
Coevolutionary Learning: a Case Study

Hugues Juill�e

Computer Science Department
Brandeis University

Waltham, Massachusetts 02254-9110
hugues@cs.brandeis.edu

Jordan B. Pollack

Computer Science Department
Brandeis University

Waltham, Massachusetts 02254-9110
pollack@cs.brandeis.edu

Abstract

Coevolutionary learning, which involves the
embedding of adaptive learning agents in
a �tness environment that dynamically re-
sponds to their progress, is a potential so-
lution for many technological chicken and
egg problems. However, several impediments
have to be overcome in order for coevolution-
ary learning to achieve continuous progress
in the long term. This paper presents some
of those problems and proposes a framework
to address them. This presentation is illus-
trated with a case study: the evolution of
CA rules. Our application of coevolution-
ary learning resulted in a very signi�cant im-
provement for that problem compared to the
best known results.

1 Introduction

A recurrent issue in the �eld of machine learning is that
the performance of a learning system relies heavily on
the amount of knowledge that has been introduced by
the designer. This knowledge can be expressed in the
form of an appropriate representation, speci�c search
operators, a training set which provides a good gradi-
ent or a special utility function. The success of most
learning systems actually results from all this engineer-
ing e�ort.

However, the goal of machine learning is a system that
can improve itself by continuously capturing and ex-
ploiting new knowledge. The framework which is pre-
sented in this paper to achieve such a goal is based
on a coevolutionary approach. An important factor in
the performance of learning systems is the design of a

training environment. Usually, this training environ-
ment is �xed and constructed by the human designer.
However, when little knowledge is available about the
problem or if this knowledge is di�cult to introduce
in the training environment, learning can become in-
tractable. The approach proposed in this paper to get
round that problem consists of coevolving the train-
ing environment with a population of learners. Start-
ing with simple problems, the training environment
gets more challenging as learners are improving them-
selves. Hopefully, such a setup leads to continuous
progress. For the rest of the paper, we de�ne coevo-

lutionary learning as a search procedure involving a
population of learners coevolving with a population of
problems such that continuous progress results from
this interaction.

In practice, the picture is not that simple. We will dis-
cuss the di�erent issues that are involved to achieve co-
evolutionary learning by considering a particular prob-
lem: the discovery of cellular automata rules to im-
plement a classi�cation task. This problem presents
some interesting properties that provide us with a sim-
ple framework to monitor the dynamics of the search
resulting from di�erent setups. Section 2 describes
this problem. In section 3, an experimental analysis
presents the di�erent impediments to coevolutionary
learning and a solution to address them is proposed in
section 4. Experimental results for the classi�cation
problem are presented in section 5.

2 Description of the Problem

2.1 One-Dimensional Cellular Automata

A one-dimensional cellular automaton (CA) is a linear
wrap-around array composed of N cells in which each
cell can take one out of k possible states. A rule is

20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200
20 40 60 80 100 120 140

20

40

60

80

100

120

140

160

180

200

Figure 1: Three space-time diagrams describing the evolution of CA states: in the �rst two, the CA relaxes to
the correct uniform pattern while in the third one it doesn't converge at all to a �xed point.

Table 1: Performance of di�erent published CA rules and a new best rule for the �c = 1=2 task.

N 149 599 999
Coevolution 0.863 +/- 0.001 0.822 +/- 0.001 0.804 +/- 0.001
Das rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001
ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001
GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001

de�ned for each cell in order to update its state. This
rule determines the next state of a cell given its cur-
rent state and the state of cells in a prede�ned neigh-
borhood. For the model discussed in this paper, this
neighborhood is composed of cells whose distance is at
most r from the central cell. This operation is per-
formed synchronously for all the cells in the CA. From
now on, we will consider that the state of cells is bi-
nary (k = 2), N = 149 and r = 3. This means that

the size of the rule space is 22
2�r+1

= 2128.

Cellular automata have been studied widely as they
represent one of the simplest systems in which complex
emergent behaviors can be observed. This model is
very attractive as a means to study complex systems
in nature. Indeed, the evolution of such systems is
ruled by simple, locally-interacting components which
result in the emergence of global, coordinated activity.

2.2 The Majority Function

This is a density classi�cation task, for which one
wants the state of the cells of the CA to relax to all
0's or all 1's depending on the density of the initial
con�guration (IC) (whether it has more 0's or more
1's), within a maximum of M time steps. Following

[Mitchell et al., 1994], �c denotes the threshold for the
classi�cation task (here, �c = 1=2), � denotes the den-
sity of 1's in a con�guration and �o denotes the density
of 1's in the initial con�guration. Figure 1 presents
three examples of the space-time evolution of a CA.
One with �0 < �c on the left and another with �0 > �c
in the middle for which the CA relaxes to the cor-
rect con�guration. The third one shows an instance
for which the CA doesn't relax to any the two desired
convergence patterns. For each diagram, the initial
con�guration is at the top and the evolution in time
of the state of the CA is represented downward.

The task �c = 1=2 is known to be di�cult. In par-
ticular, it has been proven that no rule exists that
results in the CA relaxing to the correct state for all
possible ICs [Land & Belew, 1995]. Indeed, the den-
sity is a global property of the initial con�guration
while individual cells of the CA have access to local
information only. Discovering a rule that will dis-
play the appropriate computation by the CA with the
highest accuracy is a challenge, and the upper limit
for this accuracy is still unknown. Table 1 describes
the performance for that task for di�erent published
rules and di�erent values of N , along with the perfor-
mance of the new best rule that resulted from the work

presented in this paper. The Gacs-Kurdyumov-Levin
(GKL) rule was designed in 1978 for a di�erent goal
than solving the �c = 1=2 task [Mitchell et al., 1994].
However, for a while it provided the best known per-
formance. [Mitchell et al., 1994] and [Das et al., 1994]
used Genetic Algorithms (GAs) to explore the space
of rules. The main purpose of this work was to
develop a particle-based methodology for the anal-
ysis of the complex behaviors exhibited by CAs.
The GKL and Das rules are human-written while
the Andre-Bennett-Koza (ABK) rule has been dis-
covered using the Genetic Programming paradigm
[Andre et al., 1996]. More recently, [Paredis, 1997] de-
scribes a coevolutionary approach to search the space
of rules and shows the di�culty of coevolving consis-
tently two populations towards continuous improve-
ment. [Capcarrere et al., 1996] also reports that by
changing the speci�cation of the convergence pattern,
a two-state, r = 1 CA exists that can perfectly solve
the density problem in dN=2e time steps.

For the �c = 1=2 task, it is believed that the best
rules are in the domain of the rule space with density
close to 0:5. An intuitive argument to support this
hypothesis is presented in [Mitchell et al., 1993]. It is
also believed that the most di�cult ICs are those with
density close to 0:5.

3 Models for Coevolutionary Search

The idea of using coevolution in search was introduced
by [Hillis, 1992]. In coevolution, individuals are eval-
uated with respect to other individuals instead of a
�xed environment (or landscape). As a result, agents
adapt in response to other agents' behavior. The par-
ticular model of coevolution considered in this paper
is based on two populations for which the �tness of
individuals in each population is de�ned with respect
to the members of the other population. Two cases
can be considered in such a framework, depending on
whether the two populations bene�t from each other
or whether they have di�erent interests. Those two
modes of interaction are called cooperative and com-

petitive respectively. In the following sections, those
modes of interaction are described experimentally us-
ing the �c = 1=2 task in order to stress the di�erent
issues related to coevolutionary learning.

For the experiments presented in this section, we used
an implementation of Genetic Algorithms similar to
the one described in [Mitchell et al., 1994]. Each rule
is coded on a binary string of length 22�r+1 = 128.
One-point crossover is used with a 2% bit mutation

probability. The population size is nR = 200 for rules
and nIC = 200 for ICs. The population of ICs is com-
posed of binary strings of length N = 149. The pop-
ulation of rules and ICs are initialized according to
a uniform distribution over [0:0; 1:0] for the density.
For all the experiments in this paper, the value of M
(the maximum number of time steps) is set to 320
and is kept unchanged. At each generation, the top
95% of each population reproduces to the next gener-
ation and the remaining 5% is the result of crossover
between parents from the top 95% selected using a
�tness proportionate rule. This small generation gap
(the percentage of new individuals) has been used be-
cause of the dynamic �tness landscape. Indeed, a large
generation gap can result in a dramatic change in the
composition of the population. As a consequence, be-
cause of the relative de�nition of the �tness, a lot of
variation in individuals' �tness can occur from one gen-
eration to the other, making the identi�cation of the
most promising individuals very unreliable.

3.1 Cooperation between Populations

In this mode of interaction, improvement on one side
results in positive feedback on the other side. As
a result, there is a reinforcement of the relationship
between the two populations. From a search point
of view, this can be seen as an exploitative strategy.
Agents are not encouraged to explore new areas of the
search space but only to perform local search in order
to further improve the strength of the relationship. In
the cooperative model, a natural de�nition for the �t-
ness of rules (resp. ICs) is the number of ICs (resp.
rules) for which the CA relaxes to the correct state:

f(Ri) =

nICX

j=1

covered(Ri; ICj)

f(ICj) =

nRX

i=1

covered(Ri; ICj)

where covered(Ri; ICj) returns 1 if a CA using rule
Ri and starting from initial con�guration ICj relaxes
to the correct state. Otherwise, it returns 0.

Figure 2 presents the evolution of the density of rules
and ICs for one run using this cooperative model.
Without any surprise, the population of rules and ICs
quickly converge to a domain of the search space where
ICs are easy for rules and rules consistently solve ICs.
As a result, there is little exploration of the search
space. The convergence con�guration depends on the
initial populations, some other runs ended up with low

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

0

20

40

60

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

0

50

100

G
en

er
at

io
n

ICs density

IC

s

Figure 2: Coevolution of CA rules (left) and ICs (right) in a cooperative relationship.

density rules and ICs. This experiment con�rms that
ICs with low or high density are the easiest to classify
since a larger number of rules classify them correctly.

3.2 Competition between Populations

In this mode of interaction, the two populations are in
con
ict. Improvement on one side results in negative
feedback for the other population. The �tness of rules
and ICs de�ned in the cooperative case can be modi�ed
as follows to implement the competitive model:

f(Ri) =

nICX

j=1

covered(Ri; ICj)

f(ICj) =

nRX

i=1

covered(Ri; ICj)

where covered(Ri; ICj) returns the inverse of the orig-
inal function. Here, the goal of rules is to defeat (i.e.
cover) ICs, while the goal of ICs is to defeat rules by
discovering initial con�gurations that are di�cult to
classify. Figure 3 describes a run using this de�nition
of the �tness. Two kind of behaviors can be observed
in this experiment. In a �rst stage, the two popula-
tions exhibit a cyclic behavior. It is a consequence
of the Red Queen e�ect [Cli� & Miller, 1995]: �tness
landscapes are changing as a result of agents of each
population adapting in response to the evolution of
members of the other population. The evaluation of
individuals' performance in this changing environment
makes continuous progress di�cult. A typical conse-
quence is that agents have to learn again what they
already knew in the past. In the context of evolu-
tionary search, this means that domains of the state

space that have already been explored in the past are
searched again. Then, a stable state is reached: in
this case, the population of rules adapts faster than
the population of ICs, resulting in a population focus-
ing only on rules with high density and eliminating
all instances of low density rules (a �nite population
is considered). Then, low density ICs exploit those
rules and overcome the entire population. A similar
experiment is described in [Paredis, 1997].

3.3 Resource Sharing and Mediocre Stable

States

Several techniques have been designed to improve
evolutionary search. Usually they maintain diver-
sity in the population in order to avoid premature
convergence. [Mahfoud, 1995] presents di�erent nich-
ing techniques that achieve this goal. Resource
sharing, �rst introduced in [Rosin & Belew, 1995], is
a technique that we successfully used in the past
[Juill�e & Pollack, 1996]. Resource sharing implements
a coverage-based heuristic by giving a higher payo�
to problems that few individuals can solve. Resource
sharing can be introduced in the competitive model of
coevolution as follows:

f(Ri) =

nICX

j=1

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1PnR

k=1 covered(Rk; ICj)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

0

20

40

60

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

0

20

40

G
en

er
at

io
n

ICs density

IC

s

Figure 3: Coevolution of CA rules (left) and ICs (right) in a competitive relationship.

and

f(ICj) =

nRX

i=1

weight Ri � covered(Ri; ICj)

where:

weight Ri =
1

PnIC
k=1 covered(Ri; ICk)

In this de�nition, the weight of an IC corresponds to
the payo� it returns if a rule covers it. If few rules cover
an IC, this weight will be much larger than if a lot of
rules cover that same IC. The de�nition for the weight
of rules has the same purpose. This framework allows
the presence of multiple niches (or species) in popula-
tions. Figure 4 describes one run for this de�nition of
the �tness. The cyclic behavior which was observed in
the previous section doesn't occur anymore. Instead,
two species coexist in the population of rules: a species
for low density rules and another one for high density
rules. Those two species drive the evolution of ICs
towards the domain of initial con�gurations that are
most di�cult to classify (i.e., �0 = 1=2). However, the
two populations have entered a mediocre stable state.
This means that multiple average performance niches
coexist in both populations in a stable manner. Put in
another way, this can be seen as an equilibrium con�g-
uration in which a number of suboptimal species have
found a way to collude by sharing the total credit be-
tween themselves. Usually, this is a consequence of
some singularities inherent in the problem de�nition
and/or the search procedure. In our example, ICs are
concentrated around the �0 = 1=2 threshold and they
can be divided into two groups: those with density
�0 < 1=2 and those with density �0 > 1=2. This dis-
tribution means that ICs can be exploited consistently

by rules with low and high density that both occur in
the second population (because a CA implementing
a low (resp. high) density rule usually relaxes to all
0's (resp. all 1's) for most ICs). However, this is a
mediocre stable state in the sense that evolved rules
have poor performance with respect to the �c = 1=2
task and there is no pressure towards improvement.
The concept of mediocre stable states is also discussed
in [Pollack et al., 1996].

3.4 Discussion

We have described di�erent models for the coevolu-
tion of two populations. Some of the fundamental im-
pediments to coevolutionary learning have been iden-
ti�ed along with some of the reasons why continuous
progress is di�cult to achieve. It is now clear that none
of these approaches can address successfully the prob-
lem of coevolutionary learning alone. All the rules dis-
covered in those experiments perform poorly since they
never approach the 50% density. The following section
proposes a framework to get around those problems.

Each of the canonical models discussed so far imple-
ments a single speci�c strategy. In the literature, there
has been some successful applications for both the co-
operative and the competitive approaches. However,
those works usually introduce some mechanisms to ad-
dress the problems speci�c to each model. For in-
stance, a noisy evaluation of the �tness can force ex-
ploration in a cooperative model, and an evaluation
of individuals with respect to a set of opponents ex-
tracted from previous generations can limit the cyclic
behavior observed in competitive models (e.g., see
the life-time �tness evaluation technique described in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

0

10

20

30

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

800

1000

1200

1400

0

20

40

60

G
en

er
at

io
n

ICs density

IC

s

Figure 4: Coevolution of CA rules (left) and ICs (right) in a competitive relationship with resource sharing.

[Paredis, 1996] or the \hall of fame" method presented
in [Rosin, 1997]). However, those mechanisms usu-
ally fail to address entirely the fundamental issues dis-
cussed previously.

4 Coevolving the \Ideal" Trainer

4.1 Presentation of our Approach

From the analysis of the experiments presented in sec-
tion 3 at least two reasons seem to prevent continu-
ous progress in coevolutionary search. The �rst one is
that the training environment provided by the popu-
lation of ICs returns little information to the popula-
tion of evolving rules because a stable con�guration is
reached in which the credit is distributed according to
a �xed pattern (e.g., all the ICs are covered by rules).
The second reason is that the dynamics of the search
performed by the two coevolving populations doesn't
drive individuals to the domain of the state space that
contains most promising solutions because there is no
\high-level" strategy to play that role. This is a con-
sequence of the Red Queen e�ect.

Our approach proposes a coevolutionary framework in
which those two issues are addressed as follows:

� the training environment provides at any time a
gradient for search by proposing a variety of prob-
lems covering a range of di�culty. Indeed, if prob-
lems are too di�cult, nobody can solve them. On
the contrary, if they are too easy, everybody can
solve them. In both cases, those problems are use-
less for learning since they provide little feedback.

� a \high-level" strategy allows continuous progress

by preventing the negative e�ects associated with
the Red Queen.

The central idea of this coevolutionary learning ap-
proach consists in exposing learners to problems that
are just beyond those they know how to solve. By
maintaining this constant pressure towards slightly
more di�cult problems, a arms race among learners is
induced such that learners that adapt better have an
evolutionary advantage. The underlying heuristic im-
plemented by this arms race is that adaptability is the
driving force for improvement. The di�culty resides in
the accurate implementation of the concepts presented
above in a search algorithm. So far, our methodology
to implement such a system consists in the construc-
tion of an explicit topology over the space of problems
by de�ning a partial order with respect to the relative
di�culty of problems among each other. In our cur-
rent work, the concept of \relative di�culty" has been
de�ned by exploiting some a priori knowledge about
the task. The de�nition of this topology over the space
of problems makes possible the implementation of the
two goals required in our coevolutionary learning ap-
proach. Indeed, since learners are evaluated against a
known range of di�culty for problems, it is possible to
monitor their progress and to expose them to problems
that are just \a little more di�cult". In our work, this
last concept has been formalized by de�ning empiri-
cally a distance measure. In this framework, learners
are always exposed to a gradient for search and it is
possible to control the evolution of the training envi-
ronment towards more di�cult problems in order to
ensure continuous progress.

In the future, our goal is to eliminate some of those ex-

plicit components by introducing some heuristics that
automatically identify problems that are appropriate
for the current set of learners. The work of Rosin
[Rosin, 1997] already describes some methods to ad-
dress this issue.

4.2 Discussion

As stated previously, the coevolutionary learning
framework introduces a pressure towards adaptabil-
ity. The central assumption is that individuals that
adapt faster than others in order to solve the new chal-
lenges they are exposed to are also more likely to solve
even more di�cult problems. The main di�culty is
to setup a coevolutionary framework that implements
this heuristic accurately and e�ciently.

The new contribution of this work is the idea of main-
taining a gradient for search as one of the underlying
heuristics. In the literature, di�erent approaches have
been proposed to address the issues associated with the
Red Queen e�ect [Paredis, 1996, Rosin, 1997]. How-
ever, to our knowledge, explicit methods to force
progress and to prevent mediocre stable states in the
context of evolutionary search have never been tried.

The idea of introducing a pressure towards adapt-
ability as the central heuristic for search is not new.
Schmidhuber [Schmidhuber, 1995] proposed the Incre-
mental Self-Improvement system in which adaptabil-
ity is the measure that is optimized. The concept
of an ideal trainer is also discussed in [Epstein, 1994]
in the context of game learning. However, this work
addresses the issue of designing the \ideal" training
procedure which would result in high quality players
rather than coevolving the training environment in re-
sponse to the progress of learners.

5 Application to the Discovery of CA

Rules

5.1 Experimental Setup

The approach described in the previous section is ap-
plied to the �c = 1=2 task. It is believed that ICs
become more and more di�cult to classify correctly as
their density gets closer to the �c threshold. Therefore,
our idea is to construct a framework that adapts the
distribution of the density for the population of ICs
as CA-rules are getting better to solve the task. The
following de�nition for the �tness of rules and ICs has

been used to achieve this goal.

f(Ri) =

nICX

j=1

weight ICj � covered(Ri; ICj)

where:

weight ICj =
1PnR

k=1 covered(Rk; ICj)

and

f(ICj) =

nRX

i=1

weight R0

i �E(Ri; �(ICj))�

covered(Ri; ICj)

where:

weight R0

i =
1

PnIC
k=1 E(Ri; �(ICk))� covered(Ri; ICk)

This de�nition implements the competitive relation-
ship with resource sharing. However, a new compo-
nent, namely E(Ri; �(ICj)), has been added in the
de�nition of the ICs' �tness. The purpose of this new
component is to penalize ICs with density �(ICj) if
little information is collected with respect to the rule
Ri. Indeed, we consider that if a rule Ri has a 50%
classi�cation accuracy over ICs with density �(ICj)
then this is equivalent to random guessing and no pay-
o� should be returned to ICj . On the contrary, if
the performance of Ri is signi�cantly better or worse
than the 50% threshold for a given density of ICs this
means that Ri captured some relevant properties to
deal with those ICs. Once again, the idea is that the
training environment should be composed of ICs that
provide useful information to identify good rules from
poor ones. In order to allow continuous progress, our
implementation exploits an intrinsic property of the
�c = 1=2 task. Indeed, it seems that CA-rules that
cover ICs with density �0 < 1=2 (resp. �0 > 1=2) with
high performance will also be very successful over ICs
with density �0

0
< �0 (resp. �0

0
> �0). Therefore, as

ICs become more di�cult, their density is approach-
ing �0 = 1=2 but rules don't have to be tested against
easier ICs. Following this idea, we de�ned E() as the
complement of the entropy of the outcome between a
rule and ICs with a given density:

E(Ri; �(ICj)) = log(2) + p log(p) + q log(q)

where: p is the probability that an IC with density
�(ICj) defeats the rule Ri and q = 1 � p. E() imple-
ments the distance measure discussed in section 4.1.
Its purpose is to maintain the balance between the
search for more di�cult ICs and ICs that can be solved
by rules. In practice, the entropy is evaluated by per-
forming some statistics over the population of ICs.

Table 2: Description of the current best rule and published rules for the �c = 1=2 task.

Coevolution 00010100 01011111 01000000 00000000 00010111 11111100 00000010 00010111
00010100 01011111 00000011 00001111 00010111 11111111 11111111 11010111

Das rule 00000111 00000000 00000111 11111111 00001111 00000000 00001111 11111111
00001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111

ABK rule 00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

GKL rule 00000000 01011111 00000000 01011111 00000000 01011111 00000000 01011111
00000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111

5.2 Experimental Results

Experiments were performed with di�erent sizes for
the population of rules and ICs. The best rule whose
performance is reported in table 1 resulted from the
experiments that used the largest population size. In
those experiments, 6 runs were performed for 5; 000
generations, using a size of 1; 000 for the two pop-
ulations. Each rule is coded on a binary string of
length 22�r+1 = 128. One-point crossover is used with
a 2% bit mutation probability. The population of rules
is initialized according to a uniform distribution over
[0:0; 1:0] for the density. Each individual in the popu-
lation of ICs represents a density �0 2 [0:0; 1:0]. This
population is also initialized according to a uniform
distribution over �0 2 [0:0; 1:0]. At each generation,
each member generates a new instance for an initial
con�guration with respect to the density it represents.
All rules are evaluated against this new set of ICs. The
generation gap is 5% for the population of ICs (i.e., the
top 95% ICs reproduce to the next generation). There
is no crossover nor mutation. The new 5% ICs are
the result of a random sampling over �0 2 [0:0; 1:0]
according to a uniform probability distribution. The
generation gap is 80% for the population of rules. New
rules are created by crossover and mutation. Parents
are randomly selected from the top 20%. All runs
consistently evolved some rules that score above 82%.
Table 2 describes lookup tables for the current best
CA rule and other rules discussed in the literature.
The leftmost bit corresponds to the result of the rule
on input 0000000, the second bit corresponds to in-
put 0000001, : : : and the rightmost bit corresponds to
input 1111111.

Figure 5 describes the evolution of the density of rules
and ICs for one run. As rules improve, their density
gets closer to 1=2 and the density of ICs is distributed
on two peaks on each side of �c = 1=2. In that par-
ticular run, it is only after 1; 300 generations that a
signi�cant improvement is observed for rules and that,
in response, the population of ICs adapts dramatically

in order to propose more challenging initial con�gura-
tions. This shows that our strategy to coevolve the
training environment and the learners has been suc-
cessfully implemented in the de�nition of the �tness
functions.

6 Conclusion

This paper presents a new framework based on the
concept of coevolutionary learning. This approach coe-
volves the training environment with respect to a pop-
ulation of learners such that learners are always ex-
posed to a gradient for search, and evolution of prob-
lems towards increasing di�culty is maintained. The
work presented in this paper addresses those issues
by de�ning a topology over the space of problems.
Then, a procedure is implemented such that the train-
ing environment automatically adapts in response to
the progress of learners by proposing more challenging
problems. We applied this framework to the prob-
lem of evolving CA rules for a classi�cation task. Our
experiments resulted in a new rule whose performance
improves very signi�cantly over previously known rules
for that particular task.

Acknowledgment

I would like to thank Melanie Mitchell for her help and
useful discussions.

References

[Andre et al., 1996] Andre, D., Bennett III, F. H., &
Koza, J. R. (1996). Evolution of intricate long-
distance communication signals in cellular automata
using genetic programming. In Proceedings of the

Fifth Arti�cial Life Conference, pp. 16{18.

[Capcarrere et al., 1996] Capcarrere, M. S., Sipper,
M., & Tomassini, M. (1996). Two-state, r=1 cellular
automaton that classi�es density. Physical Review

Letters, 77(24):4969{4971.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

0

100

200

300

G
en

er
at

io
n

Rules density

ru

le
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

0

50

100

150

G
en

er
at

io
n

ICs density

IC

s

Figure 5: Coevolutionary learning between CA rules (left) and ICs (right).

[Cli� & Miller, 1995] Cli�, D. & Miller, G. F. (1995).
Tracking the red queen: Measurements of adaptive
progress in co-evolutionary simulations. In Third

European Conference on Arti�cial Life, LNCS 929,
pp. 200{218. Springer-Verlag.

[Das et al., 1994] Das, R., Mitchell, M., & Crutch-
�eld, J. P. (1994). A genetic algorithm discovers
particle-based computation in cellular automata. In
Parallel Problem Solving from Nature III, LNCS

866, pp. 344{353. Springer-Verlag.

[Epstein, 1994] Epstein, S. L. (1994). Toward an ideal
trainer. Machine Learning, 15:251{277.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving para-
sites improve simulated evolution as an optimization
procedure. In Langton, C. et al. (Eds.), Arti�cial
Life II, pp. 313{324. Addison Wesley.

[Juill�e & Pollack, 1996] Juill�e, H. & Pollack, J. B.
(1996). Co-evolving intertwined spirals. In Proceed-

ings of the Fifth Annual Conference on Evolutionary

Programming, pp. 461{468. MIT Press.

[Land & Belew, 1995] Land, M. & Belew, R. K.
(1995). No perfect two-state cellular automata for
density classi�cation exists. Physical Review Letters,
74(25):1548{1550.

[Mahfoud, 1995] Mahfoud, S. W. (1995). Niching

Methods for Genetic Algorithms. PhD thesis, Uni-
versity of Illinois at Urbana-Champaign. IlliGAL
Report No. 95001.

[Mitchell et al., 1994] Mitchell, M., Crutch�eld, J. P.,
& Hraber, P. T. (1994). Evolving cellular automata
to perform computations: Mechanisms and impedi-
ments. Physica D, 75:361{391.

[Mitchell et al., 1993] Mitchell, M., Hraber, P. T., &
Crutch�eld, J. P. (1993). Revisiting the edge of
chaos: Evolving cellular automata to perform com-
putations. Complex Systems, 7:89{130.

[Paredis, 1996] Paredis, J. (1996). Coevolutionary
computation. Arti�cial Life, 2(4).

[Paredis, 1997] Paredis, J. (1997). Coevolving cellular
automata: Be aware of the red queen! In B�ack, T.
(Ed.), Proceedings of the Seventh International Con-
ference on Genetic Algorithms, pp. 393{400. Mor-
gan Kaufmann.

[Pollack et al., 1996] Pollack, J. B., Blair, A., & Land,
M. (1996). Coevolution of a backgammon player. In
Langton, C. (Ed.), Proceedings of Arti�cial Life V.
MIT Press.

[Rosin, 1997] Rosin, C. D. (1997). Coevolutionary

Search Among Adversaries. PhD thesis, University
of California, San Diego.

[Rosin & Belew, 1995] Rosin, C. D. & Belew, R. K.
(1995). Methods for competitive co-evolution: Find-
ing opponents worth beating. In Eshelman, L. J.
(Ed.), Proceedings of the Sixth International Con-

ference on Genetic Algorithms, San Mateo, Califor-
nia. Morgan Kau�mann.

[Schmidhuber, 1995] Schmidhuber, J. (1995). Discov-
ering solutions with low kolmogorov complexity and
high generalization capability. In Prieditis, A. &
Russell, S. (Eds.),Machine Learning: Proceedings of

the twelfth International Conference, pp. 188{196.
Morgan Kaufmann.

