
An Evolutionary Algorithm that Constructs
Recurrent Neural Networks

Peter J. Angeline, Gregory M. Saunders and Jordan B. Pollack
Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210
pja@cis.ohio-state.edu

saunders@cis.ohio-state.edu
pollack@cis.ohio-state.edu

Abstract

Standard methods for inducing both the structure and weight values of recurrent neural
networks fit an assumed class of architectures to every task. This simplification is neces-
sary because the interactions between network structure and function are not well under-
stood. Evolutionary computation, which includes genetic algorithms and evolutionary
programming, is a population-based search method that has shown promise in such com-
plex tasks. This paper argues that genetic algorithms are inappropriate for network acqui-
sition and describes an evolutionary program, called GNARL, that simultaneously
acquires both the structure and weights for recurrent networks. This algorithm’s empirical
acquisition method allows for the emergence of complex behaviors and topologies that are
potentially excluded by the artificial architectural constraints imposed in standard network
induction methods.

To Appear in:

IEEE Transactions on Neural Networks

The Ohio State University July 16, 1993 1

An Evolutionary Algorithm that Constructs
Recurrent Neural Networks

Peter J. Angeline, Gregory M. Saunders and Jordan B. Pollack
Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210
pja@cis.ohio-state.edu

saunders@cis.ohio-state.edu
pollack@cis.ohio-state.edu

Abstract

Standard methods for inducing both the structure and weight values of recurrent neural
networks fit an assumed class of architectures to every task. This simplification is neces-
sary because the interactions between network structure and function are not well under-
stood. Evolutionary computation, which includes genetic algorithms and evolutionary
programming, is a population-based search method that has shown promise in such com-
plex tasks. This paper argues that genetic algorithms are inappropriate for network acqui-
sition and describes an evolutionary program, called GNARL, that simultaneously
acquires both the structure and weights for recurrent networks. This algorithm’s empirical
acquisition method allows for the emergence of complex behaviors and topologies that are
potentially excluded by the artificial architectural constraints imposed in standard network
induction methods.

1.0 Introduction

In its complete form, network induction entails bothparametric andstructural learning [1],
i.e., learning both weight values and an appropriate topology of nodes and links. Current methods
to solve this task fall into two broad categories.Constructive algorithms initially assume a simple
network and add nodes and links as warranted [2-8], whiledestructive methods start with a large
network and prune off superfluous components [9-12]. Though these algorithms address the prob-
lem of topology acquisition, they do so in a highly constrained manner. Because they monotoni-
cally modify network structure, constructive and destructive methods limit the traversal of the
available architectures in that once an architecture has been explored and determined to be insuf-
ficient, a new architecture is adopted, and the old becomes topologically unreachable. Also, these
methods often use only a single predefined structural modification, such as “add a fully connected
hidden unit,” to generate successive topologies. This is a form ofstructural hill climbing, which is
susceptible to becoming trapped at structural local minima. In addition, constructive and destruc-
tive algorithms make simplifying architectural assumptions to facilitate network induction. For
example, Ash [2] allows only feedforward networks; Fahlman [6] assumes a restricted form of
recurrence, and Chen et al. [7] explore only fully connected topologies. This creates a situation in
which the task is forced into the architecture rather than the architecture being fit to the task.

The Ohio State University July 16, 1993 2

These deficiencies of constructive and destructive methods stem from inadequate methods for
assigning credit to structural components of a network. As a result, the heuristics used are overly-
constrained to increase the likelihood of finding any topology to solve the problem. Ideally, the
constraints for such a solution should come from the task rather than be implicit in the algorithm.

This paper presents GNARL, a network induction algorithm that simultaneously acquires both
network topology and weight values while making minimal architectural restrictions and avoiding
structural hill climbing. The algorithm, described in section 3, is an instance of evolutionary pro-
gramming [13, 14], a class of evolutionary computation that has been shown to perform well at
function optimization. Section 2 argues that this class of evolutionary computation is better suited
for evolving neural networks than genetic algorithms [15, 16], a more popular class of evolution-
ary computation. Finally, section 4 demonstrates GNARL’s ability to create recurrent networks
for a variety of problems of interest.

2.0 Evolving Connectionist Networks

Evolutionary computationprovides a promising collection of algorithms for structural and
parametric learning of recurrent networks [17]. These algorithms are distinguished by their reli-
ance on apopulation of search space positions, rather than a single position, to locate extrema of a
function defined over the search space. During one search cycle, orgeneration, the members of
the population are ranked according to afitness function, and those with higher fitness are proba-
bilistically selected to becomeparents in the next generation. New population members, called
offspring, are created using specializedreproduction heuristics. Using the population, reproduc-
tion heuristics, and fitness function, evolutionary computation implements a nonmonotonic search
that performs well in complex multimodal environments. Classes of evolutionary computation
can be distinguished by examining the specific reproduction heuristics employed.

Genetic algorithms (GAs) [15, 16] are a popular form of evolutionary computation that rely
chiefly on the reproduction heuristic ofcrossover.1 This operator forms offspring by recombining
representational components from two members of the population without regard to content. This
purely structural approach to creating novel population members assumes that components of all
parent representations may be freely exchanged without inhibiting the search process.

Various combinations of GAs and connectionist networks have been investigated. Much
research concentrates on the acquisition of parameters for a fixed network architecture (e.g., [18 -
21]). Other work allows a variable topology, but disassociates structure acquisition from acquisi-
tion of weight values by interweaving a GA search for network topology with a traditional para-
metric training algorithm (e.g., backpropagation) over weights (e.g., [22, 23]). Some studies
attempt to coevolve both the topology and weight values within the GA framework, but as in the
connectionist systems described above, the network architectures are restricted (e.g., [24 - 26]). In
spite of this collection of studies, current theory from both genetic algorithms and connectionism
suggests that GAs are not well-suited for evolving networks. In the following section, the reasons
for this mismatch are explored.

1. Genetic algorithms also employ other operators to manipulate the population, including a form of mutation, but
their distinguishing feature is a heavy reliance on crossover.

The Ohio State University July 16, 1993 3

2.1 Evolving Networks with Genetic Algorithms

Genetic algorithms create new individuals by recombining the representational components of
two member of the population. Because of this commitment to structural recombination, GAs typ-
ically rely on two distinct representational spaces (Figure 1).Recombination space, usually
defined over a set of fixed-length binary strings, is the set of structures to which the genetic oper-
ators are applied. It is here that the search actually occurs.Evaluation space, typically involving a
problem-dependent representation, is the set of structures whose ability to perform a task is evalu-
ated. In the case of using GAs to evolve networks, evaluation space is comprised of a set of net-
works. An interpretation functionmaps between these two representational spaces. Any set of
finite-length bit strings cannot represent all possible networks, thus the evaluation space is
restricted to a predetermined set of networks. By design, the dual representation scheme allows
the GA to crossover the bit strings without any knowledge of their interpretation as networks. The
implicit assumption is that the interpretation function is defined so that the bit strings created by
the dynamics of the GA will map to successively better networks.

The dual representation of GAs is an important feature for searching in certain environments.
For instance, when it is unclear how to search the evaluation space directly, and when there exists
an interpretation function such that searching the space of bit strings by crossover leads to good
points in evaluation space, then the dual representation is ideal. It is unclear, however, that there
exists an interpretation function that makes dual representation beneficial for evolving neural net-
works. Clearly, the choice of interpretation function introduces a strong bias into the search, typi-
cally by excluding many potentially interesting and useful networks (another example of forcing

Evaluation
space

 Recombination
space

Interpretation
function

Structure
space

Crossover

Figure 1. The dual representation scheme used in genetic algorithms. The interpretation function maps
between the elements in recombination space on which the search is performed and the subset of structures
that can be evaluated as potential task solutions.

The Ohio State University July 16, 1993 4

the task into an architecture). Moreover, the benefits of having a dual representation hinge on
crossover being an appropriate evolutionary operator for the task for some particular interpreta-
tion function; otherwise, the need to translate between dual representations is an unnecessary
complication.

Characterizing tasks for which crossover is a beneficial operator is an open question. Current
theory suggests that crossover will tend to recombine short, connected substrings of the bit string
representation that correspond to above-average task solutions when evaluated [16, 15]. These
substrings are calledbuilding blocks, making explicit the intuition that larger structures with high
fitness are built out of smaller structures with moderate fitness. Crossover tends to be most effec-
tive in environments where the fitness of a member of the population is reasonably correlated with
the expected ability of its representational components [27]. Environments where this is not true
are calleddeceptive [28].

There are three forms of deception when using crossover to evolve connectionist networks.
The first involves networks that share both a common topology and common weights. Because
the interpretation function may be many-to-one, two such networks need not have the same bit
string representation (see Figure 2). Crossover will then tend to create offspring that contain
repeated components, and lose the computational ability of some of the parents’ hidden units. The

Interpretation
function

Network
space

 Recombination
space

Crossover Evaluation
space

A

B

Figure 2. The competing conventions problem [29]. Bit strings A and B map to structurally and computationally
equivalent networks that assign the hidden units in different orders. Because the bit strings are distinct, crossover
is likely to produce an offspring that contains multiple copies of the same hidden node, yielding a network with
less computational ability than either parent.

The Ohio State University July 16, 1993 5

resulting networks will tend to perform worse than their parents because they do not possess key
computational components for the task. Schaffer et al. [29] term this thecompeting conventions
problem, and point out that the number of competing conventions grows exponentially with the
number of hidden units.

The second form of deception involves two networks with identical topologies but different
weights. It is well known that for a given task, a single connectionist topology affords multiple
solutions for a task, each implemented by a uniquedistributed representation spread across the
hidden units [30, 31]. While the removal of a small number of nodes has been shown to effect
only minor alterations in the performance of a trained network [30, 31], the computational role
each node plays in the overall representation of the task solution is determined purely by the pres-
ence and strengths of its interconnections. Furthermore, there need be no correlation between dis-
tinct distributed representations over a particular network architecture for a given task. This
seriously reduces the chance that an arbitrary crossover operation between distinct distributed
representations will construct viable offspringregardless of the interpretation function used.

Finally, deception can occur when the parents differ topologically. The types of distributed
representations that can develop in a network vary widely with the number of hidden units and the
network’s connectivity. Thus, the distributed representations of topologically distinct networks
have a greater chance of being incompatible parents. This further reduces the likelihood that
crossover will produce good offspring.

In short, for crossover to be a viable operator when evolving networks, the interpretation func-
tion must somehow compensate for all the types of deceptiveness described above. This suggests
that the complexity of an appropriate interpretation function will more than rival the complexity
of the original learning problem. Thus, the prospect of evolving connectionist networks with
crossover appears limited in general, and better results should be expected with reproduction heu-
ristics that respect the uniqueness of the distributed representations. This point has been tacitly
validated in the genetic algorithm literature by a trend towards a reduced reliance on binary repre-
sentations when evolving networks (e.g. [32, 33]). Crossover, however, is still commonplace.

2.2 Networks and Evolutionary Programming

Unlike genetic algorithms, evolutionary programming (EP) [14,34] defines representation-
dependent mutation operators that create offspring within a specific locus of the parent (see Figure
3). EP’s commitment to mutation as the sole reproductive operator for searching over a space is
preferable when there is no sufficient calculus to guide recombination by crossover, or when sep-
arating the search and evaluation spaces does not afford an advantage.

Relatively few previous EP systems have addressed the problem of evolving connectionist
networks. Fogel et al. [35] investigate training feedforward networks on some classic connection-
ist problems. McDonnell and Waagen [36] use EP to evolve the connectivity of feedforward net-
works with a constant number of hidden units by evolving both a weight matrix and a
connectivity matrix. Fogel [14], [37] uses EP to induce three-layer fully-connected feedforward
networks with a variable number of hidden units that employ good strategies for playing Tic-Tac-
Toe.

The Ohio State University July 16, 1993 6

In each of the above studies, the mutation operator alters the parameters of networkη by the
function:

(EQ 1)

wherew is a weight,ε(η) is the error of the network on the task (typically the mean squared
error),α is a user-defined proportionality constant, andN(µ, σ2) is a gaussian variable with mean
µ and varianceσ2. The implementations of structural mutations in these studies differ somewhat.
McDonnell and Waagen [36] randomly select a set of weights and alters their values with a prob-
ability based on the variance of the incident nodes’ activation over the training set; connections
from nodes with a high variance having less of a chance of being altered. The structural mutation
used in [14, 37] adds or deletes a single hidden unit with equal probability

Evolutionary programming provides distinct advantages over genetic algorithms when evolv-
ing networks. First, EP manipulates networks directly, thus obviating the need for a dual represen-
tation and the associated interpretation function. Second, by avoiding crossover between
networks in creating offspring, the individuality of each network’s distributed representation is
respected. For these reasons, evolutionary programming provides a more appropriate framework
for simultaneous structural and parametric learning in recurrent networks. The GNARL algo-
rithm, presented in the next section and investigated in the remainder of this paper, describes one
such approach.

3.0 The GNARL Algorithm

GNARL, which stands for GeNeralized Acquisition of Recurrent Links, is an evolutionary
algorithm that nonmonotonically constructs recurrent networks to solve a given task. The name

Structure
space Locus of

mutation

Mutation
operation

Figure 3. The evolutionary programming approach to modeling evolution. Unlike genetic algorithms,
evolutionary programs perform search in the space of networks. Offspring created by mutation remain within a
locus of similarity to their parents.

w w N 0 αε η(),()+ w η∈∀=

The Ohio State University July 16, 1993 7

GNARL reflects the types of networks that arise from a generalized network induction algorithm
performing both structural and parametric learning. Instead of having uniform or symmetric
topologies, the resulting networks have “gnarled” interconnections of hidden units which more
accurately reflect constraints inherent in the task.

The general architecture of a GNARL network is straightforward. The input and output nodes
are considered to be provided by the task and are immutable by the algorithm; thus each network
for a given task always hasmin input nodes andmout output nodes. The number of hidden nodes
varies from 0 to a user-supplied maximumhmax. Bias is optional; if provided in an experiment, it
is implemented as an additional input node with constant value one. All non-input nodes employ
the standard sigmoid activation function. Links use real-valued weights, and must obey three
restrictions:

R1: There can be no linksto an input node.
R2: There can be no linksfrom an output node.
R3: Given two nodesx and y, there is at most one link fromx to y.

Thus GNARL networks may have no connections, sparse connections, or full connectivity. Con-
sequently, GNARL’s search space is:

S = {η: η is a network with real-valued weights,
η satisfiesR1-R3,
η hasmin + b input nodes, where b=1 if a bias node is provided, and 0 otherwise,
η hasmoutoutput nodes,
η hasi hidden nodes, 0≤ i ≤ hmax}

R1-R3 are strictly implementational constraints. Nothing in the algorithm described below hinges
onS being pruned by these restrictions.

3.1 Selection, Reproduction and Mutation of Networks

GNARL initializes the population with randomly generated networks (see Figure 4). The
number of hidden nodes for each network is chosen from a uniform distribution over a user-sup-

min + b mout

at most hmax

Bias

input
nodes nodes

output

hidden nodes
Figure 4. Sample initial network. The number of input nodes (min) and number of output nodes (mout) is fixed
for a given task. The presence of a bias node (b = 0 or 1) as well as the maximum number of hidden units (hmax)
is set by the user. The initial connectivity is chosen randomly (see text). The disconnected hidden node does not
affect this particular network’s computation, but is available as a resource for structural mutations.

The Ohio State University July 16, 1993 8

plied range. The number of initial links is chosen similarly from a second user-supplied range.
The incident nodes for each link are chosen in accordance with the structural mutations described
below. Once a topology has been chosen, all links are assigned random weights, selected uni-
formly from the range [-1, 1]. There is nothing in this initialization procedure that forces a node to
haveany incident links, let alone for a path to exist between the input and output nodes. In the
experiments below, the number of hidden units for a network in the initial population was selected
uniformly between one and five and the number of initial links varied uniformly between one and
10.

In each generation of search, the networks are first evaluated by a user-supplied fitness func-
tion f: S → R, whereR represents the reals. Networks scoring in the top 50% are designated as
theparents of the next generation; all other networks are discarded. This selection method is used
in many EP algorithms although competitive methods of selection have also been investigated
[14].

Generating an offspring involves three steps: copying the parent, determining the severity of
the mutations to be performed, and finally mutating the copy. Network mutations are separated
into two classes, corresponding with the types of learning discussed in [1].Parametric mutations
alter the value of parameters (link weights) currently in the network, whereasstructural mutations
alter the number of hidden nodes and the presence of links in the network, thus altering the space
of parameters.

3.1.1 Severity of Mutations

The severity of a mutation to a given parent,η, is dictated by that network’s temperature,
T(η):

(EQ 2)

wherefmax is the maximum fitness for a given task. Thus, the temperature of a network is deter-
mined by how close the network is to being a solution for the task. This measure of the network’s
performance is used to anneal the structural and parametric similarity between parent and off-
spring, so that networks with a high temperature are mutated severely, and those with a low tem-
perature are mutated only slightly (cf. [38]). This allows a coarse-grained search initially, and a
progressively finer-grained search as a network approaches a solution to the task, a process
described more concretely below.

3.1.2 Parametric Mutation of Networks

Parametric mutations are accomplished by perturbing each weightw of a networkη with
gaussian noise, a method motivated by [37, 14]. In that body of work, weights are modified as fol-
lows:

(EQ 3)

T η() 1
f η()
fmax

−=

w w N 0 αT η(),()+ w η∈∀=

The Ohio State University July 16, 1993 9

whereα is a user-defined proportionality constant, andN(µ, σ2) is a gaussian random variable as
before. While large parametric mutations are occasionally necessary to avoid parametric local
minima during search, it is more likely they will adversely affect the offspring’s ability to perform
better than its parent. To compensate, GNARL updates weights using a variant of equation 3.
First, theinstantaneous temperature of the network is computed:

(EQ 4)

whereU(0, 1) is a uniform random variable over the interval [0, 1]. This new temperature, vary-
ing from 0 toT(η), is then substituted into equation 3:

(EQ 5)

In essence, this modification lessens the frequency of large parametric mutations without disal-
lowing them completely. In the experiments described below,α is one.

3.1.3 Structural Mutation of Networks

The structural mutations used by GNARL alter the number of hidden nodes and the connec-
tivity between all nodes, subject to restrictionsR1-R3 discussed earlier. To avoid radical jumps in
fitness from parent to offspring, structural mutations attempt to preserve the behavior of a net-
work. For instance, new links are initialized with zero weight, leaving the behavior of the modi-
fied network unchanged. Similarly, hidden units are added to the network without any incident
connections. Links must be added by future structural mutations to determine how to incorporate
the new computational unit. Unfortunately, achieving this behavioral continuity between parent
and child is not so simple when removing a hidden node or link. Consequently, the deletion of a
node involves the complete removal of the node and all incident links with no further modifica-
tion to compensate for the behavioral change. Similarly, deleting a link removes that parameter
from the network.

The selection of which node to remove is uniform over the collection of hidden nodes. Addi-
tion or deletion of a link is slightly more complicated in that a parameter identifies the likelihood
that the link will originate from an input node or terminate at an output node. Once the class of
incident node is determined, an actual node is chosen uniformly from the class. Biasing the link
selection process in this way is necessary when there is a large differential between the number of
hidden nodes and the number of input or output nodes. This parameter was set to 0.2 in the exper-
iments described in the next section.

Research in [14] and [37] uses the heuristic of adding or deleting at most a single fully con-
nected node per structural mutation. Therefore, it is possible for this method is to become trapped
at a structural local minima, although this is less probable than in nonevolutionary algorithms
given that several topologies may be present in the population. In order to more effectively search
the range of network architectures, GNARL uses a severity of mutation for each separate struc-
tural mutation. A unique user-defined interval specifying a range of modification is associated
with each of the four structural mutations. Given an interval of [∆min, ∆max] for a particular struc-
tural mutation, the number of modifications of this type made to an offspring is given by:

T̂

T̂ η() U 0 1,() T η()=

w w N 0 αT̂ η(),()+ w η∈∀=

The Ohio State University July 16, 1993 10

(EQ 6)

Thus the number of modifications varies uniformly over a shrinking interval based on the parent
network’s fitness. In the experiments below, the maximum number of nodes added or deleted was
three while the maximum number of links added or deleted was five. The minimum number for
each interval was always one.

3.2 Fitness of a Network

 In evolving networks to perform a task, GNARL does not require an explicit target vector –
all that is needed is the feedback given by the fitness functionf. But if such a vector is present, as
in supervised learning, there are many ways of transforming it into a measure of fitness. For
example, given a training set {(x1, y1), (x2, y2), ...}, three possible measures of fitness for a net-
work η are sum of square errors (equation 7), sum of absolute errors (equation 8), and sum of
exponential absolute errors (equation 9):

(EQ 7)

(EQ 8)

(EQ 9)

Furthermore, because GNARL explores the space of networks by mutation and selection, the
choice of fitness function does not alter the mechanics of the algorithm. To show GNARL’s flexi-
bility, each of these fitness functions will be demonstrated in the experiments below.

4.0 Experiments

In this section, GNARL is applied to several problems of interest. The goal in this section is to
demonstrate the abilities of the algorithm on problems from language induction to search and col-
lection. The various parameter values for the program are set as described above unless otherwise
noted.

4.1 Williams’ Trigger Problem

As an initial test, GNARL induced a solution for theenable-trigger task proposed in [39].
Consider the finite state generator shown in Figure 5. At each time step the system receives two
input bits, (a, b), representing “enable” and “trigger” signals, respectively. This system begins in
state S1, and switches to state S2 only when enabled by a=1. The system remains in S2 until it is
triggered by b=1, at which point it outputs 1 and resets the state to S1. So, for instance, on an input
stream {(0, 0), (0, 1), (1, 1), (0, 1)}, the system will output {0, 0, 0, 1} and end in S1. This simple
problem allows an indefinite amount of time to pass between the enable and the trigger inputs;

∆min U 0 1,[] T̂ η() ∆max ∆min−()+

yi Out η xi,()−() 2

i
∑

yi Out η xi,()−
i

∑

e
yi Out η xi,()−

i
∑

The Ohio State University July 16, 1993 11

thus no finite length sample of the output stream will indicate the current state of the system. This
forces GNARL to develop networks that can preserve state information indefinitely.

The fitness function used in this experiment was the sum of exponential absolute errors (equa-
tion 9). Population size was 50 networks with the maximum number of hidden units restricted to
six. A bias node was provided in each network in this initial experiment, ensuring that an activa-
tion value of 1 was always available. Note that this does not imply that each node had a nonzero
bias; links to the bias node had to be acquired by structural mutation.

Training began with all two input strings of length two, shown in Table1. After 118 genera-
tions (3000 network evaluations2), GNARL evolved a network which solved this task for the
strings in Table 1 within tolerance of 0.3 on the output units. The training set was then increased
to include all 64 input strings of length three and evolution of the networks was allowed to con-
tinue. After an additional 422 generations, GNARL once again found a suitable network. At this
point, the difficulty of the task was increased a final time by training on all 256 strings of length
four. After another 225 generations (~20000 network evaluations total) GNARL once again found
a network to solve this task, shown in Figure 6b. Note that there are two completely isolated
nodes. Given the fitness function used in this experiment, the two isolated nodes do not effect the
network’s viability. To investigate the generalization of this network, it was tested over all 4096
unique strings of length six. The outputs were rounded off to the nearest integer, testing only the
network’s separation of the strings. The network performed correctly on 99.5% of this novel set,
generating incorrect responses for only 20 strings.

Figure 7 shows the connectivity of the population member with the best fitness for each gener-
ation over the course of the run. Initially, the best network is sparsely-connected and remains
sparsely-connected throughout most of the run. At about generation 400, the size and connectivity

2. Number of networks evaluated = |population| + generations * |population| * 50% of the population removed each
generation, giving 50 + 118 * 50 * 0.5 = 3000 network evaluations for this trial.

a=1→ output 0

a=0→ b=0 →

b=1→ output 1

S1 S2

Start

output 0 output 0

Figure 5. An FSA that defines the enable-trigger task [39]. The system is given a data stream of bit pairs
{(a1, b1), (a2, b2), ...}, and produces an output of 0’s and 1’s. To capture this system’s input/output behavior, a
connectionist network must learn to store state indefinitely.

The Ohio State University July 16, 1993 12

increases dramatically only to be overtaken by the relatively sparse architecture shown in Figure
6b on the final generation. Apparently, this more sparsely connected network evolved more
quickly than the more full architectures that were best in earlier generations. The oscillations
between different network architectures throughout the run reflects the development of such com-
peting architectures in the population.

4.2 Inducing Regular Languages

A current topic of research in the connectionist community is the induction of finite state
automata (FSAs) by networks with second-order recurrent connections. For instance, Pollack [40]
trains sequential cascaded networks (SCNs) over a test set of languages, provided in [41] and

Input
Target
Output

Input
Target
Output

{(0, 0), (0, 0)} {0, 0} {(1, 0), (0, 0)} {0, 0}

{(0, 0), (0, 1)} {0, 0} {(1, 0), (0, 1)} {0, 1}

{(0, 0), (1, 0)} {0, 0} {(1, 0), (1, 0)} {0, 0}

{(0, 0), (1, 1)} {0, 0} {(1, 0), (1, 1)} {0, 1}

{(0, 1), (0, 0)} {0, 0} {(1, 1), (0, 0)} {0, 0}

{(0, 1), (0, 1)} {0, 0} {(1, 1), (0, 1)} {0, 1}

{(0, 1), (1, 0)} {0, 0} {(1, 1), (1, 0)} {0, 0}

{(0, 1), (1, 1)} {0, 0} {(1, 1), (1, 1)} {0, 1}

Table 1. Initial training data for enable-trigger task.

BiasBias

(a) (b)

Figure 6. Connectivity of two recurrent networks found in the enable-trigger experiment. (a) The best network of
generation 1. (b) The best network of generation 765. This network solves the task for all strings of length eight.

The Ohio State University July 16, 1993 13

shown in Table 2, using a variation of backpropagation. An interesting result of this work is that
the number of states used by the network to implement finite state behavior is potentially infinite.
Other studies using the training sets in [41] have investigated various network architectures and
training methods, as well as algorithms for extracting FSAs from the trained architectures [42 -
45].

An explicit collection of positive and negative examples, shown in Table 3, that pose specific
difficulties for inducing the intended languages is offered in [41]. Notice that the training sets are
unbalanced, incomplete and vary widely in their ability to strictly define the intended regular lan-
guage. GNARL’s ability to learn and generalize from these training sets was compared against the
training results reported for the second-order architecture used in [42]. Notice that all the lan-
guages in Table 2 require recurrent network connections in order to induce the language com-
pletely. The type of recurrence needed for each language varies widely. For instance, languages 1
through 4 require an incorrect input be remembered indefinitely, forcing the network to develop
an analog version of a trap state. Networks for language 6, however, must parse and count indi-

100 200 300 400 500

0 to j

1 to j

2 to j

3 to j

4 to j

5 to j

6 to j

7 to j

8 to j

9 to j

Generation number

N
et

w
or

k
co

nn
ec

tiv
ity

Figure 7. Different network topologies explored by GNARL during the first 540 generations on the enable-trigger
problem. The presence of a link between node i and j at generation g is indicated by a dot at position (g, 10 * i + j)
in the graph. Note that because node 3 is the output node, there are no connections from it throughout the run. The
arrow designates the point of transition between the first two training sets.

The Ohio State University July 16, 1993 14

vidual inputs, potentially changing state from accept to reject or vice versa on each successive
input.

The results obtained in [42] are summarized in Table 4. The table shows the number of net-
works evaluated to learn the training set and the accuracy of generalization for the learned net-
work to the intended regular language. Accuracy is measured as the percentage of strings of

Language Description

1 1*

2 (1 0)*

3 no odd length 0 strings anytime
after an odd length 1 string

4 no more than two 0s in a row

5 an even sum of 10s and 01s, pairwise

6 (number of 1s - number of 0s) mod 3 = 0

7 0*1*0*1*

Table 2. Regular languages to be induced.

Language Positive Instances Negative Instances

1
ε, 1, 11, 111, 1111, 11111, 111111, 1111111,
11111111

0, 10, 01, 00, 011, 110, 000, 11111110,
10111111

2
ε, 10, 1010, 101010, 10101010,
10101010101010

1, 0, 11, 00, 01, 101, 100, 1001010, 10110,
110101010

3
ε, 1, 0, 01, 11, 00, 100, 110, 111, 000, 100100,
110000011100001, 111101100010011100

10, 101, 010, 1010, 110, 1011, 10001, 111010,
1001000, 11111000, 0111001101,
11011100110

4
ε, 1, 0, 10, 01, 00, 100100, 001111110100,
0100100100, 11100, 010

000, 11000, 0001, 000000000, 00000, 0000,
11111000011, 1101010000010111,
1010010001

5
ε, 11, 00, 001, 0101, 1010, 1000111101,
1001100001111010, 111111, 0000

1, 0, 111, 010, 000000000, 1000, 01, 10,
1110010100, 010111111110, 0001, 011

6
ε, 10, 01, 1100, 101010, 111, 000000,
0111101111, 100100100

1, 0, 11, 00, 101, 011, 11001, 1111, 00000000,
010111, 10111101111, 1001001001

7
ε, 1, 0, 10, 01, 11111, 000, 00110011, 0101,
0000100001111, 00100, 011111011111, 00

1010, 00110011000, 0101010101, 1011010,
10101, 010100, 101001, 100100110101

Table 3. Training sets for the languages of Table 2 from [41].

The Ohio State University July 16, 1993 15

length 10 or less that are correctly classified by the network. For comparison, the table lists both
the average and best performance of the five runs reported in [42].

This experiment used a population of 50 networks, each limited to at most eight hidden units.
Each run lasted at most 1000 generations, allowing a maximum of 25050 networks to be evalu-
ated for a single data set. Two experiments were run for each data set, one using the sum of abso-
lute errors (SAE) and the other using sum of square errors (SSE). The error for a particular string
was computed only for the final output of the network after the entire string plus three trailing
“null” symbols had been entered, one input per time step. The concatenation of the trailing null
symbols was used to identify the end of the string and allow input of the null string, a method also
used in [42]. Each network had a single input and output and no bias node was provided. The
three possible logical inputs for this task, 0, 1, and null, were represented by activations of -1, 1,
and 0, respectively. The tolerance for the output value was 0.1, as in [42].

Table 5 shows for both fitness functions the number of evaluations until convergence and the
accuracy of the best evolved network. Only four of the runs, each of those denoted by a ‘+’ in the
table, failed to produce a network with the specified tolerance in the allotted 1000 generations. In
the runs using SAE, the two runs that did not converge had not separated a few elements of the
associated training set and appeared to be far from discovering a network that could correctly
classify the complete training set. Both of the uncompleted runs using SSE successfully separated
the data sets but had not done so to the 0.1 tolerance within the 1000 generation limit. Figure 8
compares the number of evaluations by GNARL to the average number of evaluations reported in
[42]. As the graph shows, GNARL consistently evaluates more networks, but not a disproportion-
ate number. Considering that the space of networks being searched by GNARL is much larger
than the space being searched by [42], these numbers appear to be within a tolerable increase.

The graph of Figure 9compares the accuracy of the GNARL networks to theaverage accuracy
found in [42] over five runs. The GNARL networks consistently exceeded the average accuracy
found in [42].

Language
Average

evaluations
Average %
accuracy

Fewest
evaluations

Best %
 accuracy

1 3033.8 88.98 28 100.0

2 4522.6 91.18 807 100.0

3 12326.8 64.87 442 78.31

4 4393.2 42.50 60 60.92

5 1587.2 44.94 368 66.83

6 2137.6 23.19 306 46.21

7 2969.0 36.97 373 55.74

Table 4. Speed and generalization results reported by [42] for learning the data sets of Table 3.

The Ohio State University July 16, 1993 16

These results demonstrate GNARL’s ability to simultaneously acquire the topology and
weights of recurrent networks, and that this can be done within a comparable number of network
evaluations as training a network with static architecture on the same task. GNARL also appears
to generalize better consistently, possibly due to its selective inclusion and exclusion of some
links.

Language
Evaluations

(SAE)
% Accuracy

(SAE)
Evaluations

(SSE)
% Accuracy

(SSE)

1 3975 100.00 5300 99.27

2 5400 96.34 13975 73.33

3 25050+ 58.87 18650 68.00

4 15775 92.57* 21850 57.15

5 25050+ 49.39 22325 51.25

6 21475 55.59* 25050+ 44.11

7 12200 71.37* 25050+ 31.46

Table 5. Speed and generalization results for GNARL to train recurrent networks to recognize the data sets of
Table 3.

Result from [42]

SSE fitness

SAE fitness

Key

1 2 3 4 5 6 7

5000

10000

15000

20000

25000
E

va
lu

at
io

ns

Training Set
Figure 8. The number of network evaluations required to learn the seven data sets of Table 3. GNARL (using
both SAE and SSE fitness measures) compared to the average number of evaluations for the five runs described
in [42].

The Ohio State University July 16, 1993 17

4.3 The Ant Problem

GNARL was tested on a complex search and collection task – theTracker task described in
[46], and further investigated in [47]. In this problem, a simulated ant is placed on a two-dimen-
sional toroidal grid that contains a trail of food. The ant traverses the grid, collecting any food it
contacts along the way. The goal of the task is to discover an ant which collects the maximum
number of pieces of food in a given time period. (Figure 10).

Following [46], each ant is controlled by a network with two input nodes and four output
nodes (Figure 11). The first input node denotes the presence of food in the square directly in front
of the ant; the second denotes the absence of food in this same square, restricting the possible
legal inputs to the network to (1, 0) or (0, 1). Each of the four output units corresponds to a unique
action: move forward one step, turn left 90°, turn right 90°, or no-op. At each step, the action
whose corresponding output node has maximum activation is performed. As in the original study
[46], no-op allows the ant to remain at a fixed position while activation flows along recurrent con-
nections. Fitness is defined as the number of grid positions cleared within 200 time steps. The task
is difficult because simple networks can perform surprisingly well; the network shown in Figure
11 collects 42 pieces of food before spinning endlessly at position A (in Figure 10), illustrating a
very high local maximum in the search space.

The experiment used a population of 100 networks, each limited to at most nine hidden units,
and did not provide a bias node. In the first run (2090 generations), GNARL found a network
(Figure 12b) that clears 81 grid positions within the 200 time steps. When this ant is run for an
additional 119 time steps, it successfully clears the entire trail. To understand how the network
traverses the path of food, consider the simple FSA shown in Figure 13, hand-crafted in [46] as an
approximate solution to the problem. This simple machine receives a score of 81 in the allotted

Result from [42]

SSE fitness

SAE fitness

Key

1 2 3 4 5 6 7

20

40

60

80

100
%

 A
cc

ur
ac

y

Language
Figure 9. Percentage accuracy of evolved networks on languages in Table 2. GNARL (using SAE and SSE
fitness measures) compared to average accuracy of the five runs in [42].

The Ohio State University July 16, 1993 18

200 time steps, and clears the entire trail only five time steps faster than the network in Figure
12b. A step by step comparison indicates there is only a slight difference between the two.
GNARL’s evolved network follows the general strategy embodied by this FSA at all but two
places, marked as positions B and C in Figure 10. Here the evolved network makes a few addi-
tional moves, accounting for the slightly longer completion time.

A

BC

Start

Figure 10. The ant problem. The trail is connected initially, but becomes progressively more difficult to follow.
The underlying 2-d grid is toroidal, so that position “A” is the first break in the trail – it is simple to reach this
point. Positions “B” and “C” indicate the only two positions along the trail where the ant discovered in run 1
behaves differently from the 5-state FSA of [46] (see Figure 13).

Food No food

No-op

+1 +1

Move Left Right

Figure 11. The semantics of the I/O units for the ant network. The first input node denotes the presence of food
in the square directly in front of the ant; the second denotes the absence of food in this same square. This
particular network finds 42 pieces of food before spinning endlessly in place at position P, illustrating a very
deep local minimum in the search space.

The Ohio State University July 16, 1993 19

Figure 14 illustrates the strategy the network uses to implement the FSA by showing the state
of the output units of the network over three different sets. Each point is a triple of the form
(move, right, left).3 Figure 14a shows the result of supplying to the network 200 “food” inputs – a
fixed point that executes “Move.” Figure 14b shows the sequence of states reached when 200 “no
food” signals are supplied to the network – a collection of points describing a limit cycle of length
five that repeatedly executes the sequence “Right, Right, Right, Right, Move.” These two attrac-
tors determine the response of the network to the task (Figure 14c, d); the additional points in Fig-

3. No-op is not shown because it was never used in the final network.

Figure 12. The Tracker Task, first run. (a) The best network in the initial population. Nodes 0 and 1 are input,
nodes 5-8 are output, and nodes 2-4 are hidden nodes. (b) Network induced by GNARL after 2090 generations.
Forward links are dashed; bidirectional links and loops are solid. The light gray connection between nodes 8
and 13 is the sole backlink. This network clears the trail in 319 epochs.

8

7

6

5

4

3

2

1

0

(a)

(b)

6

5

4

3

14

12
11

10

9

8

7

2

13

1

0

The Ohio State University July 16, 1993 20

ure 14c are transients encountered as the network alternates between these attractors. The
differences in the number of steps required to clear the trail between the FSA of Figure 13 and
GNARL’s network arise due to the state of the hidden units when transferring from the “food”
attractor to the “no food” attractor.

However, not all evolved network behaviors are so simple as to approximate an FSA [40]. In a
second run (1595 generations) GNARL induced a network that cleared 82 grid points within the
200 time steps. Figure 15 demonstrates the behavior of this network. Once again, the “food”
attractor, shown in Figure 15a, is a single point in the space that always executes “Move.” The
“no food” behavior, however, is not an FSA; instead, it is a quasiperiodic trajectory of points
shaped like a “D” in output space (Figure 15b). The placement of the “D” is in the “Move / Right”
corner of the space and encodes a complex alternation between these two operations (see Figure
15d).

In contrast, research in [46] uses a genetic algorithm on a population of 65,536 bit strings with
a direct encoding to evolve only the weights of a neural network with five hidden units to solve
this task. The particular network architecture in [46] uses Boolean threshold logic for the hidden
units and an identity activation function for the output units. The first GNARL network was dis-
covered after evaluating a total of 104,600 networks while the second was found after evaluating
79,850. The experiment reported in [46] discovered a comparable network after about 17 genera-
tions. Given [46] used a population size of 65,536 and replaced 95% of the population each gener-
ation, the total number of network evaluations to acquire the equivalent network was 1,123,942.
This is 10.74 and 14.07 times the number of networks evaluated by GNARL in the two runs. In
spite of the differences between the two studies, this significant reduction in the number of evalu-
ations provides empirical evidence that crossover may not be best suited to the evolution of net-
works.

Figure 13. FSA hand-crafted for the Tracker task in [46]. The large arrow indicates the initial state. This
simple system implements the strategy “move forward if there is food in front of you, otherwise turn right four
times, looking for food. If food is found while turning, pursue it, otherwise, move forward one step and
repeat.” This FSA traverses the entire trail in 314 steps, and gets a score of 81 in the allotted 200 time steps.

NoFood/Right

NoFood/Right

NoFood/Right
NoFood/Right

Food/Move

Food/Move

Food/Move

Food/Move

Food/Move

NoFood/Move

The Ohio State University July 16, 1993 21

5.0 Conclusions

Allowing the task to specify an appropriate architecture for its solution should, in principle, be
the defining aspect of the complete network induction problem. By restricting the space of net-
works explored, constructive, destructive, and genetic algorithms only partially address the prob-
lem of topology acquisition. GNARL’s architectural constraintsR1-R3 similarly reduce the search
space, but to a far less degree. Furthermore, none of these constraints is necessary, and their

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
10

20
30

0
10

20
30

0

200

400

0
10

20
30

0
10

20
30

0

00

0

(a) (b)

(c)

(d)

T
im

e

Right

Move

Left

Right

Move

Left

Right

Move

Left

Y

X

Figure 14. Limit behavior of the network that clears the trail in 319 steps. Graphs show the state of the output
units Move, Right, Left. (a) Fixed point attractor that results for sequence of 500 “food” signals; (b) Limit cycle
attractor that results when a sequence of 500 “no food” signals is given to network; (c) All states visited while
traversing the trail; (d) The path of the ant on an empty grid. The Z axis represents time. Note that x is fixed, and
y increases monotonically at a fixed rate. The large jumps in y position are artifacts of the toroidal grid.

The Ohio State University July 16, 1993 22

removal would affect only ease of implementation. In fact, no assumed features of GNARL’s net-
works are essential for the algorithm’s operation. GNARL could even use nondifferentiable acti-
vation functions, a constraint for backpropagation.

GNARL’s minimal representational constraints would be meaningless if not complemented by
appropriate search dynamics to traverse the space of networks. First, unlike constructive and
destructive algorithms, GNARL permits a nonmonotonic search over the space of network topol-

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
.5

1

0

.5
1

.5

.9

0
.5

1

0

.5
1

.5

9

0
10

20
30

0
10

20
30

0

1000

2000

3000

0
10

20
30

0
10

20
30

0

000

00

00

(c)

(b)

(d)

(a)

T
im

e

Right

Move

Left

Right

Move

Left

Right

Move

Left

X

Y

Figure 15. Limit behavior of the network of the second run. Graphs show the state of the output units Move,
Right, Left. (a) Fixed point attractor that results for sequence of 3500 “food” signals; (b) Limit cycle attractor
that results when a sequence of 3500 “no food” signals is given to network; (c) All states visited while
traversing the trail; (d) The path of the ant on an empty grid. The z axis represents time. The ant’s path is
comprised of a set of “railroad tracks.” Along each track, tick marks represent back and forth movement. At
the junctures between tracks, a more complicated movement occurs. There are no artifacts of the toroidal grid
in this plot, all are actual movements (cf. Figure 14d).

The Ohio State University July 16, 1993 23

ogies. Consider that in monotonic search algorithms, the questions ofwhen andhow to modify
structure take on great significance because a premature topological change cannot be undone. In
contrast, GNARL can revisit a particular architecture at any point, but for the architecture to be
propagated it must confer an advantage over other competing topologies. Such a non-linear tra-
versal of the space is imperative for acquiring appropriate solutions because the efficacy of the
various architectures changes as the parametric values are modified.

GNARL allows multiple structural manipulations to a network within a single mutation. As
discussed earlier, constructive and destructive algorithms define a unit of modification, e.g., “add
a fully connected hidden node.” Because such singular structural modifications create a “one-unit
structural horizon” beyond which no information is available, such algorithms may easily fixate
on an architecture that is better than networks one modification step away, but worse than those
two or more steps distant. In GNARL, several nodes and links can be added or deleted with each
mutation, the range being determined by user-specified limits and the current ability of the net-
work. This simultaneous modification of the structural and parametric modifications based on fit-
ness allows the algorithm to discover appropriate networks quickly especially in comparison to
evolutionary techniques that do not respect the uniqueness of distributed representations.

Finally, as in all evolutionary computation, GNARL maintains a population of structures dur-
ing the search. This allows the algorithm to investigate several differing architectures in parallel
while avoiding over-commitment to a particular network topology.

These search dynamics, combined with GNARL’s minimal representational constraints make
the algorithm extremely versatile. Of course, if topological constraints are known a priori, they
should be incorporated into the search.But these should be introduced as part of the task specifi-
cation rather than being built into the search algorithm. Because the only requirement on a fitness
function f is that f: S → R, diverse criteria can be used to rate a network’s performance. For
instance, the first two experiments described above evaluated networks based on a desired input/
output mapping; the Tracker task experiment, however, considered overall network performance,
not specific mappings. Other criteria could also be introduced, including specific structural con-
straints (e.g., minimal number of hidden units or links) as well as constraints on generalization. In
some cases, strong task restrictions can even be implicit in simple fitness functions [48].

The dynamics of the algorithms guided by the task constraints represented in the fitness func-
tion allow GNARL to empirically determine an appropriate architecture. Over time, the continual
cycle of test-prune-reproduce will constrain the population to only those architectures that have
acquired the task most rapidly. Inappropriate networks will not be indefinitely competitive and
will be removed from the population eventually.

Complete network induction must be approached with respect to the complex interaction
between network topology, parametric values, and task performance. By fixing topology, gradient
descent methods can be used to discover appropriate solutions. But the relationship between net-
work structure and task performance is not well understood, and there is no “backpropagation”
through the space of network architectures. Instead, the network induction problem is approached
with heuristics that, as described above, often restrict the available architectures, the dynamics of
the search mechanism, or both. Artificial architectural constraints (such as “feedforwardness”) or
overly constrained search mechanisms can impede the induction of entire classes of behaviors,

The Ohio State University July 16, 1993 24

while forced structural liberties (such as assumed full recurrence) may unnecessarily increase
structural complexity or learning time. By relying on a simple stochastic process, GNARL strikes
a middle ground between these two extremes, allowing the network’s complexity and behavior to
emerge in response to the requirements of the task.

6.0 Acknowledgments

This research has been partially supported by ONR grants N00014-92-J-1195 and N00014-
93-1-0059. We are indebted to Ed Large, Dave Stucki and especially John Kolen for proofreading
help and discussions during the development of this research. Finally, we would like to thank our
anonymous reviewers, and the attendees of Connectfest ’92 for feedback on a preliminary ver-
sions of this work.

7.0 References

[1] A. G. Barto. Connectionist learning for control. In W. T. Miller III, R. S. Sutton, and P. J.
Werbos, editors, Neural Networks for Control, chapter 1, pages 5–58. MIT Press, Cam-
bridge, 1990.

[2] T. Ash. Dynamic node creation in backpropagation networks. Connection Science,
1(4):365–375, 1989.

[3] M. Frean. The upstart algorithm: A method for constructing and training feed-forward neu-
ral networks. Technical Report Preprint 89/469, Edinburgh Physics Dept, 1990.

[4] S. J. Hanson. Meiosis networks. In D. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pages 533–541. Morgan Kaufmann, San Mateo, CA, 1990.

[5] S. E. Fahlman and C. Lebiere. The cascade-correlation architecture. In D. S. Touretsky, edi-
tor, Advances in Neural Information Processing Structures 2, pages 524–532. Morgan Kauf-
mann, San Mateo, CA, 1990.

[6] S. Fahlman. The recurrent cascade-correlation architecture. In R. Lippmann, J. Moody, and
D. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 190–
196. Morgan Kaufmann, San Mateo, CA, 1991.

[7] D. Chen, C. Giles, G. Sun, H. Chen, Y. Less, and M. Goudreau. Constructive learning of
recurrent neural networks. IEEE International Conference on Neural Networks, 3:1196–
1201, 1993.

[8] M. R. Azimi-Sadjadi, S. Sheedvash, and F. O. Trujillo. Recursive dynamic node creation in
multilayer neural networks. IEEE Transactions on Neural Networks, 4(2):242–256, 1993.

[9] M. Mozer and P. Smolensky. Skeletonization: A technique for trimming the fat from a net-
work via relevance assessment. In D. Touretzky, editor, Advances in Neural Information
Processing Systems 1, pages 107–115. Morgan Kaufmann, San Mateo, CA, 1989.

[10] Y. L. Cun, J. Denker, and S. Solla. Optimal brain damage. In D. Touretzky, editor, Advances
in Neural Information Processing Systems 2. Morgan Kaufmann, San Mateo, CA, 1990.

The Ohio State University July 16, 1993 25

[11] B. Hassibi and D. G. Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In S. J. Hanson, J. D. Cowan, and C. L. Giles, editors, Advances in Neural Infor-
mation Processing Systems 5, pages 164–171. Morgan Kaufmann, San Mateo, CA, 1993.

[12] C. W. Omlin and C. L. Giles. Pruning recurrent neural networks for improved generalization
performance. Technical Report Tech Report No 93-6, Computer Science Department, Rens-
selaer Polytechnic Institute, April 1993.

[13] L. J. Fogel, A. J. Owens, and M. J. Walsh. Artificial Intelligence through Simulated Evolu-
tion. John Wiley & Sons, New York, 1966.

[14] D. B. Fogel. Evolving Artificial Intelligence. Ph.D. thesis, University of California, San
Diego, 1992.

[15] J. H. Holland. Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor, MI, 1975.

[16] D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley Publishing Company, Inc., Reading, MA, 1989.

[17] D. B. Fogel. An introduction to simulated evolutionary optimization. This issue.

[18] A. P. Wieland. Evolving neural network controllers for unstable systems. In IEEE Interna-
tional Joint Conference on Neural Networks, pages II-667 – II-673, IEEE Press, Seattle,
WA, 1990.

[19] D. Montana and L. Davis. Training feedforward neural networks using genetic algorithms.
In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pages 762–767, Morgan Kaufmann, San Mateo, CA, 1989.

[20] D. Whitley, T. Starkweather, and C. Bogart. Genetic algorithms and neural networks: Opti-
mizing connections and connectivity. Parallel Computing, 14:347–361, 1990.

[21] R. D. Beer and J. C. Gallagher. Evolving dynamical neural networks for adaptive behavior.
Adaptive Behavior, 1(1):91–122, 1992.

[22] G. F. Miller, P. M. Todd, and S. U. Hegde. Designing neural networks using genetic algo-
rithms. In J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, pages 379–384. Morgan Kaufmann, San Mateo, CA, 1989.

[23] R. K. Belew, J. McInerney, and N. N. Schraudolf. Evolving networks: Using the genetic
algorithm with connectionist learning. Technical Report CS90-174, University of Califor-
nia, San Diego, June 1990.

[24] J. Torreele. Temporal processing with recurrent networks: An evolutionary approach. In R.
K. Belew and L. B. Booker, editors, Fourth International Conference on Genetic Algo-
rithms, pages 555–561. Morgan Kaufmann, San Mateo, California, 1991.

[25] M. A. Potter. A genetic cascade-correlation learning algorithm. In Proceedings of
COGANN-92 International Workshop on Combinations of Genetic Algorithms and Neural
Networks, 1992.

[26] N. Karunanithi, R. Das, and D. Whitley. Genetic cascade learning for neural networks. In
Proceedings of COGANN-92 International Workshop on Combinations of Genetic Algo-
rithms and Neural Networks, 1992.

The Ohio State University July 16, 1993 26

[27] D. E. Goldberg. Genetic algorithms and Walsh functions: Part 2, Deception and its analysis.
Complex Systems, 3:153–171, 1989.

[28] D. E. Goldberg. Genetic algorithms and Walsh functions: Part 1, A gentle introduction.
Complex Systems, 3:129–152, 1989.

[29] J. D. Schaffer, D. Whitley, and L. J. Eshelman. Combinations of genetic algorithms and neu-
ral networks: A survey of the state of the art. In Proceedings of COGANN-92 International
Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992.

[30] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed representations. In D. E.
Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, volume 1: Foundations, pages 77–109. MIT Press, Cam-
bridge, MA, 1986.

[31] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to pronounce english text.
Complex Systems, 1:145–168, 1987.

[32] J. Koza and J. Rice. Genetic generation of both the weights and architecture for a neural net-
work. In IEEE International Joint Conference on Neural Networks, pages II-397 – II-404,
Seattle, WA, IEEE Press, 1991.

[33] R. Collins and D. Jefferson. An artificial neural network representation for artificial organ-
isms. In H. P. Schwefel and R. Manner, editors, Parallel Problem Solving from Nature.
Springer-Verlag, 1991.

[34] D. B. Fogel. A brief history of simulated evolution. In D. B. Fogel and W. Atmar, editors,
Proceedings of the First Annual Conference on Evolutionary Programming, Evolutionary
Programming Society, La Jolla, CA., 1992.

[35] D. B. Fogel, L. J. Fogel, and V. W. Porto. Evolving neural networks. Biological Cybernetics,
63:487–493, 1990.

[36] J. R. McDonnell and D. Waagen. Determining neural network connectivity using evolution-
ary programming. In Twenty-fifth Asilomar Conferences on Signals, Systems, and Comput-
ers, Monterey, CA, 1992.

[37] D. B. Fogel. Using evolutionary programming to create neural networks that are capable of
playing Tic-Tac-Toe. In International Conference on Neural Networks, pages 875–880.
IEEE Press, San Francisco, CA, 1993.

[38] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Sci-
ence, 220:671–680, 1983.

[39] R. J. Williams. Adaptive State Representation and Estimation Using Recurrent Connection-
ist Networks, chapter 4, pages 97–114. MIT Press, Cambridge, MA, 1990.

[40] J. B. Pollack. The induction of dynamical recognizers. Machine Learning, 7:227–252, 1991.

[41] M. Tomita. Dynamic construction of finite automata from examples using hill-climbing. In
Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pages 105–
108, Ann Arbor, MI, 1982.

The Ohio State University July 16, 1993 27

[42] R. L. Watrous and G. M. Kuhn. Induction of finite-state automata using second-order recur-
rent networks. In Advances in Neural Information Processing 4. Morgan Kaufmann, San
Mateo, CA, 1992.

[43] C. L. Giles, G. Z. Sun, H. H. Chen, Y. C. Lee, and D. Chen. Higher order recurrent networks
& grammatical inference. In D. S. Touretsky, editor, Advances in Neural Information Pro-
cessing Systems 2, pages 380-387. Morgan Kaufmann, San Mateo, CA, 1990.

[44] C. L. Giles, C. B. Miller, D. Chen, G. Z. Sun, H. H. Chen, and Y. C. Lee. Extracting and
learning an unknown grammar with recurrent neural networks. In Advances in Neural Infor-
mation Processing 4. Morgan Kaufmann, San Mateo, CA, 1992.

[45] Z. Zeng, R. M. Goodman, and P. Smyth. Learning finite state machines with self-clustering
recurrent networks. Neural Computation, to appear.

[46] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers, R. Korf, C. Taylor, and A. Wang.
Evolution as a theme in artificial life: The genesys/tracker system. In C. G. Langton, C. Tay-
lor, J. D. Farmer, and S. Rasmussen, editors, Artificial Life II: Proceedings of the Workshop
on Artificial Life, pages 549–577. Addison-Wesley, 1991.

[47] J. Koza. Genetic evolution and co-evolution of computer programs. In J. D. F. Christopher
G. Langton, Charles Taylor and S. Rasmussen, editors, Artificial Life II. Addison Wesley
Publishing Company, Reading Mass., 1992.

[48] P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions for com-
plex tasks. In S. Forrest, editor, Genetic Algorithms: Proceedings of the Fifth International
Conference (GA93), Morgan Kaufmann, San Mateo, CA, 1993.

