM, however,
such multiple mappings between strings and structure arise naturally, as a result of the
overlap between the images produced by the two (or more) IFS transforms.

As an illustration of this principle, consider the attractor shown in Figure 4.5. This

5This sort of ambiguity contrasts with purely semantic ambiguity, as in Qur spring was dry, where it
is the two different meanings of spring, and not two different phrasal structures, that give rise to the dual
meanings.

"This grammar overgenerates, but serves as useful example.
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Figure 4.5: Attractor and sample trees for an IRAAM hill-climbed for maximal syntactic
ambiguity. Note the high degree of overlap between the two attractor regions.

figure shows the attractor and eight sample trees for an IRAAM that was hill-climbed to

have the maximum ratio between the number of trees and the number of unique strings at

the frontiers of those trees: i.e., for the maximum amount of ambiguity® The large amount

of overlap in the attractor corresponds to a high degree of ambiguity, which is evident

even for trees containing only the “pure” addresses I and 2. We can contrast this system

with the completely non-overlapping corner terminals obtained in the a”b™ network, whose

“ambiguity ratio” is 1:1; i.e., each string corresponds to a single tree?

8

9The strings decoded by the network hill-climbed for ambiguity are only a “language” in the trivial sense
of being a set of strings. A more realistic approximation of natural language would exhibit both non-regular

complexity and syntactic ambiguity at the same time.



Chapter 5

Bias

The previous chapter described an experiment and proof of the ability of an IFS RAAM to
decode the language a™b"™ for arbitrary values of n . As discussed in the chapter, the interest
of that formal language lies in its structural similarity to a number of phenomena in natural
languages such as English. For example, subjects agree with their verbs across arbitrary long
distances, including nestings of other subject-verb pairs. This phenomenon is illustrated in
Figure 5.1, which shows an example of the the isomorphism between subject-verb agreement

and the a™b™ tree structures produced by the RAAM in the previous chapter!.

Chomsky [12]used this a™b"example to argue that a finite state machine (FSM), lacking

! Again, although even such relatively shallow nestings as this may not be common in natural languages,
their exclusion may be attributed to some principle external to the generative system itself, like short-term
memory limitations, pixel resolution, finite stack depth, etc.

A\

thebook you want isout a a b b

Figure 5.1: Structural relation of subject-verb agreement and a™b™ trees encoded by an IFS

RAAM. Each subject (a) is matched with a verb phrase (b).

45
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memory, is insufficient as a formal model of natural language (NL), and proposed a pushdown
automaton (PDA) as the minimally adequate device to capture such phenomena. This
observation gave rise to the well-known Chomsky Hierarchy of formal languages and their
associate generating and recognizing automata, which led in turn to the question of exactly
where in the hierarchy natural language belonged — essentially, whether NL was context-free

(CF) or not.

This question was debated vigorously for several years [41][76][77][97], with uncertain
outcome. Perhaps the most useful result to emerge from the debate was the realization
that the Chomsky hierarchy may not be terribly relevant to natural language. Evidence
for this belief came from from psycholinguistic experiments showing that human beings had
less difficulty understanding non-CF constructions like crossed serial dependencies than they
did understanding the corresponding nested CF constructions [3], as well as linguistic field
work reporting the widespread use of non-CF phenomena like reduplication as a productive

lexical phenomenon [23].

In light of such evidence, those still interested in the question proposed alternative for-
malisms in which these observations could be accommodated. Manaster-Ramer [59] sug-
gested using a queue, rather than a stack, as the memory mechanism for a PDA. More
formally, Joshi [52]proposed a grammar whose primitives were trees rather than symbols,
and showed how the automaton corresponding to this grammar required more steps to
parse a nested CF construction than a crossed serial construction, in correlation with the

psycholinguistic evidence [51] .

In the present chapter, we wish to present a similar argument using IRAAM, rather
than a grammar or PDA, as a formal NL model. Specifically, we present an experiment
showing how our IFS RAAM terminal test, in conjunction with the fractal addressing scheme
described in the previous chapter, conspires to give the IRAAM model a “bias” toward

learning certain configurations more easily than others. In some cases, this bias turns out to
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agree more closely to the aforementioned NL phenomena than with the complexity measure

offered by the Chomsky hierarchy.

5.1 Hypotheses

The experiment was designed to test two hypotheses. The first was that the relative position
of symbols is more of a determinant of IRAAM learnability than is Chomsky hierarchy
complexity. Based on earlier informal observations of IRAAM behavior, it was hypothesized
that strings requiring that a b symbol terminate a left branch or an a symbol terminate a
right branch, would be more difficult to learn than strings in which the a was on the left
and the b on the right. Second, it was hypothesized that increasing the dimensionality of
the representation (i.e., the number of input units) would increase the IRAAM’s ability to

learn languages of higher Chomsky-hierarchy complexity.

To understand the motivation behind the first hypothesis, consider again the IRAAM
terminal-labeling scheme described in the previous chapter. First, the attractor is computed
at a fixed sample size; then attractor points (terminals) reachable on the left transform are
labeled using one symbol (a), and attractor points reachable on the right transform are
labeled with another (b). This scheme might interact with the tree-representing capabil-
ity of IRAAM in one of three ways: (1) No interaction, in which case some other factor
such as Chomsky-hierarchy complexity, and not relative symbol order, should determine
learnability: for example, the CF languages a™b" and b"a" should be equally easy to learn.
(2) Complete interaction, resulting in a trivial system in which the label of a terminal is
completely determined by which branch it terminates. (3) Some interaction, in which the
addressing scheme creates a bias toward learning certain types of ordering, but does is not

fully redundant with the tree configuration.
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5.2 Experimental design

The experiment was a two-factor analysis of variance (ANOVA) in which the first factor was
the training set and the second was the number (one, two, or three) of decoder input units?,
and the dependent variable was the percentage of each training set successfully learned
by hill-climbing. As in the hill-climbing experiment reported in the previous chapter, the
search space consisted of 4096 samples points chosen uniformly from the input space of three
inputs units (16x16x16 samples), two input units (64x64 samples), or one input unit (4096
samples). This scheme allowed us to avoid the artifact of exponential sample-size increase
as the number of dimensions went up. Also following the previous experiment, both the
initial random weights and the random noise added to each weight came from a Gaussian
distribution with zero mean and a standard deviation of 5.0, and training was automatically
halted after 30 unsuccessful mutations.

As in the previous experiment, the training sets consisted of sets of 10 strings chosen
from {a,b}*. Each set was chosen as an exemplar of a particular class in the Chomsky
hierarchy. The first set, a™b,1 < n < 10, represented regular languages, and the second
set, a”b™,1 < n < 10 , was the familiar context-free example. The third and fourth sets
a™b"moma™ | a™b™a™b™, 1 < m,n < 4, were chosen as letter-equivalent sets [90] differing
only in belonging to different Chomsky classes. The former is the CF palindrome language,
and the latter is the non-CF language similar in form to reduplication in NL. A fifth set,
b"a,1 < mn < 10, served as a test of the trivial case in which trees with a b on the left and an
a on the right are unlearnable. The sets are shown in Table 5.1. For each set, ten different
training runs were made, each with a different random seed. Some runs produced forests
of trees with such great depth and size that they exceeded the memory capacity of our

computer 3; such runs were re-tried with a new random seed until a total of ten completed

2Note that the number of network weights scales as the square of the number of input units. A one-input
network has four weights, a two-input network has 12 weights, and a three-input network has 24 weights.
3Consider the memory requirements for representing 4096 binary trees, each with a maximum depth of
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ab ab abba abab ba

aab aabb aabbaa aabaab bba

aaab aaabbb abbbba abbabb bbba

acadb aaaabbbb aaabbasa aaabaaab bbbba
aaoaab aaaaabbbbb aabbbbaa aabbaabb bbbbba
acaaaab aaaaaabbbbbb abbbbbba abbbabbb bbbbbba
asaaeaadb asaasaabbbbbbb aooobbacaa | aaaabaaaab bbbbbbba
acoaa2aab aaaaaaabbbbbbbb aaabbbbasa | asabbasabb | bbbbbbbba
aoo2008a2b aaaaazaaabbbbbbbbb aabbbbbbaa | aabbbaabbb | bbbbbbbbba
aoooocooaab | asaaasaaaabbbbbbbbbb abbbbbbbba | abbbbabbbb | bbbbbbbbbba

‘ a”b ‘ a”b"

palindrome ‘ reduplicated ‘ b"a ‘

Table 5.1: Training sets for the bias experiment

‘ ‘ Language ‘ a”b ‘ a”b" ‘ palin ‘ redup ‘ b"a ‘

# Dimensions
1 1000) [ 7@3)[1(1)] 3() |44
2 10(0) [5(3) | 2(1)| 5(1) |4(3)
3 9(1) [5(1)|2(1)| 6(1) |4(2

Table 5.2: Experimental results. Entries show the mean
strings learned, out of 10, from each language.

—~

std. dev.) for the number of

runs was obtained for each set.

5.3 Results

Results of this experiment are shown in Table 5.2, which reports the mean and standard
deviation for the fraction of each set learned over ten trial runs.

The first thing to note about these results is that the non-zero success rates in the final
column of the table allow us to rule out the “trivial” hypothesis in which languages like
b"a, with leading b ’s, are unrepresentable. The second thing to notice is that there is a
main effect of language class on learnability: some languages, like a™b , are learned almost
perfectly, whereas others, like the palindrome language, appear much more difficult. This

result is statistically significant, at p<<.001, and is plotted in Figure 5.2, which shows percent

4096.
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Figure 5.2: Mean number of exemplars learned for each language set, averaged across di-
mensions.

of targets learned for the languages, averaged over the three dimensonality sizes.

Finally, there was no main effect of dimensionality (number of inputs units) on the
success rate. Though the languages a™b, a™b", and palindrome show a rough correlation
between learning rate and number of dimensions, the remaining two languages actually

show a decrease in the learning rate from two to three dimensions.

5.4 Learnability versus generalization

As with any learning model, ability to cover the training set is only half of the picture. A
more interesting issue is how the model generalizes beyond the training set. With respect
to the type of experiment described above, this issue breaks down into two questions: First,
having “learned” a particular set of strings, does the model generalize the pattern to longer
strings? Second, has the model actually learned to generate some particular pattern, or has
it merely generated a variety of arbitrary strings large enough to cover the training set?

To explore these issues, we examined the strings generated by each trained network in
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‘ ‘ Language ‘ a™b ‘ a™b" ‘ palin ‘ redup ‘ b"a ‘
# Dimensions
1 2122 (1545) | 561 (468) 4 (6) | 258 (322) | 65 (85)
2 2284 (767) | 1147 (1119) | 24 (35) | 292 (296) | 229 (405)
3 2389 (809) | 1272 (727) | 28 (49) | 146 (74) 67 (71)

Table 5.3: Mean (std. dev.) number of strings learned (out of 4096) fitting the pattern of
the training set.

‘ ‘ Language ‘ a™b ‘ a™b™ ‘ palin ‘ redup ‘ b"a ‘
# Dimensions
1 660 (1109) | 78 (184) 0 0 0
2 213 (230) 1(2) 0 76 (173) | 9 (26)
3 14 (25) 0 0 1(2) 1(4)

Table 5.4: Mean (std. dev.) number of grammatical strings longer than the longest string
in the training set.

the experiment, and computed two values from the generated strings: (1) the number of
strings (out of the 4096 strings generated) that fit the pattern of the training language (2)
the number of strings from (1) that were longer than the longest string in the training set.

Tables 5.3 and 5.4 show these values.

These two tables reveal a number of things about the way that hill-climbed IRAAMs
are generalizing the patterns in the training set. First, Table 5.3 suggests a finer-grained
categorization of difficulty for the five languages than was observed from the coverage data
in Table 5.2. The regular language a™b is clearly the most generalized, with more than half of
the encoded strings fitting the pattern. Next is the context-free language a™b", followed by
the reduplicated language, the regular language b™a, and finally the palindrome language, for
which fewer than two percent of the encoded strings are palindromes of the form a™b™b™a™.
These averages are plotted in Figure 5.3.

Table 5.4, which presents generalization as the number of grammatical encoded strings
beyond the training set, shows the same ordering, with a™b having a significant number of

grammatical strings outside the training set (average 296), and the palindrome language
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Figure 5.3: Mean number of grammatical encoded strings for each training set.

having none. This table is also interesting in revealing a oft-noted property of neural net-
works and other learning models: there seems to be an “ideal” number of dimensions (units)
for generalizing each language, beyond which the data set is being over-fitted. For the lan-
guages a"b and a™b™ , generalization falls off after only one dimension; for the reduplicated
language a"b™a™b™ and the regular language b"a, generalization appears to peak at two di-
mensions, though the comparatively small number of strings generalized for these language

calls the statistical validity of this phenomenon into question.

5.5 Network dynamics

To explore these results, we plotted the tree equivalence classes generated by two-dimensional
networks that had successfully learned all the strings in the training sets a™b, a™b" , and 0"a .
All three of these plots, shown in Figure 5.4, reveal the striping pattern for the smaller a"b"
training set from the previous chapter; however, it is instructive to compare the differences.
For the the a™b plot (leftmost in figure), both the a and b attractor blobs are found along one

side of the unit square, and there is a single “grain” of striping, from top-right to bottom-
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(a) a™b (b) a™b" (c) b"a

Figure 5.4: Tree equivalence classes for successful learners of the languages a™b, a”b", and
b"a. Attractor points are circled.

left. The a™b™ plot (middle of figure) shows a someone less regular but similar single-grained
pattern, but as in the previous chapter, the attractor points are distributed on opposite sides
of the unit square (left and right), supporting the back-and-forth dynamic observed in that
chapter. Most interesting is the plot for d"a (rightmost in figure). Like the a™b plot, the
plot for this regular language shows attractor points concentrated in one part of the space
(lower left); however, unlike either of the other two plots, the plot for this language shows

two entirely separate striping patterns, crossing at roughly the middle of the unit square.

To understand these patterns, it is helpful to look at the dynamics of the three networks.
Figure 5.5 shows the dynamics of the left and right transforms for the the networks, using a
“quiver” plot in which the distance traveled by a point is proportional to the arrow’s length.
For the a™b network, there are two simple “ravine” basins of attraction, both pointing to the
top of the unit square. The a™b™ network has two distinct basins of this sort, each pointing
to an opposite corner (left or right) at the bottom of the square. The b"a network, however,
reveals a quite different pattern. The dynamics of the left transform are the familiar ravine
terminating in the lower left part of the space; however, the dynamics of the right transform
show a more complicated saddle-point pattern. Points in the lower-left part of the space

are attracted to the lower left corner, but points in the upper-right part of the space will
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first move toward the lower-right, and then travel along the bottom to the lower left. This
bifurcated dynamics can be seen as the network’s attempt to reconcile the “natural” shuttling
pattern between the left and right sides of the space, with the placement of a terminal in
the “wrong” part of the space: essentially, the b"a network is trying to be the a™b" network,

but with both terminals jammed into a single side.

5.6 Induction

As described in an earlier chapter, the component of IRAAM that corresponds to recursion
in a grammar, or the inductive step in an inductive proof, is the pixel resolution at which
the D-dimensional attractor and tree space [0,1)P are sampled. Just as a fractal image
like the Mandelbrot set will reveal smaller copies of itself as the pixel resolution is increased
(“zooming in”), increasing the sampling resolution of the IRAAM should reveal more detailed
patterns, in the form of longer well-formed strings of the language.

To test this hypothesis, we performed one more analysis of the weights generated by
hill-climbing. This time, we increased the number of sample points to 15,625 (i.e., 125x125
for the two-dimensional network, 25x25x25 for the three-dimensional), and generated trees
at this resolution using the networks trained at 4096 sample points. For a given set of
weights, the question was how many new grammatical strings the network would generate
at the higher resolution, as compared with the number that same network generated at the
lower resolution*. These values are given in Table 5.5.

The values in this table follow the general pattern observed so far: the ab and a™b™ sets

are induced best (as an inverse function of the number of dimensions), with the remaining

three sets being induced poorly®. The results do, however, support the notion of resolution

4Tt would also be possible to ask how many grammatical strings outside the training set were generated
at the higher resolution, but that approach does not as directly address the question of how the capabilities
of a particular set of weights change as resolution is increased.

5The high mean for the two-dimensional network learning the reduplicated language is an artifact of a
single grammatical string being over-represented in the induced string set.
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Figure 5.5: Dynamics for successful learners of the languages a™b (top), a™b™ (middle), and

b"a (bottom).
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‘ Language ‘ a™b ‘ a™b" ‘ palin ‘ redup ‘ b"a ‘
# Dimensions
1 2129(3512) | 32(38) | 1(3) 1(1) 1(2)
2 390(513) | 16(45) | 18(54) | 423(1245) | 2(5)
3 2(4) 13(38) | 0(1) 3(4) 0(1)

Table 5.5: Mean (std. dev.) number new grammatical strings induced at higher resolution .

as induction: if an IRAAM learns a language well at one resolution, it is likely to generate

further, longer exemplars from that language at a higher resolution.

5.7 Cross-induction

Another interesting question to examine is the extent to which a decoder trained on a given
language set can generalize to other language sets. To investigate this issue, we took the
set of weights obtained for the two-dimensional networks and tested each set of weights on
the complement of the language on which it was trained. Table 5.6 shows the results of this

experiment.

The cross-induction results follow a similar pattern to the other experiments: decoders
trained on a™b, a™b™, and redup generalize the best across all languages, with palin and
b"a tied for last place. Essentially, the atb™ sub-pattern is being reused successfully for
those first three languages, supporting generalization to strings containing that pattern,
regardless of the language class to which the strings belong. A somewhat surprising result is
that decoders trained on these three “easy” languages do better on palin than do the decoders
trained on the palin language itself. A possible explanation for this result is the weakness of
the hill-climbing method used to learn the weights. It may be that the palindrome training
set used here provides such a poor gradient, that a network producing arbitrary sequences

of a’s followed by b’s does better at covering this set than a network trained on the set itself.
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‘ ‘ Language ‘ a™b ‘ a™b" ‘ palin ‘ redup ‘ b"a ‘ Overall ‘
Weights
a™b 10 (0) | 5.4 (2.6) | 3.5 (2.4) | 5.9 (3.0) | 2.6 (0.8) | 5.5 (2.9)
a"b" 16 (0.8) | 5(3) |23 (1.1) |26 (1.2) ] 2.1(0.9) | 2.7 (1.3)
palin 0.1(03) |03 (0.7) | 2(1) |08(1.0) 22 (1.8 |1.1(1.0)
redup 25 (2.3) | 1.7 (1.5) | 2.3 (1.3) | 5 (1) | 2.0 (1.3) | 2.7 (1.3)
va 0.1 (0.3) | 0.1 (0.3) [ 0.9 (1.2) | 0.6 (0.8) | 4(3) | 1.1(1.6)

Table 5.6: Cross-induction results. Each row represents 10 sets of weights hill-climbed on
a particular training set. Entries show mean (std. dev.) for number of strings (max=10)
from other training sets successfully decoded by these weights. Success on identical sets is
also reproduced from Table 5.2 for comparison.

5.8 Discussion

Though this chapter has by no means presented an exhaustive analysis of the formal lin-
guistic capability of Infinite RAAM, some important tendencies of the model are now evi-
dent. These tendencies are best understood by comparing IRAAM with a traditional formal
grammar. In a formal grammar, the labels of the terminal are entirely arbitrary; there is
no meaningful difference, e.g., between the languages a™b" and b"a™ . Complexity is de-
termined by the memory apparatus required to parse the language (machine model), which
corresponds to the relative number of symbols permitted in the left- and right-hand sides
of grammar rules. Such a model fails to predict the scarcity in natural language of patterns
such as palindromes, which have a lower complexity (context-free) than widely attested pat-
terns like reduplication (context-sensitive). Cross-linguistic patterns, such as the universal
tendency to put subjects before objects in declarative sentences [40], must be coded indepen-
dently into the grammar of each language, or must be derived by stipulating such principles
as part of the “Universal Grammar” that children have as part of their genetic heritage [15].
This situation necessarily follows from the hypothesis of the the autonomy of syntax [14], in
which structure and meaning are handled by two completely separate model components.
Infinite RAAM, by contrast, makes no such distinction. Indeed, both the identity of a

symbol and the structures in which it participates are determined by the same mechanism,
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the transform weights of a non-linear iterated function system. The difference comes from
whether the transforms are applied to the IFS attractor, yielding terminal equivalence classes
(roughly, semantics), or to the complement of the attractor, yielding tree-shaped transients
to the attractor (roughly, syntax). The result is a bias, or statistical tendency, toward
putting a given equivalence class (“part of speech”) on the branch corresponding to the
transform used to label that class. This tendency results in certain languages being more
difficult to learn than others, despite their belonging to equivalent classes in the Chomsky
Hierarchy; in fact, relative word order, as opposed to relative position in this hierarchy, is a

better prediction of IRAAM learning success, as it is perhaps for natural language.

Two caveats are “in order” here. First, simple languages consisting of a ’s and b ’s are
far from adequate as models of natural language. Generative grammar as a field has had
nearly a half century in which to investigate how simple formal grammars can be scaled up
to describe the tremendous richness and variety of natural language.; accounting for more
than a tiny fraction of the phenomena that that field addresses is beyond the scope of the
present thesis. Second, hill-climbing is by no means an optimal learning method, and the
parameters chosen for our hill-climbing experiment (network size, sampling resolution, initial
conditions, mutation rate, maximum attempts before failure) have by necessity restricted us

to exploring an infinitesimal part of the search space of IFS weights.

Nevertheless, the results obtained in this experiment do suggest that the lion’s share
of the “grammar space” of IRAAM is occupied by systems having the ordering bias. If
valid, this hypothesis puts IRAAM in a rather unique position among cognitive models,
including traditional grammars and most connectionist alternatives to them. Unlike the for-
mer, IRAAM derives syntax, semantics, and their “semi-autonomy” from a single underlying
principle. Unlike the latter, IRAAM embodies a strong tendency toward certain linguistic
patterns, independent of training data or initial conditions. Together, these properties go a

long way toward satisfying the criteria presented in the Introduction: understanding what
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a model is doing, and thereby gaining insight into its applicability.

5.9 Supporting a generative lexicon

A major trend in current linguistic theory is a shift toward the lexicon as the locus of
syntactic knowledge, notably Lexical Functional Grammar [24], Head-Driven Phrase Struc-
ture Grammar [74], and the Generative Lexicon model of Pustejovsky [79]. In contrast
to earlier theories that employed subcategorization and other constraints to “clean up” the
over-generation of powerful phrase structure rules [14], these recent approaches put much or
all of the combinatorial information about a word into that word’s entry in the lexicon. A
striking difference between the old and new approaches can be found in Pustejovsky’s treat-
ment of nominals, which instead of being simple atoms acted upon by verbs, have a rich
compositional structure of their own, specifying the semantics (or qualia) of their interaction
with verbs and with other nouns.

The relevance of this linguistic research to the present discussion lies in the unified
account that TRAAM provides for syntactic composition of lexical items. The same set of
decoder network weights that we use to label the attractor terminals, determines how they
combine with other terminals to form tree structures. This mechanism applies equally to
all terminals, regardless of their “phrasal category” (position in the tree)®. Therefore, in a
very meaningful sense, every item in the IRAAM lexicon comes with a built-in specification
of its own combinatorics, very much in the spirit of the lexico-centric approaches described
above. Furthermore (and unlike associative models in which new a network connection must
be added for every relation [96] ), IRAAM embodies this knowledge in a fixed-size network.

Obviously, there is a great deal of work to be done before the IRA AM model can begin to

support even the rudiments of the generative lexicon framework, and it is not at all clear how

5The following chapter explains how phrasal structure can be induced over lexical items in a “bottom-up”
fashion.
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IRAAM might represent powerful mechanisms like type coercion that give that framework
so much of its appeal. Nevertheless, we have reason to consider IRAAM a promising first

step in providing a fully connectionist account of lexical phenomena.



Chapter 6

Learning

So far, we have shown that IRAAM networks are capable of representing a non-trivial
infinite formal language, and that the addressing mechanism by which the terminal symbols
of this language are enumerated can be extended to provide an infinite lexicon. We also
have an algorithm that will tell us whether, and to what extent, a given IRAAM network
sampled at a given pixel resolution encodes a given fixed-arity tree. Finally, we have some
intuition about the interaction of the lexical addressing scheme with the structures of the
trees themselves. The obvious question to ask is whether these capabilities can be exploited
to devise an algorithm which, given a lexicon and a set of trees over that lexicon, will arrive
at a set of weights to encode those trees, for a particular address length and pixel resolution.

In attempting to devise such an algorithm, we are confronted immediately with the
choice of whether to use only the decoder by itself, or try to exploit original RAAM’s
success in learning, via the encoder/decoder autoassociative model. As described earlier,
TRAAM essentially does away with the encoder, by using the decoder inverses to determine
whether a particular tree is encoded. Nevertheless, without the original RAAM encoder it

is not clear how to use back-propagation to train the decoder by itself.!

"Melnik [66] reports some success using gradient descent to train a RAAM decoder on various attractor
shapes, but has not been able to generalize the algorithm to learning trees [63]. We have had only limited

61
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The present chapter reports four experiments using back-propagation to train a small
RAAM network on a data set from Pollack’s original RAAM paper [73]. The point of the
experiments is to compare various terminal representations, including some derived from
the RAAM’s decoder network, to understand how the attractor principle can be exploited
to improve learning. The data set comes from a simple context-free grammar for a subset

of English, using five parts of speech:

S NPVP|NPV

NP — D AP | D N | NP PP
PP — P NP

VP — VNP |V PP

AP —s AAP | AN

From this grammar we extracted the following derivations for use as a training set, following
[73]:
(D (A (A (AN))))
(D N) (P (D N)))
(V (D N))
(P (D (AN))
(DN)V)
((BN) (V (D (AN))))
((D (AN)) (V (P (DN))))

We conducted the following four experiments on various subsets of this training set.

success in extending our ¢™b" hill-climbing method beyond formal languages.
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Corners Middle
RMS error | 0.119105 | 0.078502
Max error | 0.543962 | 0.277351

Table 6.1: Mean errors for corner and middle terminals. Differences are significant for max
error (p < .01), not for RMS error.

6.1 Extreme versus general terminals

Noelle et al. [67] provide a rather exhaustive study of a fully recurrent (Hopfield) network,
demonstrating the usefulness of “extreme” attractor targets from the perspective of learning
capacity, accuracy, and learning speed. They show that bit vectors — i.e., targets with points
in the extrema (corners) of the unit hypercube — yield better performance than general real-
valued vectors in all three respects 2.

To explore this issue in a RAAM context, we chose the subset of the training set con-
taining the terminals D, A, N, and V, so we could put one terminal in each corner. We
compared this configuration with one in which these terminals were located at a Euclidean
distance of 0.3536 from the corners; that is, at a distance of 0.25 from each axis. Starting
with 10 different initial random 4x2x4 networks, we trained each network for 10,000 epochs,
a number determined empirically by observing how many epochs it took for the error to

stop decreasing significantly.

6.1.1 Results

Table 6.1 reports the mean RMS and maximum errors (maximum over any pattern) for the
corner and “middle” terminal sets. As the table shows, both errors were higher for the corner
terminals than for the middle terminals, although the results are only statistically significant

(p < .01) for the max error means. Representative attractors are plotted in figure 6.1

2Their analysis of this results rests on the fact that a sigmoidal activation function has a maximum of
two stable fixed points
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Figure 6.1: Representative attractors for corner and middle terminals

6.1.2 Discussion

Our results disagree with those of Noelle et al., in that we found no significant benefit to
putting the terminals in the corners of the space, as far as the error was concerned. In fact,
our errors were lower for the terminals placed toward the middle of the space.

The most obvious explanation for this result is that RAAM, unlike the recurrent network
used by Noelle et al., uses general real-valued hidden-layer vectors, and not just the terminal
vectors, as targets, in order to represent non-terminal trees. Hence, RAAM is solving an

additional set of constraints, which may be considered to favor non-extreme values overall.

6.2 Moving versus fixed terminals

A focus of this thesis has been the advantages yielded by treating the RAAM decoder as a
dynamical system in which the terminals lie on the attractor. Hence, we might hypothesize
that learning would be facilitated by moving the terminals onto the attractor after each
training epoch, or some fixed number of training epochs, making the terminals into “moving

targets” like the non-terminals. This experiment tested that hypothesis.
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Fixed Moving
RMS error | 0.132947 | 0.016862
Max error | 0.428662 | 0.060375

Table 6.2: Mean errors for fixed and moving terminals. Differences are significant at p < .001.

Using the entire seven-phrase training set, we started with a random “dictionary” of
terminals dispersed throughout the unit square. As in the previous experiment, we started
with 10 different random 4x2x4 RAAM networks. For each such network, we compared the
errors obtained by leaving the terminals in a fixed position against the errors obtained by
moving each terminal onto the attractor point closest to it (measured as minimal Euclidean
distance) after every 100 training epochs. Conflicts (more than one terminal mapping to

the same attractor point) were resolved by putting terminals on the next-to-closest point.

6.2.1 Results

Table 6.2 reports the mean RMS and maximum errors for the fixed and moving terminal
sets. As the table shows, both errors were much higher for fixed terminals than for the
moving terminals. This is not the whole story, however: As Figure 6.2 shows, the very low
errors for the moving terminals were gained at the expense of a very small attractor onto
which all the terminals “collapsed” during training. Apparently, having all the terminals
on the same point or small set of adjacent points supported a “solution” in which all the
targets (including hidden-layer targets) were nearly identical. In other words, the error could

become arbitrarily low by having all targets be nearly the same.

6.2.2 Discussion

For a random set of RAAM decoder weights, the (pseudo-) contractivity of the decoder
transforms results in an attractor that is generally a small, uninteresting set of points. A

larger, more space-filling attractor can be obtained by hill-climbing, a Blind Watchmaker
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Figure 6.2: Representative attractors for fixed and moving terminals. Left side (fixed) shows
the configuration of the initial conditions for the moving terminals, which all end up in a
region near the point (0.2, 0.3) in the right-hand figure.

algorithm, or back-propagation to a fixed, dispersed terminal set, but unless there is some
such pressure on the system, contraction into a small set of points appears to be the default

behavior of the decoder.

Even with a dispersed target set, though, a two-dimensional network appears incapable
of learning a non-trivial test set like the one we used in this experiment. This result is not

surprising, given that Pollack [73] used ten-dimensional representation for this problem.

The point of these experiments was not, however, to replicate Pollack’s results on a much
smaller network, but rather to use the visualization afforded by a two-dimensional network
to discover useful properties of the learning problem based on the attractor principle. The
left-hand side of Figure 6.2 suggests that the learning algorithm is attempting to “cover”
the terminal set with the decoder’s attractor, and failing. Interpreting this two-dimensional
image as the projection of the attractor of a hypothetical, higher-dimensional network, we
can imagine a solution in which the terminals are much closer to each other along some

dimensions than others —i.e., a solution incorporating the features of both the moving- and
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fixed-target approaches to arrive at a low error without collapsing all the terminals into
a single, infinitesimal ball. The next experiment describes how we might develop such a

solution.

6.3 A hybrid approach

The dilemma raised by the previous experiment — low error with inadequately distributed
terminals versus distributed terminals with high error — relates to problems encountered in
other fields that use gradient-descent, and search methods in general. The weights discovered
by back-propagation on distributed terminals represent a local optimum in the weight space.
Simulated annealing [57] is a well-established approach to gradient-descent problems that
attempts to avoid such local optima by the addition of noise. The amount of noise decreases
with time, following an “annealing schedule” analogous to the cooling process for annealing of
metals and other materials. More recently, research in genetic programming has considered
innovative ways of dealing with the loss of diversity in a population [49], which can likewise
lead to local optima in the search space.

In this experiment, we borrowed ideas from both of these approaches. Specifically, we
kept as a goal the maintenance of spatial diversity in our terminal set, while also using a
schedule of parameter changes to avoid getting stuck in a local optimum. Starting with the
terminal set from the previous experiment, we trained a 4x2x4 RAAM on the entire seven-
tree training set, and moved the terminals onto the attractor only after the error leveled off.
This movement was done “by eye,” based on observation of the two-dimensional attractor

image, with a view toward keeping the terminals spaced out along the attractor.

6.3.1 Results

The mean RMS error for this experiment, computed over 10 random initial networks, was

0.08948. The maximum error was 0.303282. The useful comparison to make is with the
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Figure 6.3: Moving terminals onto the attractor by eye. (a) Attractor and terminals after
1000 back-prop epochs. (b) Terminals moved onto attractor points. (c) Attractor and

terminals after 10,000 epochs

corresponding means for the fixed-terminal networks from the previous experiment. For

both RMS and max error, the means for the current experiment were significantly lower (p

< .001).

6.3.2 Discussion

The results of this experiment strongly support the usefulness of the attractor-as-terminal

concept first discussed in Chapter 3. Moving the terminals onto the attractor on an “anneal-

ing schedule” supports diverse terminals as well as significantly lower errors, as compared

with permanently fixed terminals of the sort used by Pollack in his original RAAM experi-

ments.

However, the errors reported in the present experiment are still much too high to support

successful decoding of the trees in the training set. Furthermore, the approach taken here

requires human supervision not just for monitoring the error decrease, but also for moving

the terminals onto the attractor. The following section describes how these problems may

be overcome.
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6.4 Scaling up with a “pseudo-attractor”

The most common way to deal with intolerably high error rates in a neural network is to
add more hidden units. Unfortunately, for our IRAAM network, this means increasing the
dimensionality the attractor to be computed. The ATTRACTOR algorithm of Chapter 3,
which samples the entire unit square at S x .S pixels, rapidly becomes impractical as we move
to the unit cube, the unit hypercube, etc.: for D dimensions, the number of such pixels in-
creases exponentially as S”. This leaves us in the position of either abandoning the attractor
principle when using higher-dimensional networks, or devising a way of approximating the

attractor that will scale up more readily.

One possible way to overcome this “curse of dimensionality” [5] would be to approximate
the attractor by decoding each tree to its terminals, and using this decoded set of terminal
points as the attractor. In this approach, each terminal will have a point (vector) for every
place that it appears in a tree in the training set. The mean of each such set could then
be used as the attractor point to which the terminal should be moved, once the error fails
to drop significantly during training®. Given that the “true” attractor is by definition the
set of points to which all non-terminal tree vectors eventually decode, this approach can be

seen as an attempt to focus on the subset of trees that we are interested in learning.

To explore this possibility, we trained networks of two, four, and eight dimensions on
our seven-phrase English-grammar data set*. Starting with randomly distributed terminals,
we trained each network for 10,000 epochs, moved the terminals onto the pseudo-attractor,

and trained for another 10,000 epochs, repeating until the error bottomed out.

3Using the mean is equivalent to putting an epsilon ball around the set of points and computing the
centroid of the ball

“Given that Pollack [73] was able to learn this training set with a ten-dimensional network using fixed
terminals, it made little sense to go beyond that number of dimensions in the present experiment.
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Figure 6.4: Terminals on “pseudo-attractor,” with actual attractor in background.

6.4.1 Results

The main result of this experiment was that by trying different random initial dictionaries
and networks, we were able to obtain an eight-dimensional solution to the problem of learning
and decoding the seven syntactic trees. This compares favorably with the 10-dimensional
solution reported by Pollack [73] for the same problem using a fixed terminal dictionary.
We found two noteworthy phenomena in this experiment. First, as shown for the two-
dimensional example of Figure 6.4, the pseudo-attractor points tended to fall on or near
the “true” attractor of the RAAM decoder. Second, as suggested by this figure, success
in decoding depended largely on there being enough distance between terminals to avoid
confusion between one terminal and another. In general, the more successful networks had

a larger average Fuclidean distance between terminals.

6.4.2 Discussion

This experiment further validates the attractor-as-terminal approach, by allowing us to use

smaller networks than in the fixed-terminal examples. It also points toward an even more
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radical version of RAAM, in which not just the non-terminal representations, but also the
terminal representations, are “moving targets,” albeit at a much slower rate. Finally the
possibility (or even desirability) of learning with real-valued terminal vectors instead of one-
in-N codes or other “extreme” representations, opens the door to interaction between RAAM
and variety of of recent semantic models that use such vector representations®.

In conclusion, the results in this chapter are a successful validation of the IFS interpre-
tation of RAAM. Using the IFS attractor provides significantly lower error rates in learning,
when compared to the use of (arbitrary) bit string terminal representations. This result
held in even the one “failed” experiment, in which automatic movement of terminals onto
the attractor resulted in a lack of distinction among terminals (a result that we had not
anticipated). That result suggests, however, that a separate principle is needed to initialize

and/or maintain the terminal vectors during learning. Our final chapter concludes with a

proposal for how that might be accomplished.

5We provide a few examples of such models in our final chapter.
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Chapter 7

Application: A Neurally Plausible

Language of Thought

This chapter presents examples of our application of the IRAAM model to selected prob-
lems in cognitive science. Our goal here is not to convince the reader of the usefulness or
desirability of the model as a practical technology for real-world AI problems. Instead, we
aim to illustrate how TRAAM provides a principled, general connectionist basis for cognitive
representations, and to do this by applying the model to problems that have traditionally

been considered the exclusive domain of symbolic rule-based approaches.

7.1 Background: Unification

Unification, a pattern-matching algorithm popularized by Robinson [82] as a basis for au-
tomated theorem-proving, is at the core of logical programming languages like Prolog, as
well as a number of recent models of natural language [98]. The basic unification algorithm
can be found in many introductory Al textbooks (e.g., [81] p. 152), and can be summarized

recursively as follows:

73
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(1) A variable can be unified with a literal.

(2) Two literals can be unified if their initial predicate symbols are the same and

their arguments can be unified.

If, for example, we have a Prolog database containing the assertion male(fred), meaning
“Fred is male”, and we perform the query male(Who), asking “Who is male?” the unifica-
tion algorithm will first attempt to unify male(fred) with male(Who), and will succeed in
matching on the predicate symbol male, by rule (2). The algorithm will then recur, at-
tempting to unify the variable Who with the atomic literal fred, and will succeed by rule (1)
and terminate, with the result that Who will be bound to fred, answering the query.
Looked at another way, unification amounts to answering the question “does this tree
appear in the current database?”! or “can this tree be generated as a derivation in the
current grammar?”’ From the perspective of an IRAAM, these questions can be expressed
as follows: For a particular set T' of network transforms, a pixel resolution S, a number of
address digits N, and a given tree T over the N-digit addresses, does the tuple <T,5,N>

encode 77

7.2 Unification as intersection of inverses

To understand how an IRAAM provides an efficient model of the unification algorithm, re-
call the IRAAM encoder definition from Chapter 3: the encoder is simply the mathematical
inverse of the decoder. For example, to determine the code (equivalence class of vectors)
for a tree (A (B ()), we take the set of attractor points whose address is A, compute their

left inverse?, take the attractor points whose address is B, compute their right inverse, in-

!Prolog terms have a natural interpretation as trees, with the functor at the root and the arguments in
the branches (c.f. [9], p-33)

2Because the inverse transforms are expansive, we cannot simply compute the bijective inverse transfer
function on this set of points, which would give us only a subset of the actual inverses. Instead, for a given
point, we compute the set of points that go to that point on the given transform, and store this set as the
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tersect these two inverses, and remove from this intersection any points that are also on the
attractor. This gives the points for the tree (B (). Taking the right inverse of these points,
intersecting this inverse with the left inverse of the attractor points for A, and removing
points also on the attractor, gives us the points for the target tree (A (B C)). If this set of
points is empty, the answer to our query is negative; otherwise, it is affirmative. In general,
for a given tree 7, IRAAM <T,S,N> , and its addressed attractor A, the following algo-

rithm returns the points in the (possibly empty) “unification set” of 7
Y b Yy pty

UNIFY(T,T, A, S, K)

1 if IS-TERMINAL(T)

2  then V <+ TERMINAL-VALUE(T)

3 < i,j >< POINTS-W ITH-VALUE(A, V)
4 return A_; ;>

5 else B + ONES-MATRIX(S x S)

6 fork+1to K

7 do U <+ BRANCH(T,k)

8 C «+ UNIFY(U,T,A,S,K)
9 C+ T;1(C)

10 B+~ BAC

11 return B— A

point’s inverse. This need only be done once for each transform, after which the inverses are stored in a
lookup table.
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The function POINTS-WITH-VALUE(A4,V) in line 3 returns all and only those tuples
<1, j> such that A; ; = V. This is how the points corresponding to a terminal tree (the
base-case of the recursion) are computed. For non-terminal trees, line 5 initializes the points
to the entire unit square, and reduces this set by recurring on the branches of the tree (lines
7,8) and intersecting with the inverses of the points corresponding to the branches (lines
9,10). Line 11 removes the attractor points from the non-terminal points thus computed.

A couple of aspects of this unification algorithm merit comment. First, far from being
a connectionist “implementation” of an existing classical algorithm [36], IRAAM unification
is an entirely novel approach to modeling this sort of “rule-governed” phenomenon without
explicit Tules, or the intermediary representation of a Turing machine or other traditional
architecture [99]. Furthermore, the basic operations of our algorithm (inversion and intersec-
tion) are inherently parallelizable, a feature that has been cited as one of the main appeals
of connectionist models [62].

Second, the algorithm returns not just a yes-or-no truth value, but a set of equivalence-
class regions representing partitions of the unit square. By computing the area of these
partitions, it is possible to represent truth values as intermediate between zero and one.
These “grayscale” values lend themselves naturally to an interpretation as degree of belief
or grammaticality [54], corresponding more closely to our intuitions about the non-discrete

nature of such phenomena.

7.3 Application to a Language of Thought

As discussed in earlier chapters, Fodor’s “Language of Thought” view has been the domi-
nant paradigm in cognitive science over the past quarter century, reflected in the artificial
intelligence community by the popularity of logic-programming languages such as Prolog
[18]. Though not committed to any particular formalism, Fodor has argued for a rules-

and-representations approach in the spirit of Prolog, using discrete symbolic representations
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that are manipulated by structure-sensitive rules. As noted in Chapter 2, he sees this view
as fundamentally at odds with connectionism, based on the latter’s putative inability to
build systematic, compositional representations and operate on those representations in a
meaningful way [34]. Given the ability of our IRAAM model to perform rule-like operations
(such as unification) without explicit rules, we consider IRAAM to be a viable candidate for

addressing Fodor’s objections to connectionism.

7.3.1 A simple example

To see how the IRAAM unification model addresses Fodor’s objections, we consider a simple

example of a Prolog database containing the following assertions and rule: 3

gender (fred, male).

married(fred, wilma).

(resents(barney, (married(fred, wilma)).
husband (Y, Z) :- male(Y), married(Y, Z).

jealous(X, Y) :- resents(X, married(Y, Z)).

Ignoring the husband and jealous rules for the time being, we can represent the facts in

this database using ternary trees, as follows:

(gender fred male)
(married fred wilma)
(resents barney (married fred wilma))

Starting with a random 2D dictionary, we trained a 6x3x6 RAAM network to represent

3Prolog uses rules in Horn clause form, with implicit universal quantification, upper-case letters for
variables, and lower-case letters for constants. Hence, the rule shown here corresponds to the predicate
calculus formula Vz,y gender(z,male) A married(z,y) — husband(z,y).
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these three trees, using the moving-terminals-by-eye technique described in the previous
chapter. We ran 5000 training epochs, moved the terminals onto the attractor, and ran
5000 more epochs, to an RMS error of approximately .003. This yielded the attractor shown
in the left side of Figure 7.1. As a representation of the terminal “dictionary,” an epsilon ball
with a radius of 0.05 was put around each point, resulting in the map shown in the right
side of the figure.

With the decoder weights and attractor dictionary thus obtained, we can now use the
IRAAM unification algorithm to query the database, as we would in Prolog. Consider, for
example, the simple interaction:

| ?- gender(fred, male).

yes

| 7-

Prolog answers this query in the affirmative by searching through the database and find-
ing an assertion that unifies with the query. In IRAAM, the query corresponds to finding
the unification set of the tree (gender fred male) — in other words, finding a region of

space corresponding to the set

Ty (G(gender)) A Ty '(G(fred)) A Ty(G(male))

where G is the “symbol grounding” function that returns the set of points corresponding to
the named terminal symbol 4. As shown in Figure 7.2, this set is non-empty, so the answer
to the query is affirmative.

In addition to returning a yes or no answer, Prolog’s unification algorithm will return

all possible bindings of a variable if the answer is affirmative:

| ?- married(fred, Who).

“This function was called POINTS-WITH-VALUE in the UNIFY algorithm.
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Figure 7.2: Terminals, inverses, and intersection for the query gender (fred, male)

Who = wilma
yes
The TRAAM version of variable binding consists of four steps:
1. computing the inverses of the constants in the query (married, fred)
2. computing the intersection of these inverses
3. taking the appropriate forward transform of that intersection
4. determining which (if any) terminal regions intersect with the region computed in (3)

Of course, the power of a logic-programming language like Prolog comes from its ability
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Figure 7.3: Computing the answer to the query married(fred, Who). Intersection (c) of
inverses (b) of married and fred (a) is put through third forward transform, which intersects
the region for wilma, answering the query (d).

to do rule-based inference. For example, if we issue the query husband (Who, wilma), Prolog

will perform the following sequence of actions:

1. Unify the head of the rule husband(X, Y) :- gender(X, male), married(X, Y)

with husband (Who, wilma), resulting in the sub-goals gender (X, male) and married(X, wilma).

2. Unify the sub-goal gender (X, male) with the given gender (fred, male), resulting

in the binding X = fred

3. Unify the sub-goal married(X, wilma) with the given married(fred, wilma), re-

sulting in the binding X = fred

4. Verify the consistency of the bindings X = fred, X = fred, terminating with a return

value of yes, and the binding X = fred.

As shown in Figure 7.4, the IRAAM version of sub-goal conjunction is intersection of the
relevant spatial regions. Not surprisingly, disjunction would be implemented by union of the
regions.

A distinctive feature of the IRAAM language-of-thought model is its a ability to answer

queries involving embedded structure. Consider for example the query “Of whom is Fred
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Figure 7.4: Computing the answer to the query husband(Who, wilma). Intersections (c)
of inverses (b) of married,wilma and gender,male (a) are put through second forward
transform; these forward-transformed regions intersect in the region for fred, answering the

query (d).

jealous?” Handling this query involves the relation between an element in a tree and an
element in a tree nested inside that tree: (resents barney (married fred wilma)). In
the TRAAM model, this query corresponds to the operations
T2(T3(T (G (resents)) A Ty '(G(barney))) A Ty (G(married)))

That is, we take the set of things that Barney resents, then intersect this set with the set
of propositions about who is married, and finally find the items in the second slot of the
married predicate to obtain the set of things of which Barney is jealous — in this case,
Fred. These operations are somewhat cumbersome to show as figures, but are nevertheless

straightforward to implement in the model.

A few remaining points deserve comment. First, we observe that the failure to find
a unification set corresponds to a negative answer to a query: as in Prolog, we assume
a “closed world” in which anything not provably true is considered false. Such a failure
is illustrated in Figure 7.5, for the query married(barney, Who), in which the lack of an
assertion about Barney’s being married corresponds to a failure of married to unify with

barney 5. Second, unlike Prolog, our IRAAM language-of-thought model can just as easily

% Apologies to Flintstones fans who know that Barney is married to Betty.
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o barney

married

Figure 7.5: Query failure by absence of intersection.

perform queries on functors as on their arguments, allowing us to ask, for example, “What
is true of Fred?”® Third, it should be clear that we are not interested in modeling the full
(Turing equivalent) recursive functionality of Prolog. Our model is designed to capture the
part of the language’s functionality relevant to the concerns of Fodor and others, not to

provide a general programming mechanism.

7.3.2 Discussion

In calling our IRAAM language-of-thought application “neurally plausible,” we do not pur-
port to offer a concrete model of the way that real brains or nervous systems actually perform
reasoning and deduction. We aim, rather, to suggest a way in which real brains and nervous
systems might do these sorts of things, using the sorts of representations and operations
that we have presented in detail.

The boldest implication of our model — that mental representation is fractal — remains to
our knowledge untested. Nevertheless, the essential features of IRAAM — recurrent connec-
tions, dynamical computation, and spatial clustering of related representations (predicates

in one part of the space, arguments in the other) — have received considerable support from

A recent implementation of Prolog [89] comes with a “Hilog” feature, supporting these sorts of second-
order operations.
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experimental neuroscience *

Independent of these issues, however, is the extent to which our model has dealt with
the problems pointed out by Fodor. Summing up, we agree with Fodor [34] that (despite
some connectionists’ assertions to the contrary), “there still must be a language of thought.”
Like Fodor, we believe that this LOT consists of structured representations and operations
sensitive to them. We disagree, however, that the LOT cannot be connectionist. We hope

to have convinced the reader that it can, not just implementationally, but fundamentally.

"though the controversy associated with each of those three properties increases in the order that we
have listed them. Churchland and Sejnowski [17] state with confidence that “Our brains are dynamical, not
incidentally or in passing, but essentially, inevitably, and to their very core.” But claims about localization
of brain function and representations, ostensibly supported by studies using electrical potentials [78] and
PET and functional MRI imaging techniques [75], have come under attack recently [110].
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Chapter 8

Conclusions

1 wonder: if enough of this sort of data were crunched through a computer, would
we begin to be able to model language in terms of complex dynamical systems?
Grammars then would not be "innate,” but would emerge from chaos as spon-
taneously evolving "higher orders,” in Prigogine’s sense of "creative evolution.”
Grammars could be thought of as "Strange Attractors,” ... patterns which are
"real” but have "existence” only in terms of the sub-patterns they manifest. If
meaning is elusive, perhaps it is because consciousness itself, and therefore lan-
guage, s fractal.... I find this theory more satisfyingly anarchistic than either
anti-linguistics or Chomskyanism. It suggests that language can overcome repre-

sentation and mediation, not because it is innate, but because it is chaos.

— Hakim Bey, “Chaos Linguistics” [7]

8.1 Summary

We began this thesis by enumerating the necessary conditions of any system claiming to be
a model of cognitive processes: the system must be able to (1) compose structured repre-

sentations over a set of atomic primitives, (2) relate these representations in a systematic
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way, and (3) be capable (in principle at least) of infinite generalization over the representa-
tions. We presented Pollack’s RAAM, an encoder/decoder model of hierarchical structure,
as a candidate solution to (1) and (2), and described its shortcomings with respect to (3).
The main contribution of this thesis was showing how a dynamical-systems understanding
of the RAAM decoder — notably, the use of its attractor as the set of atomic primitives —
provides a principled solution to (3). We also showed how this interpretation of RAAM,
dubbed Infinite RAAM, allows us to reason geometrically about grammatical processes like
unification, which have heretofore been considered as mainly or exclusively the domain of

recursive symbol systems.

A second contribution of this work was to offer a principled alternative to Chomsky’s
competence/performance perspective on the knowledge of language [14]. Under that view,
a given language community shares the same competence grammar; the empirical phenom-
ena of actual language use (individual differences, slips of the tongue, misunderstandings)
are attributed to a distinct performance component, which can vary from person to per-
son. The alternative offered in this thesis is to view both competence and performance as
manifestations of a single underlying (dynamical) system. Observed with enough of a “fuzz
factor” (finite precision) this system behaves as if it were following a small set of discrete
symbolic rules [94], but we cannot consider the system to be literally following these rules

in the Chomskyan sense !

. Further, just as there were several 12-weight solutions to the
a™b™ problem, it is not only the performance, but also the competence, that is (potentially)
represented in a different way for each language user. The correspondence we found in those
results between simple, general grammar rules and linear dynamical behavior, suggests that
the exceptionless, rule-based grammars proposed by Chomsky and others may correspond

to an extreme or pathological dynamical regime. In other words, real language may be

fundamentally chaotic.

'In this respect our work instantiates what Horgan and Tienson have called the “Representations without
Rules” approach [46]
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We do not offer this work, in its present form, as any kind of useful artifact for solving
real problems in artificial intelligence. Our examples have been intentionally simple, using
small two-dimensional networks for reasons both practical and pedagogical. Computing
the attractor of these networks is relatively straightforward with existing software for two-
dimensional sparse matrix computations, and the attractor and tree equivalence classes are
easily visualized in two dimensions. Instead, we hope to have illustrated a principle by which
a neural network may satisfy the traditional cognitive science objections to connectionism.
Unfortunately, many earlier attempts at addressing this issue have suffered from overly
simplistic assumptions that enabled them to be defeated as straw-man arguments [36][35].
Though we cannot claim to have resolved this fundamental debate, we hope to have nudged

it in what we perceive as the right direction.

8.2 Future work

We can envision at least two directions for Infinite RAAM.

8.2.1 Higher-dimensional attractor networks

The error reduction gained from moving terminals onto the attractor, the apparently lim-
ited capacity of two-dimensional networks to learn non-trivial training sets using back-prop,
and the inability of the pseudo-attractor method to generate attractor points beyond those
in the terminal set, all point out the desirability of computing the full attractor in higher
dimensions. As we noted in Chapter 8, the exponential complexity of computing a high-
dimensional attractor forces us to abandon any method which samples the entire unit hy-
percube as an initial condition for the iterative attractor computation.

Note however that by definition the attractor is the “fixed set” of the iterated function
system (IFS) represented by the RAAM decoder. This means that once we have determined

that a point is “on” the attractor (at some fixed resolution), we are guaranteed that any
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further applications of the IF'S transforms to that point will result in points that are also on
the attractor. Applying the IFS transforms to these points will likewise yield (other) points
on the attractor, until no new points are generated. Furthermore, we know that successive
applications of the IFS transforms will always “take” us to the attractor after some finite
(and typically small) number of random applications, no matter where in the hypercube we
start. Therefore, we can approximate the attractor by starting at a random point, iterating
a random sequence of IFS transforms some fixed number of times to “land” on the attractor,
and then generating the transitive closure (orbits) of this point. The following algorithm
accomplishes this, using 25 random iterations to land on the attractor, and computing the

transitive closure via breadth-first search:
FAST-ATTRACTOR(T, S, K, D)

1 x + RANDOM - POINT(D)

2 for i+ 1to 25

3 do k + RANDOM-INDEX(1, K)

4 x  Ti(x)

5 Ajew ¢ X

6 Ayg+ 0

7 while A, g # Anew

8 do Ay ¢+ Anew

9 fork+ 1to K

10 do Apew ¢ Apew U Tk (Anew)

11 return A,
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Lines 1-4 of this algorithm find an arbitrary point on the attractor. Lines 7-10 use breadth-
first search to take the transitive closure of this point until no new attractor points are
generated. Though the algorithm can in principle “miss” some attractor points by landing
on a small sub-orbit of the attractor, such degenerate cases can be detected, making FAST-
ATTRACTOR as good an approximation to the attractor as the original ATTRACTOR
algorithm of Chapter 3.

Unlike ATTRACTOR, however, FAST-ATTRACTOR, does not compute the IFS trans-
form of every pixel. This means that our UNIFY algorithm will not be able to exploit the
one-to-many inverse mapping between a given point and the set of points that go to that
point on a particular transform. Therefore, UNIFY must compute the one-to-one inverse of

each point directly, using the formula
Ty M) = W~ (Ti(2)) — 0]

where f is the logistic-sigmoid squashing function, whose inverse is
f=Hz) = -In(1/z - 1)

The loss of the one-to-many mapping can be compensated for by a number of different
strategies, including the use of epsilon balls around the attractor points, and replacing
point-intersection with a minimal-distance metric.

Even with an efficient algorithm for computing high-dimensional attractors, we are still
left with the problem of how to compute intersections of inverses for the UNIFY algorithm of
Chapter 7. For two-dimensional networks, the intersection of two sets of points i/ and V can
be computed simply as the set of pixels that &/ and V have in common. As the dimensionality
of the network increases, however, it becomes easier for this method to “miss” points that
are close enough in hyperspace to be considered identical at a given resolution.

We foresee two ways out of this problem. The first is a geometric approach, using ex-

isting software for computing intersections of high-dimensional convex polytopes [112]. The
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Figure 8.1: Hypothetical hyper-dimensional unification on the tree (a b) using a stack of
operation history. Example is two-dimensional for ease of visualization; method is designed
to work in any number of dimensions.

second is a symbolic approach, in which we maintain a stack containing the “history” of the
operations (inverse transform, intersection, forward transform) performed on the terminal
points, with the latter represented as epsilon balls or bounding hyperspheres. Figure 8.1

portrays this method.?

8.2.2 Exploiting vector representations

As Pollack [73] points out, RAAM’s use of fixed-width vectors for representing structured
information opens up a variety of opportunities for using these representations in conjunction
with other vector-based cognitive approaches.

In the Latent Semantic Analysis model of word meaning [26], each word is represented as
a vector in high-dimensional space, based on its co-occurrence with other words in context.

Recently, Kintsch [55] has used a simple subject-predicate model to explore how LSA repre-

2Though such a method might be seen as undermining our geometric notion of unification by re-
introducing stacks and symbols, it would, like back-propagation [17], be a way of obtaining a result, rather
than an inherent property of the model.
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sentations can be combined to form sentential meanings. In particular, the model provides a
way of extracting the various senses of a particular predicate in the context of different sub-
jects. We can envision using IRAAM to extend this model beyond simple subject-predicate
relations (i.e., semantic trees of depth one), including relations like direct and indirect object

and adjunct, all of which can influence the interpretation of a given predicate.

Current work by Farkas and Li also seeks to model word sense relations, but with a
much lower-dimensional vector space. In their Growing Lexical Model, or GLM [31], these
researchers develop a recurrent neural network architecture that, unlike LSA and related
models, can acquire a lexicon that develops incrementally over time. Using co-occurrence
relations from a large corpus, the model inserts a new network node for each word learned,
laying out the nodes in a 2D topology. As shown in Figure 8.2, words with a similar sense or
syntactic category tend to cluster close together in the space®. This layout is very reminiscent
of our 2D TRAAM models, suggesting the possibility of using GLM representations as the
atoms of a low-dimensional TRAAM model. One interesting avenue to pursue would be to
show how an IRAAM network, having learned a set of trees over some subset of a GLM,
could generalize to other well-formed trees, based on the proximity of related lexical items

coincident with attractor points.

Finally, we envision IRAAM as a potentially important piece in the puzzle of providing
a fully connectionist account of natural language parsing and understanding. A good deal
of the controversy surrounding such endeavors has come from the interpretation of Simple
Recurrent Networks (SRN’s) as parsing models. Elman [30] showed that an SRN can be
trained to predict the next word in a sequence, which (as illustrated by our logical query
answering network in Chapter 9) is one feature of structured representations. Tabor and
Tanenhaus [108] employ a similar architecture, and use principle components analysis of

hidden unit vectors as a way of attributing grammatical categories to the states of the

31 thank Igor Farkas and Ping Li for providing this figure.
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Figure 8.2: Snapshot of a Growing Lexical Model. Labels and dots denote existing nodes.
Reproduced, with permission, from [31]

model.

In assessing this work, Steedman [103] argues for an interpretation of the SRN model as
a part-of-speech (POS) tagger rather than a parser. Like a standard N-gram POS tagger
[10], an SRN uses the context of preceding words to predict the category of the current
word, without assigning the words to locations in a parse tree. For this reason, suggests
Steedman, some other connectionist principle is needed to account for the structural semantic
relations that are only weakly implicit in the states of the SRN models. He cites RAAM
(and the Holographic Reduced Representations discussed in our Introduction) as a potential

candidate, adding that

The interesting point of a such a representation is that we might assume that
during training conceptual structures are available prelinguistically, and result
relatively directly from the structure of connections to the sensorium, short-term

memory, and the like.

We agree strongly with Steedman’s characterization of this issue, and see the integra-

tion of the SRN and IRAAM models as a potentially fruitful direction for future work *.

“Mayberry [61] presents a variant of an SRN that uses a traditional RAAM as a stack for parsing nested
relative clauses, but runs up against the problems associated with the traditional model. Berg [6] has trained
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Specifically, we can envision a model in which intonational contours ® and other physically
characterizable aspects of linguistic input can be used to guide a SRN through different
trajectories in a multi-dimensional IRAAM vector space. An integrated model of this sort
could be a significant first step toward a “grand unification” of the symbolic and connectionist

approaches.

a variant of RAAM called the XERIC network to parse sentences from large text corpora, and describes the
problems associated with decoding words using bit-string representations

Sas in Steedman’s ANNA married MANNY example [104], where a “marked” intonation signals type
raising
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Appendix A

Matlab classes

This appendix contains object-oriented Matlab code to support the experiments described
in the thesis. For each Matlab class, the user should create a directory named @class, and
copy-and-paste the code for the class into appropriately named files. Private methods for a
class should go into a directory named private under that class’s @Qclass directory.

For example:

% mkdir Q@raam
% mkdir @raam/private

The classes are:

@raam Original RAAM from Pollack 1990
@ifs Two-dimensional IFS RAAM decoder
@tree K-ary tree

@dict Dictionary to map from terminal strings to floating-point vectors

95
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A.1 RAAM class

File @raam/raam.m

function r = raam(k, d, seed)
% RAAM Class constructor for RAAM network.
%

APPENDIX A. MATLAB CLASSES

% RAAM(K, D) creates and returns a K-transform, D-dimensional RAAM
% object with random encoder and decoder weights.

h

% RAAM(K, D, SEED) allows you to specifiy a seed for the initial

% random weights, for reproducibility.

% empty constructor

if nargin ==
r.encw = [];
r.decw = [];
r.d = 0;
r.k = 0;
r = class(r, ’raam’);

% copy constructor
elseif isa(k, ’raam’)
r = k;

% default constructor
else

% total number of units in input (output) layer

nunit = k * d;

% create initial random weights with biases

if nargin > 2, randn(’seed’, seed), end
r.encw = randn(nunit+1, d);
r.decw = randn(d+1, nunit);

r.d = d;
r.k = k;

r = class(r, ’raam’);

end
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File @raam/learn.m

function r = learn(r, targs, dict, eta, mu, niter)

% RAAM/LEARN Learn trees using RAAM backprop algorithm.

h

h R = LEARN(R, TREES, DICT, ETA, MU, NITER) uses RAAM backprop with

% fixed dictionary to compute encoder end decoder weights from RAAM
h object R. TREES should be a cell array of tree structures. DICT
h is a hash table dictionary of learned terminal symbols and their

A values.

% report error at after this many iteratiomns
REPORT = 100;

% reset last-iteration weight-changes for momentum
dwencl = zeros(size(r.encw));
dwdecl = zeros(size(r.decw));

% get all subtrees

subs = {};

for j = 1:size(targs, 2)
nonterms = subtrees(targs{jl});
for k=1:size(nonterms,?2)

subs{end+1} = nonterms{k};

end

end

% partition into terminal and non-terminal subtrees
nonterms = {}; terms = {};
for j = l:size(subs, 2)
t = subs{j};
if is_term(t)
terms{end+1} = show(t);
else
nonterms{end+1} = t;
end
end

% bozo filter for wrong arity
for j = 1:length(nonterms)
nonterm = nonterms{j};
k = arity(nonterm);
if k¥ "= r.k
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error([’Arity mismatch between tree (’ num2str(k) ’) and network (’
num2str(r.k) ?)’])
end
end

% these are the patterns to be learned
npat = size(nonterms, 2);

% convert patterns to strings

for j = 1:size(nonterms, 2)
nonterms{j} = show(nonterms{j});

end

% uniquify strings
nonterms = unique(nonterms);
terms = unique(terms);

% put indices into trees, for optimizing tree-vector compuation
for j = 1:size(targs, 2)

targs{j} = index(targs{j}, nonterms);
end

% train for specified number of iterations
for i = 1:niter

% reset weight changes, RMS error, tree codes table
dwenc = zeros(size(r.encw));

dwdec = zeros(size(r.decw));

rmserr = zeros(l, r.k*r.d);

maxerr = 0;

% compute codes for all trees
codes = zeros(npat, r.k*r.d);
for j = 1:size(targs, 2)
codes = encode_branches(r, targs{j}, dict, codes);
end

% set up null errors array for memoizing
errors = cell(1l, npat);

% loop over trees, accumulating weight changes
for j = 1:size(targs, 2)
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[dwenc, dwdec, rmserr, errors, maxerr] = ...
learn_tree(r, targs{j}, dwenc, dwdec, rmserr, codes, errors, maxerr);
end

% report error first time and at fixed intervals
if (i==1) | “mod(i, REPORT)

% report RMS error, max error
rmserr = sqrt(sum(rmserr)/(length(rmserr)*npat));
fprintf (°%5d: %f %f\n’, i, rmserr, maxerr)

end

% average error derivative over patterns
dwenc = dwenc / npat;
dwdec = dwdec / npat;

% update weights
[r.encw,dwencl] = update_weights(r.encw, eta, mu, dwenc, dwencl);
[r.decw,dwdec1] update_weights(r.decw, eta, mu, dwdec, dwdecl);

end

File @raam/encode.m

function e = encode(r, t, dict)

% RAAM/ENCODE retrieve hidden-layer encoding for tree using RAAM encoder.
A

% E = ENCODE(R, T, DICT) returns hidden-layer encoding E of tree T

h using RAAM R and dictionary DICT.

% get input pattern vector for tree branches
[codes,pat] = encode_branches(r, t, dict, [1);

% forward-pass to hidden layer
e = forward(pat, r.encw);
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File @raam/decode.m

function t = decode(r, code, dict, tol, ttest)
% RAAM/DECODE decode tree using RAAM decoder
yA

% T = DECODE(R, CODE, DICT, TOL, TTEST) returns tree T decoded by
yA RAAM R using dictionary DICT with tolerance TOL and terminal-test

% function named TTEST.

% terminal test returns terminal on success, null on failure
s = feval(ttest, r, code, tol, dict);

% terminal: stop
if “isempty(s)
t = tree(char(s));

% non-terminal: recur
else
actout = forward(code, r.decw);

for k = 1:r.k
trans = actout(r.d*(k-1)+1:r.dx*k);
branches{k} = decode(r, trans, dict, tol, ttest);
end
t = tree(branches);
end

File @raam/private/update_weights.m

function [w,dwl] = update_weights(w, eta, mu, dw, dwl)
% generic weight update with learning rate ETA and momentum MU

W = w + etaxdw + muxdwl;
dwl = dw;
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File @raam/private/learn_tree.m

function [dwenc, dwdec, rmserr, errors, maxerr] = ...
learn_tree(r, t, dwenc, dwdec, rmserr, codes, errors, maxerr)
% recursively learn encoder, decoder weight changes based on tree, memoized

% only learn from non-terminal
if “is_term(t)

% recur on children
for k = 1:r.k
[dwenc, dwdec, rmserr, errors, maxerr] = ...
learn_tree(r, branch(t,k), dwenc, dwdec, rmserr, codes, errors, maxerr);
end

% use memoized errors if available
index = get_value(t);
s = errors{index};
if “isempty(s)
dwd = s.dwdec;
dwe = s.dwenc;
errout = s.errout;

% otherwise, compute errors
else

% get input pattern vector for tree
index = get_value(t);

input = codes(index, :);

% this is what it means to be an autoassociator
target = input;

% forward-pass to hidden layer
acthid = forward(target, r.encw);

% forward-pass to output layer
actout = forward(acthid, r.decw);

% error on output layer
errout = target - actout;

% delta on output layer, using Alan Blair’s formula
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delout = (1 - target.*actout) .* (target - actout);

% error on hidden layer
errhid = delout * r.decw(l:end-1,:)7;

% delta on hidden layer via standard delta rule
delhid = errhid .* acthid .* (1 - acthid);

% compute error derivative on hidden->output weights
dwd = weight_change(acthid, delout);

% compute error derivative on input->hidden weights
dwe = weight_change(input, delhid);

% memoize errors
errors{index} = struct(’dwdec’,dwd, ’dwenc’,dwe, ’errout’,errout);

end

% accumulate weight change on hidden->output weights
dwdec = dwdec + dwd;

% accumulate weight change on input->hidden weights
dwenc = dwenc + dwe;

% accumulate RMS error, max error

rmserr = rmserr + errout.*xerrout;

if max(abs(errout)) > maxerr
maxerr = max(abs(errout));

end

end

File @raam/private/forward.m

function y = forward(x, w)
% forward propagation: vector X with bias time weights W followed by squashing

[x 1] * w;
1./ (1 + exp(-y));

< <
non
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File @raam/private/encode_branches.m

function [codes,pat] = encode_branches(r, t, dict, codes)
% get uncompressed vector code for tree branches

% if already memoized, just return code
if “isempty(codes)

index = get_value(t);

pat = codes(index, :);

if nnz(pat), return, end
end

% initialize
pat = [1;

% recur on branches
for k = 1:r.k
b = branch(t, k);

% terminal gets pattern directly from dictionary
if is_term(b)
subpat = lookup(dict, show(b));

% non-terminal gets pattern by recurring on branch
else
[codes,input] = encode_branches(r, b, dict, codes);
subpat = forward(input, r.encw);
end

% combine branch patterns into single pattern
pat(end+1l:end+r.d) = subpat;

end

% memoize
if “isempty(codes), codes(index,:) = pat; end

File @Qraam/private/weight_change.m

function dw = weight_change(a, d)

% weight change equals activation vector with bias, times delta vector

dw = [a 1]’ * d;

103
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A.2 TFS class

File @ifs/ifs.m

function r = ifs(w, s, f)
%IFS Class constructor for IFS RAAM decoder network.

h
h
b
h
h
h
h
h
h
b

h

IFS(W, S) creates and returns a IFS object from the

matrix W of IFS transform weights, using pixel resolution S.
Matrix W should have D+1 rows and K*D columns, where K is the
number of transforms and D is the number of dimensions (hidden
units) of the RAAM network

IFS(W, S, F) allows you to specify an output function F to
apply to the transforms. The default output function is the

logistic sigmoid function £(x) = 1 / (1+exp(-x)).

empty constructor

if nargin ==
r.w= [];
r.k =0;
r.s = 0;
r.cache = [];
r.f = [1;
r = class(r, ’ifs?);

h

copy constructor

elseif isa(w, ’ifs?’)

h

r=w;

default constructor

else

% default to logistic sigmoid output function
if nargin > 3

r.f =1f;
else

r.f = ’sigmoid’;
end

% extract transforms, their count
r.w = w;
r.k = size(w, 2) / 2;
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% store resolution
r.s = s;

% set initial condition, using square matrix for 2D
a = sparse(ones(s));

% normalize to (0,1)"2

ind = find(a);

[i j1 = ind2sub([r.s r.s], ind);
xy = [i-1 j-1]1 / r.s;

% run forward transform

xy = [xy ones(size(xy, 1), 1)]; % augment with bias "unit"
txy = xy * r.w; % multiply by weights

txy = feval(r.f, txy); % apply activation function

% cache transforms of each point
for k = 1:r.k

% discretize transforms
tij = fix(1 + r.s*txy(:, (k-1)*2+1:k*2));

% cache discrete transform
r.cache(k,:) = sub2ind([r.s r.s], tij(:,1), tij(:,2));

end

r = class(r, ’ifs’);

end

File @ifs/attractor.m

function a = attractor(r, n)
%IFS/ATTRACTOR IFS attractor of RAAM network decoder.

h
b
h
b
h
b

ATTRACTOR(R) returns the IFS "infinite iterations" attractor of the
2D decoder of RAAM network R. The attractor is an SxS sparse
matrix that can be displayed using SPY or PCOLOR

ATTRACTOR(R, N) restricts the number of iterations to N.

105
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% set initial condition, using square matrix
a = sparse(ones(r.s));

% pump-primer for loop
nz = 0;

% use fixed iterations, or "infinity" if unspecified
if nargin < 2

n = realmax;
end

% loop until fixed size or specified iterations
for i = 1:n

if nnz(a) == nz, break, end

nz = nnz(a);

a = condense(r, a, 1, r.k);
end

File @ifs/address.m

function b = address(r, a, h)
% IFS/ADDRESS address IFS attractor of RAAM decoder.
%

MATLAB CLASSES

% B = ADDRESS(R, A, H) uses H digits of "history" to label attractor
% A of decoder of IFS network R using Barnsley’s IFS addressing scheme.

% Returns labeled attractor B.

% reset original, using square matrix for 2D
b = sparse(zeros(r.s));

% build K~H copies of attractor
for i = 1 : power(r.k, h)

% follow one path along the derivation tree to make an address

j=1i-1;

for k=1 :h
path(k) = mod(j, r.k) + 1;
j = fix(j / r.k);

end

% condense the original attractor using the path
c = a;
for j = 1:length(path)
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c = condense(r, c, path(j), path(j));
end

% address the condensed copy (starts out as 1, so multiplication
% creates address)
¢ = ¢ * power(r.k, i-1);

% add the addressed copy into the original: overlapped points get
% sum of each part
b=b+c;

end

% set all attractor points to 1
a = spones(a);

File @ifs/trees.m

function [trees, a] = trees(r, a, n)

% IFS/TREES get trees from IFS attractor of RAAM network decoder.

h

% T = TREES(R, A, N) returns an MxK matrix of codes representing the
% M unique K-ary trees of depth N decoded by Ifs network R using

% attractor A. Tree for a particular code can be viewed using

% SHOWTREE.

h

% If N is unspecified, all decoded trees are returned.

h

% [T,B] = TREES(R, A) also returns matrix B containing indices into
% T, which for 2D decoders can be viewed with PCOLOR.

h

% get maximum value in attractor
nl = max(unique(full(a)));

% initialize trees array with zeros up through this value
trees = zeros(nl, r.k);

% default to all trees via "infinite" iterations
if nargin < 3

n = Inf;
end
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% loop to specified number of iterations
for i = 1:n

% find empty points in space
ind = find(a == 0);

% if none, we’re done
if isempty(ind), break, end

% get number of points this iteration
[i, j] = ind2sub([r.s r.s], ind);
m = length(i);

% preinitialize array
indices = zeros(r.k, m);

% build indices into tree array by transforming current empty points
for k = 1:r.k

indices(k,:) = a(r.cache(k,ind));
end

% append new trees to current

found = all(indices);

newtrees = indices(:,found);

newtreesl = newtrees’;

newtrees2 = unique(newtreesl, ’rows’);

index = size(trees,1) + getpos(newtrees2, newtreesl);
trees = [trees;newtrees2];

% update map using new tree indices
b = sparse(i(found), j(found), index, r.s, r.s);

a=a+b;

end
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File @ifs/unify.m

function b = unify(r, a, t)

h
h
h
b
h
b
h

h

IFS/UNIFY get points for tree using inverse IFS RAAM decoder.

B = UNIFY(R, A, T) uses the inverse of IFS RAAM decoder network R
to generate (possibly empty) sparse matrix B of points
corresponding to tree object T. A is R’s attractor. The encoder
generates tree points via intersection of inverses. A should
contain values corresponding to terminals in T.

terminal is encoded by attractor

if is_term(t)

h

% convert tree string to number
addr = str2num(char(show(t));

% return points at that address; special handling for 2D
[i,j] = find(a == addr);

b = sparse(i, j, 1, r.s, r.s);

non-terminal is encoded by intersection of inverses

else

% bozo filter for arity mismatch

if arity(t) "= r.k
error([’arity mismatch between tree ’ num2str(arity(t)) ’ and’
> RAAM ’ num2str(r.k)])

end

% start with full space
b = sparse(ones(r.s, r.s));

% unify over successive inverses
for k = 1:r.k
unify(r, a, branch(t, k));

¢ = invert(r, c, k);
b=D>b& c;
end

% remove attractor
b=D>b& "a;

end
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File @ifs/private/getpos.m

function pos = getpos(a, b)
% compute positions of rows of matrix A within matrix B.

for i=1:size(b,1)
pos(i) = find(all((a ==(ones(size(a,1),1)*b(i,:)))?));
end

File @ifs/private/condense.m
function a = condense(r, a, kbeg, kend)

% run one iteration of the IFS roder "copy" machine on image A

ind = find(a);

a = sparse(zeros(r.s));

for k = kbeg:kend
[i, j] = ind2sub([r.s r.s], r.cache(k, ind)’);
a =a | sparse(i, j, 1, r.s, r.s);

end

File @ifs/private/invert.m
function b = invert(r, a, k)

% compute Kth inverse of image A under IFS R

% start with all zeros
b = sparse(zeros(r.s, r.s));

% find where cached transform points equal points in A
map = find(ismember(r.cache(k,:), find(a)));

% set inverse matrix at those points to 1
b(map) = 1;

File @ifs/private/sigmoid.m

function fx = sigmoid(x)
% logistic sigmoid squashing function

% avoid overflow
EPSILON = 1e-6;

fx = min(1 ./ (1+exp(-x)), 1-EPSILON);
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A.3 Tree class

File @tree/tree.m

function t = tree(s)
% TREE Tree class constructor.

h

% TREE(s) creates a tree object from the string representation S. For example

%
v >t = tree(’(a (b ¢ d))?)
%

% creates a tree whose left branch is the terminal ’a’, and whose
% right branch is a tree whose terminals are ’a’, ’b’, and ’c’.

h

% TREE({B1,B2,...,Bn}) creates an N-ary tree from branches Bl,...,Bn:

h

% >> t = tree({tree(’a’), tree(’(b c d)?)})

% empty constructor

if nargin ==
t.value = [];
t.branches = [];
t = class(t, ’tree’);

% copy constructor
elseif isa(s, ’tree?)
t = s;

% construct from subtrees
elseif iscell(s)
t.value =[];
for k = 1:1length(s)
t.branches{k} = struct(s{k});
end
t = class(t, ’tree’);

% default string constructor

else
t = tree_from_string(stripws(s));
t = class(t, ’tree’);

end
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File @tree/arity.m

function r = arity(t)
% TREE/ARITY ARITY(T) returns the arity (number of branches) of tree T.

if is_term(t)

r =0;
else

r = size(t.branches, 2);
end

File @tree/branch.m

function b = branch(t, n)
% TREE/BRANCH BRANCH(T, N) returns Nth branch of tree T.

% bozo filters
if is_term(t)
error ’tree is terminal?’;
elseif n > arity(t)
error ’branch number exceeds arity’;

else

b = t.branches{n};

b = class(b, ’tree’);
end

File @tree/front.m

function s = front(t)
% TREE/FRONT FRONT(T) returns the string at the frontier of tree T.

% terminal gets converted to string (may be a number)
if is_term(t)
s = num2str(t.value);

% recur on non-terminal
else
s = 77;
for i = 1:arity(t)
s = [s, front(branch(t, i))];
end
end
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File @tree/index.m

% TREE/INDEX index a tree using a sorted cell array of subtree strings
function t = index(t, s)

if “is_term(t)
t.value = strmatch(show(t), s, ’exact?);
for k = 1l:arity(t)
t.branches{k} = struct(index(branch(t,k), s));
end
end

File @tree/is_term.m

function yn = is_term(t)
% TREE/IS_TERM IS_TERM(T) returns O if tree T branches, 1 otherwise.

yn = isempty(t.branches);

File @tree/show.m

function s = show(t)
% TREE/SHOW SHOW(T) returns the string representation tree T.

% terminal gets converted to string (may be a number)
if is_term(t)

s = num2str(t.value);

% recur on non-terminal

else
s = 7(7;
for i = 1l:arity(t)

s = [s, show(branch(t, i))];
if i < arity(t)
s =[s, ? ’];
end
end
s = [s, 7)’];
end
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File @tree/get_value.m

function v = get_value(t)
% TREE/GET_VALUE GET_VALUE(T) returns object (string, vector) from tree.

v = t.value;

File @tree/subtrees.m

function subs = subtrees(t)
% TREE/SUBTREES Returns cell array of all unique subtrees of tree
% (including tree itself)

subs
subs

{};

subtrees_r(t, subs);

File @tree/private/subtrees_r.m

function subs = subtrees_r(t, subs)
% tail-recursive subtree computation

subs{end+1} = t;

% only care about non-terminals
if “is_term(t)

for k = 1l:arity(t)
subs = subtrees_r(branch(t, k), subs);

end

end
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File @tree/private/tree_from_string.m

function t = tree_from_string(s)
% recursively build tree structure from string representing tree

% terminal

if “ismember(’(’, s)
t.value = s;
t.branches = {};

% non-terminal
else

% initial conditions: empty stack, start after first paren, no subtrees
pty p
t.value = [];

stack = 0;
last = 2;
r =1;
i=2;

% loop over characters between parens
while i < length(s)

% current character
c = s(i);

% use stack counter to track sub-trees

if ¢ = (
stack = stack + 1;
elseif ¢ == ?)°
stack = stack - 1;
end

% on empty stack, build a branch by recurring on subtree
if stack ==

while s(i) = .7 & s(i) "= (> & s(i) "= ?)?, i =1 + 1; end

if s(last) == ’(°
curr = i;
else

curr = i - 1;
end
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ssub = s(last:curr);

t.branches{r} = tree_from_string(ssub);
r=r + 1;

last =1 + 1;

end
i=1i+1;
end
end

File @tree/private/stripws.m

function t = stripws(s);
% strip whitespace (blanks and tabs) from string, replacing between-
% terminal whitespace with period: ’(a (b ¢))?’ ==> ’(a(b.c))’

interm = O;
j=1;

for i = 1:length(s)

c =8(i);
switch ¢

case {°(’, %)’}
t(j) = c;
j=3+1;
interm = 0;

case {’ 7, ’\t’}

if interm
t(3) = .7
j=3+1;
end

interm = 0;

otherwise
t(j) = c;
j=i+;
interm = 1;
end
end
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A.4 Dictionary class

File @dict/dict.m

function d = dict
% DICT Class constructor for dictionary object

d.table = struct(’dummy’, 0);
d = class(d, ’dict?);

File @dict/enter.m

function d = enter(d, k, v)
% DICT/ENTER D = ENTER(D, K, V) put V into dictionary D, keyed by K

key = fixkey(char(k));

d.table = setfield(d.table, k, v);

File @dict/lookup.m

function v = lookup(d, k)
% V = LOOKUP(D, K) returns entry keyed by K in dictionary D

k
v

fixkey(char(k));
getfield(d.table, k);

File @dict/show.m

function show(d)
% SHOW(D) displays contents of dictionary D

names = fieldnames(d.table);

if length(names) == 1, ’empty’, return, end

table struct (names{2}, lookup(d, names{2}));
for i = 3:size(names,1)

table = setfield(table, names{i}, lookup(d, names{i}));
end

table
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File @dict/getkeys.m

function keys = getkeys(d)

% KEYS = GETKEYS(D) returns a cell array of keys in dictionary D

keys
keys

File @dict/private/fixkey.m

function k = fixkey (k)

= fieldnames(d.table);

keys(2:end);

APPENDIX A. MATLAB CLASSES

% support non-alphabetic characters in dictionary keys

for i = 1:length(k)

c = k(i);
if ¢ == 7

c = 7_7;
elseif ¢ == *(°

c = 707;
elseif ¢ == ?)?

c = 7C7;
end
k(i) = c;

end
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Blind Watchmaker code

You should save these three files, and all subsequent code, in the directory containing the
Matlab classes.

File bw.m

% BW Blind Watchmaker program.

h

%  BW(W, PFUN) provides a Blind Watchmaker interface for evolving a
% vector W of floating-point values. PFUN is a string naming a

%  function PFUN(W), a user-defined display function that accepts the
% floating-point values and creates the appropriate graphics. The
% program displays the graphics in a large window at left, and four
% smaller windows at right representing the results of mutating the
%  vector with normally-distributed random noise, scaled by the

% standard deviation of the vector. The magnitude of the noise, as
% well as the random seed, can be set via interface controls, and

% there is a button to save the vector when you are done.

)

%  BW(W, PFUN, IFUN) allows you to specify a string IFUN naming an

% initialization function IFUN(), so you optimize-out any

%  computation that needs to be done only at the beginning of the

% process. IFUN should return the data D resulting from this

%  computation, and PFUN should be PFUN(W, D).

h

% If W is a string instead of a matrix, the program will load the

% weights from a file named W.

h

% Examples:

h
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% >> bw(rand(3,4), ’myplot’)

b

% >> bw(rand(2,5), ’myplot’, ’myinit?)
A

% >> bw(’myfile.mat’, ’myplot’)

function bw(w, pfun, ifun)

% set globals for callbacks
global MU_SLI SEED_EDT W IFUN PFUN INIT
PFUN = pfun;

% load or init global weights
if (ischar(w)), w = getfield(load(w), ’w’); end
W= w;

% initial random seed and mutation rate
S =0;
MU = .5;

% reset normally-distributed random number generator state to seed value
randn(’state’, S);

% add controls

MU_SLI = add_slider(’Mutation Rate: %2.2f’, 0, 1, MU, .05, 100);
SEED_EDT = add_edit(’Seed:’, S, 250, 22, 20);
add_button(’Reset’, 400);

add_button(’Load’, 500);

add_button(’Save’, 600);

add_button(’Close?’, 700);

% get initialization data for optimization, if specified
if nargin > 2
IFUN = ifun;

INIT = feval(IFUN);
else

INIT = [];

IFUN = 27,
end

% plot initial weights with variants
bw_plot(w, MU, PFUN, INIT);
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% set figure name
set(gcf, ’Name’, strcat(’Blind Watchmaker:\t’>, PFUN));

% add an editable text control to the current figure
function txt = add_edit(label, value, xoff, yoff, width)

% text that labels the editable text
uicontrol(gcf, ’Style’, ’text’,
’String’, label,
'FontSize’, 14, ...
’Position’, [xoff yoff 80 20]);

txt = uicontrol(gcf, ’Style’, ’edit’,

’Position’, [xoff+80 yoff width 20],
’String’, value,
'FontSize’, 14);

% add a slider to the current figure
function sli = add_slider(label, lo, hi, value, step, xoff)

% text that labels the slider

sli_1bl = uicontrol(gcf, ’Style’, ’text’,
’String’, sprintf(label, value),
’Position’, [xoff 40 130 20]);

% text that labels the slider range
range = sprintf(°%d . . . . . . . . %d’, lo, hi);
uicontrol(gct,

’Style’, ’text’,

’String’, range,

’Position’, [xoff 25 130 20]);

% slider that controls the value
sli = uicontrol(gct,
’Style’,’slider’,
’Callback?’, ’bw_callback(’’Slider?’)’,
’UserData’, struct(’ctl’,sli_1bl, ’fmt’,label),
’Min’, lo, ’Max’, hi, ’Position’, [xoff 5 130 25],
’Value?’, value);
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% add button to current figure
function add_button(label, xoff)

uicontrol(gcf,
’Style’, ’push’,
’String’, label,
’Position’, [xoff 15 80 35],
’Callback?’, [’bw_callback(’?’ label 22?)°])

File bw_callback.m

function bw_callback(what)
% callback for activity in Blind Watchmaker GUI

global FILE_EDT MU_SLI SEED_EDT IFUN PFUN N INIT W
switch what

case ’Reset’
mu = get(MU_SLI, ’Value’);
seed = sscanf(get (SEED_EDT, ’String’), ’%d’);
if size(INIT, 1) > O
bw(W, PFUN, IFUN)
else
bw(W, PFUN);
end

case ’Load’

[filename, pathname] = uigetfile(’#.mat’, ’Load Genotype’);
fname = [pathname filename] ;

if fname, load(fname); end

mu = get(MU_SLI, ’Value’);

bw_plot(w, mu, PFUN, INIT);

case ’Save’

w = get(gcf, ’UserData’);

[filename, pathname] = uiputfile(’*.mat’, ’Save Genotype’);
fname = [pathname filename];

if fname, save(fname, ’w’); end

case ’Close’
close



case ’Slider’

label = get(gco, ’UserData’);

label_ctl = getfield(label, >ctl?);

label_fmt = getfield(label, ’fmt’);

value = get(gco, ’Value’);

if (ismember(’%d’, label_fmt))
value = fix(value);

end

set(label_ctl, ’String’, sprintf(label_fmt, value));

% click on image

otherwise

mu = get(MU_SLI, ’Value’);
d = get(gcbo, ’UserData’);
w = getfield(d, ’w’);
bw_plot(w, mu, PFUN, INIT);

end

File bw_plot.m

function bw_plot(w, MU, FN, init)
% plot current phenotype, plus four mutations

% set positions of individual image squares
main_pos = [.05,.175, .4, .7]1;

imgl_pos = [.5, .175, .2, .35];

img2_pos = [.5, .6, .2, .35];

img3_pos = [.75,.175, .2, .35];

img4_pos [.75,.6, .2, .35];

% rescale figure

pos = get(gcf, ’Position’);
pos(3) = 800; % width
pos(4) = 500; % height
set(gcf, ’Position’, pos);

% plot un-mutated in large square
plot_system(w, main_pos, FN, init);
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% plot four mutations in little squares

plot_mutation(w, imgl_pos, MU, FN, init);
plot_mutation(w, img2_pos, MU, FN, init);
plot_mutation(w, img3_pos, MU, FN, init);
plot_mutation(w, img4_pos, MU, FN, init);

% store current weights
set(gcf, ’UserData’, w);

% plot one phenotype using mutation of specified weights
function w = plot_mutation(w, pos, MU, FN, init)

w = W + MUxrandn(size(w))*mean(std(w));
plot_system(w, pos, FN, init);

% plot one phenotype using specified weights
function plot_system(w, pos, FN, init)

h = subplot(’position’, pos);

if size(init, 1) > 0
feval (FN, w, init);
else
feval (FN, w);
end

set(h, ’ButtonDownFcn’, ’bw_callback(’’Click?’)?’)
set(h, ’UserData’, struct(’w’,w));
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Hill-climbing code

File climb.m

function w = climb(w, mu, maxit, evalfun, seed)

%CLIMB  Generic hill-climbing on real-valued weights

h

% W = CLIMB(WINIT, MU, MAXIT, EVALFUN, [SEED]) uses evaluation

% function EVALFUN to hill-climb on initial weights WINIT. MAXIT
% specifies the maxinum number of iterations to perform, MU the
% learning rate. SEED is an optional seed for the random number
% generator, to support reproducible results. EVALFUN should

% return a number between O and 1.

b

% Example:

h

% >> w = climb(randn(3,4), .1, 1000, ’myeval’);

% initial conditions

wnew = w;

W = wnew;

iter = 0;

best = feval(evalfun, wnew);
fprintf (°%d: %f\n’, O, best);

% use random seed if provided
if nargin > 4, randn(’seed’, seed), end

% hill-climb to maximum specified failure iterations or to success
while iter < maxit
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% call evaluator function on mutated weights
success = feval(evalfun, wnew);

% quit on unidimensional 1
if (length(success) == 1) & success(l) >=1, break, end

% update weights on improvement
if prod(success >= best) & find(success>best)
best = success;
fprintf (*%iter: %f\n’, 0, best);
W = wnew;
iter = 0;

% mutate on failure by an amount proportional to mutation rate
% and success rate

else
wnew = w + (l-success) * mu * randn(size(w));
iter = iter + 1;
end
end

if iter < maxit

fprintf (’succeeded\n’);
else

fprintf(’failed\n’);
end
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Miscellaneous code for experiments

File allstrings.m

function strings = allstrings(map)
% ALLSTRINGS(MAP) returns strings made from trees encoded by MAP
% obtained from IFS.

% find row containing first non-terminal tree
where = find(map(:,1));
first = where(1);

% build strings from this row to last
for i = first:length(map)
t = maketree(map, i);
strings{i-first+1} = front(t);
end

File ifsplot.m

function ifsplot(w)
% IFSPLOT - plot function for 100x100 IFS RAAM with Blind Watchmaker

i = ifs(w, 100);
a = attractor(i);
spy (a)
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File evaltre.m

function success = evaltre(w)
% evaluation function for hill-climbing to lots of trees

% tweakable params

RES = 64;

i = ifs(w, RES);

a = attractor(i);

a = address(i, a, 1);
t = trees(i, a);

success = size(t,1) / (RES*RES);

File evalcfg.m

function success = evalcfg(w)
% evaluation function for hill-climbing to a"nb™n

% tweakable params

RES = 64;

TARGS = {’12°,°1127, 211227, 211122’ 21112227, 211112227, *11112222°,
21111122222, 211111222227} ;

= ifs(w, RES);

= attractor(i);

= address(i, a, 1);
= trees(i, a);

= allstrings(t);

n PP R
|

N = O

total
for i =

total
end

:length (TARGS)
total + ismember (TARGS{i}, s);

success = total / length(TARGS);
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File corner_dict.m

function d = corner_dict(words)

% CORNER_DICT(WORDS) returns a dictionary mapping from WORDS to

% orthonormal basis) vectors made from one-in-N-codes padded with
% zeros.

d
n

dict;
length(words) ;
for i = 1:n
word = words{i};
value = zeros(1l, 2x*n);
value(i) = 1;
d = enter(d, word, value);
end

File load_trees.m

function trees = load_trees(fname)

%LOAD_TREES load trees from ASCII file

%

% LOAD_TREES(FILENAME) loads a set of trees from the ASCII file named
% FILENAME, returning the trees as a cell array of tree objects.

fid = fopen(fname, ’r’);

trees = {};
while 1
line = fgets(fid);
if line == -1, break, end

if “isempty(line)
trees{end+1} = tree(line);
end
end

fclose(fid);
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File maketree.m

function t = maketree(map, i)
% MAKETREE(MAP, I) returns Ith tree encoded by MAP obtained from IFS.

row = map(i,:);

% on attractor; terminate
if “nnz(row)
t = tree(num2str(i));

% off attractor; recur
else
for k = 1:size(map, 2)
branches{k} = maketree(map, row(k));
end
t = tree(branches);
end

File ttold.m

function s = ttold(r, code, tol, dict)
% thresholding terminal test from (Pollack 1990)

% all above or below threshold
if prod(code < tol | code > (1-tol))

s = ’X’; ’} assume bogus
code(find(code<tol)) = 0;
code(find(code>(1-to0l))) = 1;
keys = getkeys(dict);

for i = 1:1length(keys)
key = keys(i);
val = lookup(dict, key);
if prod(val == code)

s = key;

end

end

else
s = 7).

2

end
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Sample experiments

If you have successfully copied or downloaded the code from the preceding appendices,
you should be able to run the following experiments by invoking Matlab and entering the
commands provided.

E.1 Blind Watchmaker for IFS images

>> bw(randn(3,4), ’ifsplot?)

E.2 Hillclimbing to a"b"

>> w = climb(4*randn(3,4), 4, 30, ’evalcfg’);
>> 1 = ifs(w, 64);

>> a = attractor(i);

>> a = address(i, a, 1);

>> [t,b] = trees(i, a);

>> pcolor(b)

>> allstrings(t)

E.3 Hillclimbing to lots of strings

>> w = climb(randn(3,4), 1, 100, ’evaltre’);

>> i = ifs(w, 64);

>> a = attractor(i);

>> t = tree( >(1 1)’ ); % or whatever tree you like

>> spy(unify(i, a, t))
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E.4 Learning a set of related sentences in old RAAM

Copy the following lines to a file called npvp.tre:

(D (A @A @NN

((D N) (P (D N)))

(v (D N))

(P (D (A N)))

((D N) V)

((DN) (v (D AN

((D (A M) (v (r (DM

Then do the following in Matlab:

>> r = raam(2,10);

>> t = load_trees(’npvp.tre’);

>> d = corner_dict({’D’, ’A’, °N’, ’P’, ’V’});
>> r = learn(r, t, d, .1, .9, 5000);

>> el = encode(r, t{1}, d);
>> t1 = decode(r, el, 4, .2, ’ttold?);
>> show(t1)

You can experiment with the learning rate, momentum, and number of iterations in the
learn function, in order to decode various trees from the training set, as well as new trees.
Five thousand iterations is probably the fewest required for successful decoding of the trees.
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Java IFS class

This Java code implements the FAST-ATTRACTOR algorithm of Chapter 8.

import java.util.Vector;
import java.util.Random;
import java.util.Hashtable;

/%%
* IFS is a class supporting fast multi-dimensional IFS attractor
* computations using the FAST-ATTRACTOR algorithm described in Simon
* D. Levy’s Ph.D. thesis. This algorithm is not guaranteed to find
* all the attractor points, but in practice it finds all or most of
* them.
*
* Qauthor Simon Levy
* Qauthor Anthony Bucci
* @version W%, hG%
* @since JDK1.2

*/
public class IFS {

// transforms count
int m_K;

// dimensions count
int m_D;

// transforms -- weights + biases

double[1[1[] m_fw;
double[] [] m_fB;
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// points omn attractor
Vector m_vPoints;

// resolution
int m_nRes;

// supports random seed for reproducibility
Random random;

// base for computing hashcodes
int m_base;

// flag supporting independent point computation/return
boolean m_computed;

~N
*
*

Creates an IFS with arbitrary initial conditions, using
rectangular array of weights. (Simon’s preference) Array
should have D+1 rows and K*D columns, where D is the number of
dimensions and K the number of transforms.

@param weights linearized IFS weights
Oparam n resolution for attractor computation

LI R B R T

*/
public IFS(double[][] weights, int n) {
super () ;
random = new Random();
initialize(weights, n);

X
/**
* Creates an IFS with arbitrary initial conditions, using one-dimensional
* array of weights. (Anthony’s preference) Weights are linearized
* by taking usual rectangular weights array and reading top to bottom,
* left to right.
*
* Qparam weights linearized IFS weights
* Q@param k number of IFS transforms
* Qparam d number of dimensions
* Q@param n resolution for attractor computation
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* Q@param seed random seed

*
*/
public IFS(double[] weights, int k, int d, int n) {
super();
random = new Random();
initialize(weights, k, d, n);
}
/*%

* Creates an IFS with initial conditions fixed via random seed,
using rectangular array of weights. Seed supports
reproducibility of results.

Oparam weights linearized IFS weights
Oparam n resolution for attractor computation
Oparam seed random seed

* K K ¥ ¥ ¥ *

*/
public IFS(double[][] weights, int n, long seed) {
super () ;
random = new Random(seed);
initialize(weights, n);

/*%
* Creates an IFS with initial conditions fixed via random seed,

* using a one-dimensional array of weights.
*
* Qparam weights linearized IFS weights
* Qparam k number of IFS transforms
* Qparam d number of dimensions
* Q@param n resolution for attractor computation
* Q@param seed random seed
*
x/
public IFS(double[] weights, int k, int d, int n, long seed) {

super();
random = new Random(seed);
initialize(weights, k, d, n);
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/**
* Find attractor points. This method is called automatically by
* {0link #getPoints() getPoints}, but can be called independently to
* support timing for optimization.
%
*/
public void findPoints() {

// start in center of space

Point p = new Point(Q);

for (int i=0; i<m_D; ++i) {
p.coord[i] = m_nRes / 2;

}

// move to attractor

for(int i = 0 ; i < 25; i++) {
int k = Math.abs(random.nextInt()%m_K); // random transform
p =tk, p);

// find points by breadth-first search

Vector vPoints = new Vector(); // point queue

Hashtable seen = new Hashtable(); // HashSet not yet in Matlab
Hashtable [] cache = new Hashtable [m_K]; // pt |-> transform(pt)
for (int k=0; k<m_K; ++k) cache[k] = new Hashtable();
vPoints.addElement(p); // root of BFS search tree

while(vPoints.size() > 0) {
// get point
p = (Point) vPoints.elementAt(0);

vPoints.removeElementAt (0); // treats vPoints like a queue

// run through transforms
for (int k=0; k<m_K; ++k) {

Point tp =

// if point in cache, use cached value
cache[k] .containsKey(p) ?

(Point)cache[k] .get (p)
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// otherwise compute transform of point
t(k, p);

// cache result
cache[k] .put(p, tp);

// if this transform gives a new point, keep the new point
if (!seen.containsKey(tp)) {

Integer dummy = new Integer(0);

seen.put (tp, dummy) ;

vPoints.addElement (tp);

m_vPoints.addElement (tp) ;

// flag for one-shot point computation
m_computed = true;

* Returns attractor points as 2D array. First invokes

* {Q@link #findPoints() findPoints} if that method has not been invoked
* already.
*
*

@return MxD integer array of M D-dimensional attractor points
*/
public int [J[] getPoints() {

// support one-shot point computation, return
if (!m_computed) findPoints();

int [J[] points = new int [m_vPoints.size()][m_D];
for (int i=0; i<m_vPoints.size(); ++i) {
Point p = (Point)m_vPoints.elementAt(i);
for (int j=0; j<m_D; ++j) {
points[i]l[j] = p.coord[j];
}
}

return points;
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// compute Kth transform of point P
private Point t(int k, Point p) {

double [] pf = new double[m_D];
Point p2 = new Point();

// normalize to (0,1)"°D
for (int i=0; i<m_D; ++i) {

pf[i] = p.coord[i] / (double)m_nRes;
}

// multiply by square weights matrix
double [] pf2 = new double[m_D]; // initializes to zero
for (int i=0; i<m_D; ++i) {
for (int j=0; j<m_D; ++j) {
pf2[i] += m_fW[k] [j1[il* pf[jl;
}

// add bias vector

for (int i=0; i<m_D; ++i) {
pf2[i] += m_fB[k] [il;

}

// apply sigmoid

for (int i=0; i<m_D; ++i) {
pf2[i] = sigmoid(pf2[il);

}

// discretize to [1,N]~D
for (int i=0; i<m_D; ++i) {

p2.coord[i] = Math.min(m_nRes - 1, (int) (m_nRes * pf2[i]));
}

return p2;

// standard sigmoidal squashing function
private double sigmoid(double x) {

return (double) (1 / (1 + Math.exp(-x)));
}
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// generic initialization
private void initialize(int K, int D, int N) {

// system params
m_K = K;

m_D = D;

m_nRes = N;

// storage for points, caches
m_vPoints = new Vector();

// use largest hashcode base that doesn’t cause integer overflow
m_base = N;
while (true) {
long maxcode = 0;
for (int i=0; i<D; ++i) {
maxcode += (long)D * m_base;
if (maxcode > (long)Integer .MAX_VALUE) break;

}
if (maxcode < (long)Integer .MAX_VALUE) break;
m_base /= D;

// flag no points computed yet
m_computed = false;

// square weights matrices, bias vectors
m_fW = new double[K][D][D];
m_fB = new double[K] [D];
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// initialze for rectangular weights
private void initialize(double [][] w, int n) {

int cols = w[0].length;

int D = w.length - 1; // extra row for biases
int K = cols / D;

initialize(K, D, n);

// put weights into square matrices
for (int i=0; i<D; ++i) {
for (int j=0; j<cols; ++j) {
m_fW[j/DI[i]1[j%D] = wlil[j];
}

// put weights into vector of biases
for (int j=0; j<cols; ++j) {
m_fB[j/D] [j#D] = w[D][j];
}
}

// initialize for Anthony-style weights
private void initialize(double [] w, int K, int D, int n) {

initialize(K, D, n);

// put weights into square matrices, vectors of biases
for (int k=0; k<K; ++k) {
int koff = k * D * (D+1);
for (int i=0; i<D; ++i) {
int ioff = koff+ix(D+1), joff = ioff;
for (int j=0; j<D; ++j) {
m_fWlk][j1[i] = w[joff];
joff++;
b
m_fB[k] [i] = w[joff];
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// internal class for discrete points
class Point {

private int [] coord;

public Point() {
coord = new int[m_D];

}

// we cheat here because this class is never exported
public boolean equals(Object obj) {

return (hashCode() == obj.hashCode());
}

// hash function linearizes coordinates
public int hashCode() {
int key = 0, fac = 1;
for (int i=0; i<m_D; ++i) {
key += coord[i] * fac;
fac *= m_base;
}

return key;
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