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Abstract

Relatively few evolved designs have made the transition to
the real world. Of those that have, all have been built by hand
based upon descriptive representations (i.e. blueprints) of the
evolved object. As such, human effort is transferred from
the design to the assembly domain. In this paper we suggest
harnessing the procedural representations provided by Artifi-
cial Ontogenies to fully automate both designandassembly.
We demonstrate the ability of Artificial Ontogenies to cross
one hurdle of real-world assembly, namely reliably building
structures in noisy environments. We then discuss the ad-
vantages of Artificial Ontogenies for Automated Design and
Assembly, and offer suggestions for the future of the field.

Introduction

Despite the popularity of Evolutionary Design, relatively
few designs have actually made the transition from simu-
lated environments to the real world. In a brief review, be-
low, of those that have made the transition, the most suc-
cessful have been based upon Artificial Ontogenies (Kumar
and Bentley, 2003; Stanley and Miikkulainen, 2002), which
rely upon indirect representations of the evolved object. Yet
while each of the objects in our review were automatically
designed via evolution, each was subsequently built by hand,
based upon adirect representation of the evolved object.
Therefore, while human effort has been removed from the
realm of design , it has been correspondingly increased in
the realm on assembly.

In this paper we would like to suggest that by properly
harnessing the demonstrated utility of indirect representa-
tion that is provided by Artificial Ontogenies, evolved de-
signs can be not just automatically designed, but automati-
cally assembledas well, thereby fully removing the human
from the loop.

Obvious barriers to fully automated design and assem-
bly exist, most notably the so-calledreality gap between
simulated environments and the real world. In particular,
the stochasticity of real-world environments imposes quite
a strain on automated assembly. Fortunately, as we have
recently demonstrated (Rieffel and Pollack, 2004), although

Artificial Ontogenies can be brittle in the face of noisy devel-
opment environments, they are also able to develop robust
solutions in the face of such noise – by means ofontogenic
scaffolding.

The purpose of this paper is to explore the strengths and
weaknesses of of Artificial Ontogenies for real-world design
and assembly. We first provide a review of evolved designs
which have made the transition to the real world. We then
discuss the advantages of using Artificial Ontogenies for de-
sign, describe our recent work, and provide new analysis
of our earlier results. Finally, we discuss the potential of
Artificial Ontogenies for fully automating both design and
assembly.

Review of Real-World Evolved Designs

There have been quite a few impressive results in Evolu-
tionary Design, starting perhaps with Sims’ (Sims, 1994)
seminal work. Despite this, very few evolved designs have
been transferred to the real world.

Of those that have made the transition, the most notable
early example is Funes’ LEGO structures (Funes, 2001).
In this work, structures were evolved in a simulator which
took into account forces between bricks. Successful results
were then built by hand. Subsequently, Lipson (Pollack
et al., 2001) evolved mobile robots (Golems) in a simula-
tor. Successful robots were transferred by hand into CAD
designs and printed on a 3-D rapid protyping machine. Mo-
tors, wires, and circuits were added by hand. Both Funes
and Lipson used direct representations of their structures.

Hornby (Pollack et al., 2001) used L-systems, a type of
Artificial Ontogeny, to evolve tables and mobile robots. The
developed genotype consisted of instructions to a LOGO-
like turtle which then “drew” the structures out of voxels in
simulation. Although early results were transferred by hand
into CAD before printing on a 3-D printer, Hornby’s later
designs created CAD files automatically. It is worth noting,
however, that CAD designs aredescriptive, and have to be
translated by the 3-D printer into specific instructions for the
printing apparatus. Like Lipson’s Golems, once the bodies
were printed, final assembly, including the addition motors



Table 1: A Review of Evolved Designs in the Real World
Genotype Final Design Assembly

Funes Direct Descriptive Hand
Lipson Direct Descriptive Semi-Auton.
Hornby Indirect Descriptive Semi-Auton

Lohn et al Indirect Descriptive Hand

and wiring, was performed by hand.
The most significant recent result of real-world evolved

design is probably Lohn et al’s work on Evolved Anten-
nas (Lohn et al., 2003) - one of which at least is due to
be launched into space aboard a Low Earth Orbit satellite.
These designs were generated by L-systems in a manner
similar to Hornby’s work, and tested in an antenna simu-
lator. Successful antenna designs were represented descrip-
tively, and then meticulously built by hand.

Table 1 provides a comparison of these designs and the
methods used. Of those reviewed, regardless of whether
they used direct or indirect encodings as their genotypes,
when it came time for assembly of successful designs, they
were build by hand from descriptive representations. Lip-
son’s and Hornby’s both used rapid prototyping machines to
semi-autonomously fabricate parts, but final assembly was
performed by hand.

Artificial Ontogenies for Real World Design
and Assembly

Unlike traditional evolutionary computation, Artificial Em-
bryogenies (Stanley and Miikkulainen, 2002; Kumar and
Bentley, 2003) treat the genotype as anindirect, or proce-
dural encoding of the phenotype. The genotype is decoded
and transformed into a phenotype by means of some de-
velopmental process. This abstraction layer between geno-
type and phenotype allows for quite a bit of flexibility
during evolution, and has several demonstrated advantages
(Hornby and Pollack, 2001; Toussaint, 2003; Stanley and
Miikkulainen, 2002; Kumar and Bentley, 2003; Bongard
and Pfeifer, 2001).

Assembly Plans as Artificial Ontogenies
Most of the real-world evolved designs reviewed above were
the result of GAs which generated as an end product a
blueprintof the final design. Blueprints are descriptive rep-
resentations of structure – as such, they contain no informa-
tion about how to actually build the goal structure. In fact, in
the systems above, significant human knowledge and inter-
action was required to translate the blueprints into physical
objects. Thus, while the evolution of blueprints removes hu-
man effort from the design task, it fails to remove human
effort from the assembly task - and may in fact increase it.

Artificial Ontogenies on the other hand, because they are
prescriptive, rather than descriptive representations, can pro-

Figure 1: A sample of the distribution of phenotypes when
a single assembly plan is built in a noisy environment

vide step-by-step instructions on how to build an evolved
design. A particular form of Artificial Ontogeny that we are
interested in is theassembly plan. We define an assembly
plan as a linear, ballistic1 , set of instructions to an external
builder which when executed results in the construction of
a structure. As such, assembly plans allow for thefull au-
tomationof evolutionary design and assembly, provided of
course that the assembly mechanism can interpret and exe-
cute the instructions contained within the assembly plan.

There are two clear advantages to fully automated assem-
bly. The first is the simple fact that in many contexts, such as
space exploration, it is much less expensive and much safer
to send fully automated assembly plants than it is to send
human labor. Secondly, machine fabrication offers signif-
icantly higher precision and reliability than human assem-
bly - while this difference may not be noticeable on rel-
atively simple tasks such as wire-bending for antennas, as
evolved designs become more complex, and their behavior
more finely tuned and nuanced, the need for precision and
reliability will increase considerably.

The Effects of Noise during Development

As we show in our earlier work (Rieffel and Pollack, 2004),
despite their strengths, linear ballistic assembly plans have
a clear weakness - that of noise during development which
can lead to errors in the final assembly. Because each step of
the assembly can be predicated upon the success of earlier
steps, a single failure, particularly early in the assembly, can
have severe consequences on the final outcome.

Furthermore, in the context of evolution, noise during de-
velopment results in each genotype developing into an entire
distribution of phenotypes, each with a corresponding set of
fitness values, rather than one single phenotype, as shown
in Figure 1. This range of fitness values introduces a credit
assignment problem - which, if any, of the resulting pheno-
types can be considered representative of the single source
genotype?

Emergence of Ontogenic Scaffolding
We have been able to demonstrate, however, that by incorpo-
rating noise into the development environment used during
evolution, Artificial Ontogenies are able to overcome noisy
development and reliably build a goal structure by means of
ontogenic scaffolding- intermediate structural elements that

1That is to say, without any ability to test intermediate results,
or alter their behavior mid-assembly



MAXMIN FITNESS

F
R

E
Q

U
E

N
C

Y

YIELD

Figure 2: A noisy development environment leads to a dis-
tribution of phenotypic fitnesses. Yield is the frequency with
which the distribution reaches the maximum fitness

Figure 3: Robust Assembly Plan Steps 1-18: In the first
steps, the builder lays scaffolding (frames are read left to
right, top to bottom)

are necessary for assembly of, but are not present in, a final
structure.

Our experiments used a simple 2-D grid environment with
very simple physics and a LOGO-like turtle, capable of plac-
ing 2x1 bricks, as the interpreter of the evolved assembly
plans. A noisy development environment was induced by
allowing vertical bricks to topple to either side 50% of the
time, and for cantilevered bricks to topple 50% of the time.
Our genotype assembly plans contained instructions such as
forward, rotate, put brick and take brick. In order to account
for the distribution of phenotypes, each genotype was built
50 times in the noisy environment, and statistical properties
of the results used as fitness objectives.

The salient fitness measure used was that ofyield. In the
case where there is an achievable maximum fitness, yield
corresponds to the frequency with which the maximum fit-
ness is attained (see Figure 2. In our experiments, in which
solutions attempted to build a goal structure, yield is the per-
centage of times that a genotype was able to perfectly build
the goal.

The details of the experiments are provided in our earlier
paper (Rieffel and Pollack, 2004). Our core result is shown
in Figures 3 thru 5, which show frames of a resulting phe-
notype able to reliably build the goal arch 75% of the time.
It is worth noting that the evolved solution contains two dis-
tinct phases of ontogeny. In the first, the scaffolding is laid
and the structure is build within the scaffolding. In the sec-
ond, the scaffolding is removed, leaving only the final struc-
ture. This suggests that the nature of the solution, not just
the name of the method, is an ontogeny.

Figure 4: Robust Assembly Plan Frames 19-49: more scaf-
folding is lain and the arch is completed

Figure 5: Robust Assembly Plan Frames 50-80: scaffolding
is removed

Subsequent Analysis

A meaningful way to visualize results which contain a distri-
bution of phenotypes corresponding to a single genotype is
to build a composite image by averaging the results of mul-
tiple runs of that genotype. The center column of Table 2
compares composites of a naive solution (which was evolved
in the absence of noisy assembly and then assembled under
noise) with evolved solutions which achieved 11%, 27% and
59% and 75% yield. As can be seen, as evolution progresses,
the composite image increasingly looks like the final goal
structure.

In the context of noisy development in which genotypes
are rewarded for their yield percentage of a final structure,
such as ours, one can consider the role of evolution as learn-
ing to shift phenotypic fitness distributions, rather than indi-
vidual fitnesses, towards the optimal. This is borne out by
the distribution column in Table 2. Each figure is a his-
togram which shows the distribution of phenotype fitness
over the same 100 builds used to generate the composite
images. As shown, as the yield increases, the distribution
tightens and shifts towards the optimal.

Discussion
Artificial Ontogenies have great potential for fully auto-
mated design and assembly. In terms of automated design
aspect, they have many demonstrated advantages, such as
the ability for co-ordinated parallel changes to the pheno-
type (Hornby and Pollack, 2001), the ability to switch rep-
resentations via neutral mutations (Toussaint, 2003), and
the many-to-one genotype-phenotype mapping (Stanley and
Miikkulainen, 2002; Kumar and Bentley, 2003).

Their potential for automated assembly lies in their ability
to procedurally describe each step of an object’s assembly.
As we’ve shown, this latter ability is particularly useful in



Table 2: The middle column contains composite results cre-
ated by averaging 100 builds - darker squares represent lo-
cations more likely to contain a brick. The right hand col-
umn shows the histogram distribution of phenotype fitness
across those same 100 builds - the horizontal axis represents
increasing fitness, with maximal fitness, meaning perfect as-
sembly, on the extreme right. Scales between histograms are
identical
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noisy environments, where Artificial Ontogenies are able to
develop scaffolding - intermediate structural elements nec-
essary for the reliable assembly of a final object (Rieffel
and Pollack, 2004) Most importantly perhaps, the procedu-
ral nature of Artificial Ontogenies allows for them to be in-
terpreted and executed by a machine, without human inter-
vention.

We would like to suggest that a crucial requirement for
this full automation is thatthe language of development
MUST be the same as the language of assembly. That is to
say, the step-by-step instructions contained in the genotype-
as-assembly plan used for development must also be inter-
pretable by the agent ultimately responsible for building the
design in the real world. Without this, the language of de-
velopment has to be translated into a language of assembly,
and all of the pitfalls of the reality gap between simulation
and reality re-emerge. Therefore, by evolving designs using

artificial ontogenies, by using simulated development envi-
ronments which sufficiently represent the noise of the final
real-world assembly environment, and by ensuring that the
languages of development and assembly are identical, we
hope to achieve the goal of fully automated design and as-
sembly.
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