
The Observers’ Paradox:
Apparent Computational Complexity in Physical Systems

John F. Kolen and Jordan B. Pollack

To appear Summer 1994 inThe Journal of Experimental and Theoretical Artificial Intellignce

Running Head: The Observers’ Paradox

August 15, 1993

Laboratory for Artificial Intelligence Research
Department of Computer and Information Sciences

The Ohio State University
Columbus, OH 43210

kolen-j@cis.ohio-state.edu and pollack@cis.ohio-state.edu



The Observers’ Paradox 2

Abstract
Many researchers in AI and cognitive science believe that the com-
plexity of a behavioral description reflects the underlying informa-
tion processing complexity of the mechanism producing the
behavior. This paper explores the foundations of this complexity
argument. We first distinguish two types of complexity judgements
that can be applied to these descriptions and then argue that neither
type can be an intrinsic property of the underlying physical system.
In short, we demonstrate how changes in the method of observation
can radically alter both the number of apparent states and the appar-
ent generative class of a system's behavioral description. From
these examples we conclude that the act of observation can suggest
frivolous computational explanations of physical phenomena, up to
and including cognition.
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The daily warmth we experience, my father said, is not transmitted by Sun to Earth
but is what Earth does in response to Sun. Measurements, he said, measure mea-
suring means.1

Introduction

Cognitive science has worked under the general assumption that complex behaviors arise from
complex computational processes. Computation lends a rich vocabulary for describing and
explaining cognitive behavior in many disciplines, including linguistics, psychology, and artificial
intelligence. It also provides a novel method for evaluating models by comparing the underlying
generative capacity of the model. The generative enterprise in linguistics, for example, maintains
that the simplest mathematical models of animal behavior - as finite state or stochastic processes -
are inadequate for the task of describing language. Descriptions (or explanations) of language
structure require at least a context-free or context-sensitive model:

There are so many difficulties with the notion of linguistic level based on left-to-
right generation, both in terms of complexity of description and lack of explana-
tory power, that it seems pointless to pursue this approach any further.2

Even Newell and Simon's Physical Symbol System Hypothesis (Newell and Simon, 1976)
identifies recursive computation of a physical symbol system as both a necessary and sufficient
condition for the production of intelligent action. Such claims are important as they focus our
research attention on particular classes of solutions which we knowa priori to have necessary
mechanistic power to perform in our desired contexts. Newell and Simon emphasize that:

The Physical Symbol System Hypothesis clearly is a law of qualitative structure. It
specifies a general class of systems within which one will find those capable of
intelligent action.3

Since the publication of this hypothesis, the consensus of cognitive science has held that the
mind/brain is computing something; identifying exactly what itis computing has emerged as the
goal of the field.

Computational complexity, often used to separate cognitive behaviors from other types of ani-
mal behavior, will be shown to be dependent upon the observation mechanism as well as the pro-
cess under examination. While Putnam (1988) has proved that all open physical system can have
post hoc interpretations as arbitrary abstract finite state machines and Searle (1990) claimed that
WordStar must be running on the wall behind him (if only we could pick out the right bits), nei-
ther considered the effects of the observer on the complexityclass of the behavior.

The rest of the paper is organized as follows. We will first examine the role that discrete mea-
surements play in our studies of complex systems. Over the years, methods of complexity judge-
ment have separated into two orthogonal approaches, namelycomplexion andgenerative class.
The former is a judgment related to the number of moving parts (or rules, or lines of code) in a
system, while the later may be viewed as a measure of the generative capacity of the chosen
descriptive framework. Then we review research on the problem of identifying complexity in
physical systems, emphasizing the recent work of Crutchfield and Young (1989). Once we recog-
nize that descriptive frameworks apply tomeasurements of a system’s state rather than the state
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itself, we can demonstrate how simple changes of the observation method or measurement granu-
larity can affect either the system’s complexion or its generative class. For instance, a shift in
measurement granularity can promote the apparent complexity of a system from a context-free
language to a context-sensitive language. Finally, we discuss the meaning of these results as they
pertain to the cognitive science community.

Measurements and Complexity

Cognitive science expends most of its effort describing and explaining human and animal behav-
ior. To construct these behavioral descriptions, one must first collect measurements of the
observed behavior. Descriptions take many forms. A list of moves describes the behavior of the
chess player, a transcript records linguistic behavior of a conversation, a protocol of introspected
states during problem solving describes deliberative means-ends analysis, and a sequence of (x,y)
locations over time records eye movement in a study of reading. Each of these examples serves as
a description of behavior. The measurement may be simple, as in the case of the Cartesian coordi-
nates, or it may be more involved, like the transcript or protocol. We assume that these measure-
ments are necessarily discrete since we must be able to write them down.4 To emphasize the
creation of discrete symbolic representations of the physical events in the world, we will identify
this process assymbolization. Transcription of continuous speech, for example, is a symbolization
of speech production. It is impossible to avoid symbolization; there is simply too much informa-
tion inherent in any physical process that is irrelevant to our needs. Imagine trying to describe the
conversation between two people on a street corner. The information generated by such an
encounter is infinite due to a large number of real dimensions of movement, sound, time, etc. We
avoid these complications by symbolizing the physical action into sequences of measurable
events, such as phonemes, words, and sentences.

Information is clearly lost during symbolization. A continuous real value is a “bottomless”
source of binary digits, yet only a small number of distinctions are retained through the transduc-
tion of measurements. Of course, shuffling high precision real numbers is a waste of resources
when only a few bits suffice. It is wrong, however, to believe that the information loss is merely
modeling error if, as we show below, it often confuses our efforts at understanding the underlying
system.

One way of understanding a system is by gauging its complexity. We have some good intui-
tions about certain relative comparisons: a human being is generally considered more complex
than a rock. What does this ordering entail? Although judgements of system complexity have no
uniformly accepted methodology, the existing approaches are sharply divided into two groups.
The first appeals to the common sense notion that judges the complexity of a system by the num-
ber of internal moving parts. Thus, a system is more complex if it has a larger number of unique
states induced by the internal mechanisms generating its behavior. Others (see Aida et al., 1984)
have adopted the termcomplexion. We specifically use this term to refer to a measure of complex-
ity based upon the number of unique moving parts within a system.

The second approach to judging complexity is more subtle. Imagine a sequence of mecha-
nisms, specified within a fixed framework, with ever increasing complexion. As the complexion
of a device increases, its behavior eventually reaches a limit in complexity determined by the
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framework itself. This limit, or generative class, can only increase or decrease with modifications
to the framework. These classes are not unique; many frameworks share the same generative
limit. Chomsky’s early work (1957, 1965) in linguistics contributed to the foundations of com-
puter science. Followers of this work have enshrined four classes of formal languages, each with a
different computational framework. The regular, context-free, context-sensitive, and recursive
languages are separated by constraints on their underlying grammars of specification, and form an
inclusive hierarchy. In addition, they correlate quite beautifully with families of mechanisms, or
automata, operating under memory constraints. Of course, we now know that many other classes
are possible by placing different constraints on how the changeable parts interact (see many of the
exercises in Hopcroft and Ullman, 1979). We use the term “generative class” out of respect to the
fact that this theory of complexity arose in formal languages (automata) and the questions of what
kinds of sentences (behaviors) could be generated.

Computation, Cognitive Science, and Connectionism

Computation offers a way to describe and manipulate the resulting measurements once we have
symbolized a sequence of measurements. In this respect, computation can be thought of as one of
the most powerful tools of cognitive science during its explosive growth over the last forty years.
We can see that the rise of the generative enterprise in linguistics, information processing in com-
putational psychology, and the symbolic paradigm of artificial intelligence all benefited from both
the discrete measurement of the cognitive behavior of physical systems and the ability to univer-
sally simulate symbolic systems.

The rise of the “generative enterprise” over other descriptive approaches to linguistics can be
attributed in part to its affinity with computation, since it initially appeared computationally feasi-
ble to generate and recognize natural languages according to formal grammars. A formal gram-
mar is a collection of rewrite rules involving terminal symbols (those appearing in target
language) and nonterminal symbols (temporary symbols used during the rewrite process). Chom-
sky (1957) proved that various constraints on rewrite rules produced sets of strings that could not
be produced under other constraints. For instance, a grammar composed of rewrite rules involving
nonterminals on the left-hand side of the productions and no more than a single nonterminal on
the rightmost part of the productions (i.e., , where  and  are nonterminal symbols and

 is a terminal symbol) has less generative capacity than a grammar with rules whose right-hand
sides can contain arbitrary sequences of terminal and nonterminals (such as ). Genera-
tive capacity refers to the ability to mechanically produce more strings. The generative capacity of
regular grammars is strictly less than that of context-free grammars, and both are strictly less than
that of context-sensitive grammars. English readily provides several examples of center embed-
ding that eliminate regular grammars from the possible set of mechanical descriptions of natural
language grammaticality. Descriptions of natural languages based upon varieties of context-free
phrase structure grammars, while very easy to work with, could not stand as correct models under
such phenomena as featural agreement or crossed-serial dependencies. From a linguistic stand-
point, any system capable of understanding and generating natural language behavior must
exhibit context-sensitive generative capacity, though it is widely held that a class known as
“indexed context free” is consistent with the weak generative capacity of natural languages (Joshi

A aB→ A B
a

A aBb→
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et al. 1989).

Psychologists, discouraged by behavioristic accounts of human performance, could now turn
discretized protocols into working models of cognitive processing driven by internal representa-
tions. For example, Newell and Simon’s (1962) Generalized Problem Solver (GPS) implemented
means-ends analysis and could model intelligent behaviors like planning. The operators used in
GPS were nothing more than productions and the entire system could be viewed as a production
system. Production systems are computationally equivalent to Turing machines and other univer-
sal computational mechanisms. Based upon this, Newell and Simon (1976) concluded that intelli-
gent action is best modelled by systems capable of universal computation. This claim is now
known as the Physical Symbol System Hypothesis and specifically states that a physical system
implementing a universal computer is both necessary and sufficient for the modeling of intelligent
behavior. Thus, context-sensitivity is not enough for intelligence, as in the case of linguistic com-
petence, but the full computational power of recursive systems must be engaged for the produc-
tion of intelligent behavior.

These behaviors are easily generated by universal frameworks such as unrestricted production
systems or stored program computers. This unconstrained flexibility fueled the explosion in AI,
where bits and pieces of cognitive action, such as chess playing, or medical diagnosis, could be
converted into effective symbolic descriptions simulated by algorithms in computers. While flexi-
bility is an asset in the development of computer software, unconstrained computational descrip-
tions can not help us develop a theory of cognitive processing. More often than not, we are left
with a fragile model which overfits the data and fails to generalize.

The scientific problem regarding the lack of constraints offered by general information pro-
cessing systems has fueled the recent “back to basics” reaction in using more “neurally plausible”
means of modeling. Connectionism has been a vigorous research area expanding in its scope
throughout the 1980’s, bounded both by the underconstraints of artificial intelligence and infor-
mation processing psychhology and by the overconstraints of computational neuroscience. Con-
nectionism seeks to understand how elements of cognition can be based on the physical
mechanisms that can be in the brain, without being constrained by the overwhelming detail of
neuroscience. As such, it is constantly battered both from below (e.g., Grossberg, 1987), on actual
biologically plausibility of the mechanisms, and from above (e.g., Fodor & Pylyshyn, 1988), on
the adequacy of its mechanisms when faced with normal tasks of high-level cognition requiring
structured representations (Pollack, 1988) and generative complexity.

Our earlier work tried to address the generative capacity issue raised long ago by Chomsky. In
this work we examined biologically plausible iterative systems and found that a particular con-
strual, the “dynamical recognizer,” resulted in recurrent neural network automata that had finite
specifications and yet infinite state spaces (Pollack, 1991). From this observation we hypothesized
that yet another mapping might be found between the hierarchy of formal languages and increas-
ingly intricate dynamics of state spaces (implemented by recurrent neural networks). We were
encouraged by Crutchfield and Young’s (1989) paper (summarized below) and similar conjectures
regarding the emergence of complex computation in cellular automata as reported in the work of
Wolfram (1984) and Langton (1990). After many attempts to reconcile our recurrent neural net-
work findings with both the dynamical systems results and a traditional formal language view, we
came to believe that the difficulty of our endeavor lay in the traditional view that a particular
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mechanical framework adheres to a particular generative class.

The Emergence Of Complex Behavior In Physical Systems

The two notions of complexity–complexion and generative class–have been traditionally applied
only to computational systems. However, recent work by Crutchfield and Young (1989) suggests
that one may be able to talk similarly about the generative class of a physical process. Their work
focuses on the problem of finding models for physical systems based solely on measurements of
the systems’ state. Rather than assuming a stream of noisy numerical measurements, they explore
the limitations of taking very crude measurements. The crudest measurement of state is periodic
sampling with a single decision boundary: either the state of the system is to the left or to the right
of the boundary at every time step. Unlike numerical measurements that can be described mathe-
matically, the binary sequence they collect requires a computational description (i.e. what kind of
automaton could have generated the sequence?) They claim that the minimal finite state automa-
ton induced from this sequence of discrete measurements provides a realistic assessment of the
intrinsic computational complexity of the physical system under observation. To test this claim,
Crutchfield and Young generated binary sequences from nonlinear dynamical systems such as the
iterated logistic and tent maps. These systems have the property that infinitesimally small changes
in a single global parameter can cause qualitative behavioral changes, known as period doubling
bifurcations, where the behavior of the system in the limit moves from a period  oscillation to a
period  oscillation. In addition to the claim stated above, their paper provides three key insights
into the problem of recognizing complexity as it arises in nature.

FIGURE 1. Finite state descriptions of equivalent complexity. The first
subsequence is from the sequence of all r’s. The second subsequence is from
a completely random sequence. Both sequences could be generated by a
single state generator since each new symbol is independent from all other
preceding symbols.
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First, the minimality of the induced automaton is important. Crutchfield and Young propose
that the minimal finite state generator induced from a sequence of discrete measurements of a sys-
tem provides a realistic judgment of the complexity of the physical system under observation.
Minimality creates equivalence classes of descriptions based on the amount ofstructurecontained
in the generated sequence. Consider two systems–the first constantly emits the same symbol,
while the second generates a completely random sequence of two different symbols. Both systems
can be described by one-state machines that can generate subsequences of the observed sequences
(Figure 1). In the constant case, the machine has a single transition. The random sequence, on the
other hand, has a single state but two stochastic transitions. The ability to describe these
sequences with single state generators is equivalent to saying that any subsequence of either
sequence will provide no additional information concerning the next symbol in the sequence.
Thus, total certainty and total ignorance of future events are equivalent in this framework of min-
imal induced description.

 Second, they show that physical systems with limit cycles produce streams of bits that are
apparently generated by minimal finite state machines whose complexion increases with the
period of the cycle. A system with a cycle of period two is held to be as complex as a two-state
machine. Systems with constrained ergodic behavior exhibit similar levels of complexion; the
number of induced states is determined by the regularities in the subsequences that cannot be gen-
erated. These are shown schematically in Figure 2.

Third, Crutchfield and Young proved that the minimal machines needed to describe the behav-
ior of simple dynamical systemswhen tuned to criticalityhad an infinite number of states. At crit-
icality, a system displays unbounded dependencies of behavior across space and/or time
(Schroeder, 1991). The spread of forest fires at the percolation threshold of tree density (Bak et
al., 1990) and sand pile avalanches (Bak and Chen, 1991) both produce global dependencies at
critical parameters of tree density and pile slope. Even simple systems, such as the iterated logis-
tic function , exhibit criticality for an infinite set of  parameter values between
zero and four. Crutchfield and Young proved that the computational behaviors at these parameter
settings are not finitely describable in terms of finite state machines, but are compactly described
by indexed context-free languages.

Apparent Complexion

The number of states in the systems studied by Crutchfield and Young can be selected by an exter-
nal control parameter as the system bifurcates through various dynamical regimes. The task of
merely increasing the number of apparent states of a system seems uniteresting because the sim-
plest solution lies in being more sensitive to distinct states. Since we can arbitrarily zoom into any
physical system, any object, including a rock, can simultaneously have a description requiring
only a single state and descriptions with high complexion driven by atomic level motions.
Figure 3 shows effects of increasing measurement granularity on the finite state machines induced
from a dynamical system. We have selected the iterated mapping , also
known as the Baker’s shift, for this demonstration. The behavior of this iterated system is to shift
the bits of a binary encoding of the state,  at time  to the left by one place and then discard the
bits to the left of the decimal point ( , .) The first automaton

x' rx 1 x−( )= r

xt 1+ 2xt mod�1( )=

xt t
x1 0.110101...2= x2 0.10101...2=
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was constructed by dividing the state space into two equal regions. This division results in a one-
state machine that stochastically emits0’s and1’s with equal probability. The same trajectory,
subjected to a measurement mechanism sensitive to three disjoint regions induces a three-state
automaton. When four measurement regions are imposed on the state space, the resulting symbol
sequence could be generated by the two-state machine at the bottom of Figure 3. Since an odd
number of divisions will induce state machines with a corresponding number of states, an infinite
number of finite state automata can be induced from the Baker’s shift dynamical system.

Other scientists and philosophers have explored this route to complexity. Putnam (1988) has
proved that an open system has sufficient state generative capacity to support arbitrary finite state
interpretations. His core argument relies onpost hoclabeling of state space to accommodate an
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FIGURE 2.The state machines induced from periodic and chaotic systems.
Note that the lower system does not producell  pairs. This omission is the
reason for the increase in number of states over the random generator in
Figure 1.
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FIGURE 3.An illustration of an increase in the number of internal states due to
explicit symbolization. The underlying mapping is . The  and

 axes in the graphs range from 0 to 1.
xt 1+ 2xtmod�1= xt

xt 1+



The Observers’ Paradox 11

arbitrary mapping between trajectories in state space and automaton states. Searle (1990) ques-
tions the relevance of computational models to cognition by claiming that a properly tuned per-
ceptual mechanism could experience the WordStar word processing program in operation on the
surface of the wall behind him. Based upon this observation, Searle concludes that causality, bla-
tantly missing from the state transitions in his example, is the key component of cognition (Searle,
1993). Fields (1987), on the other hand, suggests that the arbitrary nature of state labellings is
only a problem for classical systems, i.e., systems unaffected by observations of their state. He
claims that when observations are made of nonclassical systems, the interaction between observer
and system limits the granularity of observation and thus prevents the observer from drawing
arbitrary computational inferences from the behavior of the system.

Finally, recall that Ashby (1956) points out that variable selection, which underlies the notion
of a system, is critical since any physical process can provide an infinitude of variables that can be
combined into any number of systems. This applies on the one hand to arguments of Searle and
Putnam. An attribution of computational behavior to a process rests on an isomorphism between
states of the physical process and the information processing states of the computational model.
The intended computational model, thus, guides the selection of measured quantities of the physi-
cal process. In addition, a modeler must measure the current state of a process with sufficient res-
olution to support the isomorphism. In models capable of recursive computation, the information
processing state can demand unbounded accuracy from the modeler’s measurements.

On the other hand, the work in dynamical systems, by Crutchfield and Young, relates the prob-
lem with unbounded accuracy to the issue of sensitivity to initial conditions. In other words, sig-
nificant “state” information can be buried deep within a system’s initial conditions, and become
widely distributed in the state. This implies that often the best way to “measure” a system’s com-
plexity is to simply observe its behavior over long periods of time and retroactively determine the
critical components of the state. For instance, Takens (1981) method of embedding a single
dimensional measurement into a higher dimensional space can provide a judgment of the underly-
ing system’s dimensionality which is independent of the dimension of the observable. Crutchfield
and Young extend this philosophy to the computational understanding of systems, and infer the
generative complexity of a process from long sequences of measurements.

Apparent Complexity

Both Putnam and Searle avoided the bulwark engineered by Chomsky, namely the issue of gener-
ative complexity classes. Is generative complexity also sensitive to manipulation of the observa-
tion method? The answer, surprisingly, is yes. To support this claim, we will present some simple
systems with at least two computational interpretations: as a context-free generator and a context-
sensitive generator. A rigorous explanation of the following arguments can be found in the appen-
dix.

Consider a point moving in a circular orbit with a fixed rotational velocity, such as the end of
a rotating rod spinning around a fixed center, a white dot on a spinning bicycle wheel, or an elec-
tronic oscillator. We measure the location of the dot in the spirit of Crutchfield and Young, by
periodically sampling the location with a single decision boundary (Figure 4). If the point is to the
left of the boundary at the time of the sample, we write down an “l ”. Likewise, we write down an
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“ r ” when the point is on the other side.5 In the limit, we will have recorded an infinite sequence of
symbols containing long sequences ofr ’s andl ’s.

The specific ordering of symbols observed in a long sequence of multiple rotations is depen-
dent upon the initial rotational angle of the system. The sequence does, however, possess certain
recurring structural regularities which we callsentences. A sentence in this context is a run ofr 's
followed by a run ofl 's. For a fixed rotational velocity (rotations per time unit) and sampling rate,
the observed system will generate sentences of the formr nl m ( ). (The notationr n indi-
cates a sequence of r ’s.) That is to say, each rotational velocity specifies at most three sen-
tences, and the number ofr ’s and l ’s in each sentence differ by at most one. These sentences
repeat arbitrarily according to the initial conditions of the rotator. Thus, a typical subsequence of a
rotator that produces sentencesr nl n, r nl n+1,r n+1l n looks like the line below. Individual sen-
tences have been underlined for clarity.

A language of sentences may be constructed by examining the families of sentences generated
by a large collection of individuals, much like a natural language is induced from the abilities of
its individual speakers. In this context, a language could be induced from a population of rotators
with different rotational velocities where individuals generate sentences of the form {r nl n,
r nl n+1,r n+1l n}, . The resulting language can be described by a context-free grammar and
has unbounded dependencies; the number ofl ’s is related to the number of precedingr ’s. These
two constraints on the language imply that the induced language is context-free.

FIGURE 4.Decision regions that induce a context-free language.  is the
current angle of rotation. At the time of sampling, if the point is to the left
(right) of the dividing line, anl  (r ) is generated.

θ

θ

l r

n m 0>,
n

...r nl n+1r nl nr nl n+1r n+1l nr nl nr nl n+1....

n 0>
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Now we show that this complexity class assignment is an artifact of the observational mecha-
nism. Consider the mechanism that reports three disjoint regions covering equal angles of rota-
tion: l , c , andr  (Figure 5). Now the same rotating point will generate sequences of the form

rr…rrcc…ccll…llrr…rrcc…ccll…ll… .

For a fixed sampling rate, each rotational velocity specifies no more than seven sentences,
r ncml k, where , , and can differ no by no more than one. Again, a language of sentences
may be constructed containing all sentences where the number ofr ’s, c ’s, andl ’s differs by no
more than one. The resulting language is context-sensitive since it can be described by acontext-
sensitive grammar and cannot be context-free because it is the finite union of several context-sen-
sitive languages related tor ncnl n.

Therefore, a single population of rotators with different rotational velocities exhibited senten-
tial behavior describable by computational models from different generative classes, and the class
depended upon the observation mechanism. The two languages observed in the family of rotators
can also be observed in the dynamics of a single deterministic system. A slow-moving chaotic
dynamical system controlling the rotational velocity parameter in a single system can express the
same behavior as a population of rotators with individual rotational velocities. The equations
below describe a rotating point with Cartesian location  and a slowly changing rotational
angle  controlled by the subsystem defined by , , and .

FIGURE 5.Decision regions that induce a context-sensitive language.

θ r

c

l
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This system slowly spirals around the origin of the  plane. The value of  is a chaotic
noise generator that is smoothed by the dynamics of  and rotational velocity of .

As before, we construct two measurement mechanisms and examine the structures in the gen-
erated sequences of measurements. The first measurement device outputs anr  if  is greater than
zero, and anl  otherwise. From this behavior, the graph in Figure 6 plots the number of consecu-
tive r 's versus the number of consecutivel 's. The diagonal line is indicative of a context-free lan-

x x θ ytanh−( )tanh=
y y θ xtanh+( )tanh=

w 4w 1 w−( )=
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FIGURE 6.The two symbol discrimination of the variable rotational speed
system.
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guage as a simple corollary to the pumping lemma for regular languages (Hopcroft and Ullman,
1979).

If the underlying language is regular then according to the pumping lemma one would expect
to find pumped revisions ofr nl n, i.e., there exists some assignment of , , and  such that

r nl n that indicates that the set of strings , for , is also in the language. Since
the graph records the number of consecutiver ’s versus the number of consecutivel ’s, the
relationship constrains straight lines in the graph to be either vertical, as in the case of  being all
l ’s, or horizontal, as in the case of  being allr ’s. If  is a string of the formr al b, then the graph
would not contain any straight lines. A formal proof appears in the appendix.

When the granularity of the measurement device changes from two regions to three, we see a
parallel change in the class of the measurement sequence from context-free to context-sensitive.
Figure 7 shows the relationship between the number of consecutiver 's, consecutivec 's, and con-
secutivel 's. As in the previous case, one can interpret the diagonal line in the graph as the foot-
print of a context-sensitive generator.

Discussion: The Observers’ Paradox

The preceding example suggests a paradox: the variable speed rotator has interpretations both as a

u v w
uvw = uviw i 0>

uviw
v

v v

FIGURE 7.The three symbol discrimination of the variable system.
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context-free generator and as a context-sensitive generator, depending upon measurement granu-
larity. Yet how can this be if the computational complexity class is an inherent property of a phys-
ical system, like mass or temperature? What attribute of the rotator is responsible for the
generative capacity of this system? There is no pushing and popping nonterminal symbols from
an explicit stack. The rotator, however, does have a particular invariant: equal angles are swept in
equal time. By dividing the orbit of the point into two equal halves we have ensured that the sys-
tem will spend almost the same amount of time in each decision region. This constraint “balances
the parentheses” in our measurement sequence. One may argue that the rotational velocity and the
current angle together implement the stack and therefore claim that the stack is really being used.
Such an argument ignores the properties of the stack, namely the ability to arbitrarily push and
pop symbols. Claims regarding an internal Turing machine tape are similarly misguided.

The decision of the observer to break the infinite sequence of symbols into sentences can also
affect the complexity class. Similar arguments for sentences of the formr nl n+ar n+b,
( ) gives rise to a context-sensitive language. From this perspective, we can see that
Crutchfield and Young biased the languages they found by assuming closure under substrings.
The assumption “if string  is in language  then all substrings of  are also in ” affected the
induced minimal automata and criticality languages.

In other words, the computational complexity class cannot be an intrinsic property of a
physical system: it emerges from the interaction of system state dynamics and measurement as
established by an observer. The complexity class of a system is an aspect of the property com-
monly referred to as computational complexity, a property we define as the union of observed
complexity classes over all observation methods. This definition undermines the traditional notion
of system complexity, namely that systems have unique well-defined computational complexities.
Consider the case of a sphere painted red on one side and blue on the other. Depending upon the
viewing angle, an observer will report that the ball is either red, blue, or dual colored. It is a mis-
take, however, to claim that “redness”, in exclusion of “blueness”, is an intrinsic property of the
ball. Rather, “color” is a property of the ball and “redness” and “blueness” are mere aspects of this
property.

An observation such as the one described in this paper should not be surprising considering
the developments in physics during the first half of this century. The observation methods
described above can select computational complexity in the same manner that observation of a
quantum phenomenon collapses its wave function of possible values. Specifically, the wave/parti-
cle duality of radiation is an example of how observation can affect the apparent properties of a
system. Depending upon experimental setup, a beam of light can either display wave-like diffrac-
tion or particle-like scattering.

As shown above, strategic selection of measurement devices can induce an infinite collection
of languages from many different complexity classes. For a single physical system, the choice of
method and granularity of observation also “selects” the computational complexity of a physical
system.

Conclusion

The goal of most modelers in cognitive science has been to build computational models that can

a b, C<

x L x L
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account for the discrete measurements of input to and output from a target system. The holistic
combination of the organism and symbolizing observer can create apparent computational sys-
tems independent of the actual internal behavior producing processes. Our examples show that the
resulting computational model embodies an apparent system that circumscribes the target pro-
cesses and the measurement devices. The apparent system has apparent inputs and outputs given
by the symbolic inputs to and outputs from the computational model. For both input and output,
the one-to-many mappings entailed by symbolization are not unique and can have simultaneous
multiple symbol reassignments depending upon the observer. As the multiple interpretations of
the rotator shows, these reassignments can change the computational complexity class of this
apparent system.

We believe the results described above have relevance for cognitive science. Recall that both
the Physical Symbol System Hypothesis and generative linguistics rest on an underlying assump-
tion of the intrinsic nature of computational complexity classes. It suggests, on the surface, the
irrelevancy of the hierarchy of formal languages and automata as accounts of complexity in phys-
ical systems. At a deeper level, it implies that we cannot know the complexity class of the brain’s
behavior without establishing an observer since the brain itself is a physical system. Thus the
Physical Symbol System Hypothesis relies on an unmentioned observer to establish that an ant
following a pheromone trail is not computational while problem-solving by humans is. The neces-
sary and sufficient conditions of universal computation in the Physical Symbol System Hypothe-
sis provide no insight into cognitive behavior; rather, it implies that humans can write down
behavioral descriptions requiring universal computation to simulate.

Even the computational intractability of models of linguistic competence (e. g., Barton, et al.,
1987) is dependent on a particular symbolization of human behavior, not an underlying mechani-
cal capacity. This highlights the groundless nature of rejections of mathematical models solely on
claims of insufficient computational complexity. Our work suggests that alternative mechanisms
and formalisms that exhibit apparent complexities of the sort attributed to the “language module”
should also be explored.

As our ability to establish good measurements has increased, we now know that there are
many areas in nature where unbounded dependencies and systematic forms of recursive structur-
ing occur. The genome code, the immunological system, and botanical growth are but a few
examples that are proving as complex as human languages. Physics was able to accept wave/par-
ticle duality as a product of observation. It is only cognitive science that presumes the “special-
ness” of language and human mental activity to justify a different set of scientific tools and
explanations based upon the formal symbol manipulation capacity of computational models. To
truly understand cognition, we may have to stop relying on symbolic models with fixed complex-
ity classes and turn to explanations whose apparent complexity matches our observations.
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Notes

1 Cage (1969, p. 7)
2 Chomsky (1957, p. 24).
3 Newell and Simon (1976, p. 116).
4 This becomes crucial when trying to measure an apparent continuous quantity like tempera-

ture, velocity, or mass. Recording continuous signals simply postpones the eventual discreti-
zation. Rather than measuring the original event, one measures its analog.

5 The probability of the point landing on the boundary is zero and can arbitrarily be assigned to
either category without affecting the results below.
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Appendix

This appendix contains both the formal derivation of the existence of context-free and context-
sensitive interpretations of the rotator, and a discussion regarding the inductions of language
classes from graphs of the relationship between runs of symbols.

The Rotator
The derivation of the languages observed in the rotator are described here. First, we show that

the two region case produces a context-free language. The derivation of the three region case par-
allels this derivation.

The specific ordering of symbols in a long sequence of multiple rotations is dependent upon
the initial, assumed random, rotational angle of the system. For a fixed rotational velocity (rota-
tions per time unit), , and sampling rate, , the observed system will generate sen-

tences of the form {r nl m-n}, where , , and  is a random

variable such that . The value of  embodies the slippage of  and  due to incommen-

surate rotational velocities and sampling rates. If  is an integer multiple of , then no matter the
value of  then values of  and  will be constant. If  is an irrational multiple of , then the
current value of  will produce minor (no more than 1) variation in the value of  and .

For a fixed sampling rate, each rotational velocity specifies up to three sentences,

{ r nl n, r nl n+1, r n+1l n| } that repeat in an arbitrary manner according to
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the divisibility of  and . We can then induce a language from a population of rotators with dif-

ferent rotational velocities, thus .  contains all sentences of the form

{ r nl n, r nl n+1,r n+1l n}, . The resulting language can be described by thecontext-free gram-
mar

({S},{ r ,l },S,{S->r ,S->l ,S->rl ,S->r Sl }).

No regular grammar can describe this language due to the unbounded dependency between
the number of r’s and l’s. Therefore  is a context-free language.

The three region case is similar. For a fixed rotational velocity, , and sampling rate, s,

( ) the observed system will generate sentences of the form {r ncm-nl k-n-m}, where

, , and . For a fixed sampling rate, each

rotational velocity specifies up to seven sentences,r ncnl n, r ncnl n+1, r ncn+1l n, r n+1cnl n,
r ncn+1l n+1, r n+1cnl n+1, r n+1cn+1l n. Let  equal the union of all sentences generated from the

rotational velocities in . As before, .  contains all sentences of the

form r ncnl n, r ncnl n+1, r ncn+1l n, r n+1cnl n, r ncn+1l n+1, r n+1cnl n+1, and r n+1cn+1l n,
where . The resulting language can be described by thecontext-sensitive grammar

Since  is the finite union of several context-sensitive language related tor ncnl n, no con-
text-free grammar can describe this language. Therefore,  is a context-sensitive language.

An Application of the Pumping Lemma
Determining if a language is context-free is hard enough when you have a mathematical descrip-
tion in front of you, but what do you do when you have to answer this question about a set of
strings defined by a set of examples? To solve this problem in the context of this paper, we have
focused on a particular structure found in a sample of strings, namely pairs of run lengths for sym-
bols in the language. The regularities present in these strings allows us to rule out classes of
automata capable of generating the observed strings.

The languages we examine in this paper possess two important properties:

Property 1: Each string has one run, or subsequence of the same symbol, for each symbol in
the language.

Property 2: The runs are always in the same order.
Consider, for example, the stringrrrrlll . This string is in the language due to Property 1

since it contains one run ofr ’s and one run ofl ’s, while rrrrllllrr  is not in the language
since it has two runs ofr ’s. According to Property 2, ifrrrrlll  is in the language, thenllll-
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rrrr  is not.
The first language we are interested in comes from measurements based on two region. The

strings in this language are from the strings defined byr nl m. One way of representing this lan-
guage is by plotting points on a Cartesian grid where the (x,y) location is determined by the num-
ber of r ’s and the number ofl ’s in each string. With help from the pumping lemma for regular
languages, a few predictions can be made about this graph when  is large, if the underlying
language is regular. (The quantity  is large when it is greater than the number of states in the
minimal finite state generator for the language.) In this case, one would expect to find pumped
revisions ofr nl m; there exists some assignment of , , and  such that r nl m in that

the set of strings , for , is also in the language. Since the graph plots number of consec-

utive r ’s versus the number of consecutivel ’s, the  relationship constrains straight lines in
the graph to be either vertical, as in the case of  being alll ’s, or horizontal, as in the case of

being allr ’s. The partition  can not be a string of the formr al b, because  would violate the
general properties of our languages. Even in the general case, such a partition would lead to
graphs without straight lines.

The straight line seen in the empirical data isdiagonal. Because neither horizontal or vertical
lines are present in the graph, we are forced to conclude that the underlying finite state generator
for this language either has a very large number of states, or it simply does not exist. The former is
ruled out if we assume that the diagonal structure extends to strings of every length.

A similar argument can be made against the context-freeness of the language produced by the
three region measurement system. As before, the elements of the language are represented on a
lattice according to the run lengths of their substrings. A three dimensional lattice, however,
replaces the two dimensional lattice of the previous case. Likewise, constraints on straight lines
emerge from the intersection of the set of strings predicted by the pumping lemma for context-free
languages and set of strings described byr ncml k. If the language is the product of a push down
automata, one could see straight lines in which one or two dimensions are varied. But the major
diagonal exhibited by the data from the rotator system implies either a large number of states in
the push down automata or one does not exist. The former is ruled out again if we assume that the
diagonal structure extends to strings of every length.
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