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Abstract. This paper describes a new sampling-based heuristic for tree

search named SAGE and presents an analysis of its performance on the

problem of grammar induction. This last work has been inspired by

the Abbadingo DFA learning competition [14] which took place between

Mars and November 1997. SAGE ended up as one of the two winners in

that competition. The second winning algorithm, �rst proposed by Rod-

ney Price, implements a new evidence-driven heuristic for state merging.

Our own version of this heuristic is also described in this paper and

compared to SAGE.

1 Introduction

In the �eld of Arti�cial Intelligence, important e�orts are devoted to the de-
sign of e�cient search algorithms. Among those approaches, stochastic search
algorithms bene�t from several interesting properties. First, they often admit
an e�cient implementation on distributed architectures because they use a lim-
ited central control strategy. Secondly, they o�er a general purpose procedure
when little knowledge is available about the intrinsic properties of the problem or
when this knowledge is di�cult to introduce in a search procedure. In particular,
techniques like Genetic Algorithms (GAs) [8], Genetic Programming (GP) [12],
Evolutionary Programming (EP) [5] or Evolutionary Strategies (ES) [2] have
had some recent success to tackle some problems with ill-de�ned search space.
Basically, those algorithms sample the state space in order to gather information
about the distribution of solutions. Then, this information is used to control the
focus of the search.

This paper describes a new algorithm named Self-Adaptive Greedy Estimate
(SAGE) search procedure whose underlying heuristics are similar to the ones im-
plemented in those evolutionary algorithms. However, this algorithm has been
designed for the search of trees or directed graphs (DAG). Indeed, problems for
which the natural representation of the state space is a tree of a DAG are usu-
ally not amenable to evolutionary search. So far, random sampling techniques
on search trees have been used essentially to predict the complexity of search
algorithms [11, 3], but never as a heuristic to control the search. We believe our
algorithm to be the �rst to exploit that knowledge. The work presented in this



paper tests this search algorithm on a grammar induction problem. This appli-
cation originated from the Abbadingo DFA learning competition [14] which took
place between March and November 1997. This competition proposed a set of
di�cult instances for the problem of DFA learning as a challenge to the ma-
chine learning community and to encourage the development of new algorithms
for grammar induction. Our motivation for using a search intensive approach
came from a �rst insight that there might be no simple heuristic to address the
problems proposed in that competition. The outcome of the competition proved
us wrong on that point since an evidence-driven heuristic discovered by Rodney
Price appears to be very adapted for that task, improving very signi�cantly over
the Trakhtenbrot-Barzdin algorithm. Because of the requirement in computing
resource, SAGE was not able to address problems with large target DFA. For
that reason, it was defeated by the evidence-driven heuristic on the problems
with average density training sets. However, by solving one problem from the
set of challenges with sparse training data, SAGE ended up as a co-winner of
that competition.

The paper is organized as follows: Section 2 presents an overview of the SAGE
search algorithm. Section 3 describes the DFA learning task and the Abbadingo
competition. Then, the implementation of SAGE is described in section 4 along
with an implementation of the evidence-driven heuristic. Experimental results
are presented in section 5. In this last section, an analysis also compares the per-
formance of SAGE to the Trakhtenbrot-Barzdin algorithm and to the evidence-
driven heuristic.

2 Description of the SAGE Search Algorithm

The central component for SAGE is a problem-speci�c construction procedure.
This construction procedure is designed such that it always terminates and out-
puts a feasible solution for the problem under consideration. The construction
procedure is an iterative algorithm which makes an ordered sequence of deci-
sions, each decision being selected among a list of valid extensions given the
current partial solution. Therefore, this procedure de�nes the search space as a
tree. Solutions correspond to the leaves of that tree while internal nodes rep-
resent partial solutions. Eventually, the search space can be a directed acyclic
graph (DAG) if there are equivalent nodes in the tree.

There is a well-known AI algorithm for search in DAGs and trees called Beam

search. Beam search examines in parallel a number of nearly optimal alternatives
(the beam). This search algorithm progresses level by level in the tree of states
and it moves downward only from the best w nodes at each level. Consequently,
the number of nodes explored remains manageable: if the branching factor in
the tree is at most b then there will be at most wb nodes under consideration at
any depth. SAGE is similar to this algorithm in the sense that it implements a
multi-threaded search. More precisely, SAGE is composed of a population of pro-
cessing elements. Each of them plays the role of an elementary search algorithm
and is seen as one alternative in the beam. However, there are two important



di�erences between SAGE and Beam search. First, Beam search uses an evalu-
ation function to score the di�erent alternatives in order to select alternatives
that are most promising. The design of such an evaluation function involves
some problem-speci�c knowledge in order to exploit some properties about the
problem under consideration that have been identi�ed. When such knowledge is
not available, this approach might not be appropriate. The heuristic exploited
by SAGE to address this issue consists in estimating the score of internal nodes
by performing a random sampling. That is, the construction procedure selects at
random a valid extension at each step until a leaf (or valid solution) is reached.
Then, the score of this solution is directly computed with respect to the problem
objective function and it is assigned to the initial node. Secondly, the control
strategy implemented by Beam search to focus the search simply selects the best
w alternatives among the current set of partial solutions. In the case of SAGE,
the control strategy involves two mechanisms. The �rst one implements a model
of local competition among the processing elements, which allows the algorithm
to allocate more \resources" (i.e., processing elements) to the most promising
alternatives in a self-adaptive manner. The motivation for this approach is to
allow a scalable system in which the number of elements can be increased easily
in order to augment (hopefully) the performance of the algorithm. The second
one is a greedy strategy which controls the depth in the search tree of the current
alternatives represented by the population of processing elements. This control
strategy is discussed in little more details in the following paragraphs.

Put in another way, SAGE is an iterative search procedure for which each it-
eration is composed of two phases, a construction phase and a competition phase.
SAGE implements a population of elementary randomized search algorithms and
a meta-level heuristic which controls the search procedure by distributing the
alternatives under consideration among this population of processing elements.
For any iteration, all the alternatives represented in the population have the
same depth in the search tree and they are represented by a number of pro-
cessing elements which depends on their relative performance. At the beginning
of the search, this depth is null and it increases with the number of iterations
according to a strategy implemented by the meta-level heuristic. At each iter-
ation, the construction phase is performed, followed by the competition phase.
The following operations are performed during those two phases:

{ construction phase: each processing element calls the construction procedure.
This procedure starts the construction from the partial solution represented
by the calling processing element and thereafter makes each decision by
randomly selecting one choice from the list of valid extensions available at
each step. Each random selection is performed with respect to a uniform
probability distribution. This phase ends when all the processing elements
have constructed a complete solution.

{ competition phase: the purpose of this phase is to focus the search on most
promising alternatives by assigning more representatives to them. This result
is achieved by assigning better alternatives to the processing elements that
are representative of poor alternatives. A model of local competition between



the di�erent processing elements implements this mechanism. Such a model
allows a very e�cient implementation on di�erent distributed architectures.

In summary, SAGE is a population-based model in which each processing
element is the representative of one alternative for the current level of search
in the tree. That alternative determines the initial node from which the ran-
dom sampling is performed by that processing element during the construction
phase. Then, SAGE controls the exploration of the search space according to the
following strategy:

1. Initially, the search is restricted to the �rst level of the tree and each process-
ing element in the population randomly selects one of the �rst-level nodes.

2. Each processing element scores its associated node (or alternative) by per-
forming a random sampling. This is the construction phase.

3. Then, the competition phase is operated. The purpose of this phase is to
focus the search on most promising alternatives.

4. A test is performed by the meta-level heuristic and the result determines
whether the level of search is increased by one or not. In the a�rmative,
each processing element selects uniformly randomly one of the children of its
associated node in the search tree and this node becomes the new alternative
assigned to the processing element.

5. The search stops if no new node can be explored (because the search reached
the leaves of the tree); otherwise it continues with step 2.

In the SAGE model, the level of search in the tree is called the commitment

degree since it corresponds to a commitment to the �rst choices of the incremental
construction of the current best solution.
A complete description of the search algorithm can be found in [10].

3 Induction of DFAs

3.1 Presentation

The aim of inductive inference is to discover an abstract model which captures
the underlying rules of a system from the observation of its behavior and thus to
become able to give some prediction for the future behavior of that system. In the
�eld of grammar induction, observations are strings that are labeled \accepted"
or \rejected" and the goal is to determine the language that generates those
strings. An excellent survey of the �eld is presented in [1], covering in particular
the issue of computational complexity and describing some inference methods
for inductive learning. Several representations have been proposed to describe
the abstract models used for grammar induction like deterministic �nite state
automata, boolean formula or propositional logic. More recently, Pollack [16]
proposed dynamical recognizers as an interesting alternative to those symbolic
approaches, leading to a wide range of Recurrent Neural Network (RNN) archi-
tectures [18, 19, 4, 6] that have been employed for similar tasks. However, none
of them could compete in the Abbadingo competition because of the proposed
problems size.



3.2 The Abbadingo Competition

The Abbadingo competition (organized by Lang and Pearlmutter [14]) is a chal-
lenge proposed to the machine learning community in which a set of increasingly
di�cult DFA induction problems have been designed. Those problems are sup-
posed to be just beyond the current state of the art for today's DFA learning
algorithms and their di�culty increases along two dimensions: the size of the
underlying DFA and the sparsity of the training data. Gold [7] has shown that
inferring a minimum �nite state automaton compatible with given data con-
sisting of a �nite number of labeled strings is NP-complete. However, Lang [13]
empirically found out that the average case is tractable. That is, randomly gen-
erated target DFAs are approximately learnable even from sparse data when this
training data is also generated at random. One of the aims of the Abbadingo
competition is to estimate an empirical lower bound for the sparsity of the train-
ing data for which DFA learning is still tractable on average.

Competition Setup A set of DFAs of various size has been randomly con-
structed. Then, a training set and a test set have been generated from each of
those DFAs. Only the labeling for the training sets have been released. Training
sets are composed of a number of strings which varies with the size of the target
DFA and the level of sparsity desired. The goal of the competition is to discover
a model for the training data that has a predictive error rate smaller than one
percent on the test set. Since the labeling for the test sets has not been released,
the validity of a model can be tested only by submitting a candidate labeling
to an \Oracle" implemented on a server at the University of New Mexico [14]
which returns a \pass/fail" answer. Table 1 presents the di�erent problems that
compose this competition. The size and the depth of the target DFA are pro-
vided as a piece of information to estimate how close a DFA hypothesis is from
the target.

Procedure for Generation of Problems

{ Generation of target DFAs: To construct a random DFA of nominal size n,
a random digraph with 5

4
n nodes is constructed, each vertex having two

outgoing edges. Then, each node is labeled \accept" or \reject" with equal
probability, a starting node is picked, nodes that can't be reached from that
starting node are discarded and, �nally, the Moore minimization algorithm
is run. If the resulting DFA's depth isn't b(2 log

2
n) � 2c, the procedure is

repeated. This condition for the depth of DFAs corresponds to the average
case of the distribution. It is a design constraint which allows the generation
of a set of problems whose relative complexity remains consistent along the
dimension of target size.

{ Generation of training and testing sets: A training set for a n-state target
DFA is a set drawn without replacement from a uniform distribution over
the set of all strings of length at most b(2 log

2
n) + 3c. The same procedure

is used to construct the testing set but strings already in the training set are
excluded.



Table 1. Abbadingo data sets.

Problem Target DFA Target DFA Training set

name size depth size

1 63 10 3478

2 138 12 10723

3 260 14 28413

R 499 16 87500

4 68 10 2499

5 130 12 7553

6 262 14 19834

S 506 16 60000

7 65 10 1521

8 125 12 4382

9 267 14 11255

T 519 16 32500

Results of the Competition The description of the development of the com-
petition is presented in details in [15]. The two-dimensional ranking of problems
with respect to target size and training data density allowed multiple winners.
In fact, two algorithms ended up as co-winners in the competition. The �rst one
used an evidence driven heuristic discovered by Rodney Price. This algorithm
outperformed SAGE by being able to solve the largest problems from the �rst
and second group in table 1 (i.e. problems R and S). However, SAGE has later
been able to solve problem 7 (the smallest of the problems with sparse training
data) and ended up as the second co-winner in the competition.

4 Implementation

4.1 Construction Procedure for SAGE

The construction procedure makes use of the state merging method described
in [17]. It takes as input the pre�x tree acceptor constructed from the training
data. Then, a �nite state automaton is iteratively constructed, one transition at
a time until a valid DFA is generated (i.e., until every state has a \0" and a \1"
outgoing transition).

In the construction procedure two cases are possible when considering a tran-
sition: either it goes to an existing state or it goes to a newly created state. As
the hypothesis DFA is constructed, states are mapped with nodes in the pre�x
tree and transitions between states are mapped with edges. When a transition
is created going to an existing state, corresponding nodes in the pre�x tree are
merged. When two nodes in the pre�x tree are merged, the labels in the tree
are updated accordingly and the merging of more nodes can be recursively trig-
gered so that the pre�x tree reects the union of the labeled string su�xes that



are attached to those nodes. Thus, as the DFA is constructed, the pre�x tree is
collapsed into a graph which is an image of the �nal DFA when the construction
procedure terminates. This merging procedure provides the mechanism to test
whether a transition between two existing states is consistent with the labeling
and should be considered as a potential choice in the construction procedure.
The pseudo-code describing this construction procedure is given in �gure 1.

Begin with a single state mapped to the root of the pre�x tree

The list L of unprocessed states consists of that state

do

Pick randomly a state S from L

Compute the set T0 of valid transitions on \0" from state S

Pick randomly a transition t0 from T0

if (t0 goes to an existing state) then

Merge corresponding nodes in the pre�x tree

else

Create a new state, map it to the corresponding

node in the pre�x tree and add it to L

endif

Compute the set T1 of valid transitions on \1" from state S

Pick randomly a transition t1 from T1

if (t1 goes to an existing state) then

Merge corresponding nodes in the pre�x tree

else

Create a new state, map it to the corresponding

node in the pre�x tree and add it to L

endif

until (L is empty)

/* The output is a DFA consistent with the training data */

Fig. 1. Randomized construction procedure for DFA learning.

4.2 The Evidence-Driven Heuristic

The state merging method implemented in [17] considers a breadth-�rst order
for merging nodes, with the idea that a valid merge involving the largest sub-
trees in the pre�x tree has a higher probability of being correct than other
merges. The evidence-driven heuristic doesn't follow that intuition and considers
instead the number of labeled nodes that are mapped over each other and match
when merging sub-trees in the pre�x tree. Di�erent control strategies can be
designed to explore the space of DFA constructions exploiting this heuristic.
Our implementation maintains a list of valid destinations for each undecided
transition for the current partial DFA and, as a policy, always gives priority to
\forced" creation of new states over merge operations. The pseudo-code for this
algorithm is presented in �gure 2.



Begin with a single state mapped to the root of the pre�x tree

The list S of existing states in the DFA construction consists of that state

The list T of unprocessed transitions consists of the two outgoing transitions

from that state, on \0" and \1"

For each t 2 T , compute:

. the subset Sdest(t) from S of valid destinations for t

. the merge count for each destination in Sdest(t)

do

Construct the subset T0 of transitions t 2 T for which Sdest(t) = ;

/* Transitions in T0 cannot go to any existing state */

if (T0 is not empty) then

Select t0 2 T0 outgoing from the shallowest node (break ties at random)

Remove t0 from T

Create a new state S0 mapped to the destination node for t0 in the pre�x tree

Add S0 to S

Add the two outgoing transitions from S0, t
0

0 and t
0

1, to T

Compute Sdest(t
0

0) and Sdest(t
0

1) along with the corresponding merge counts

For each transition t 2 T , add S0 to Sdest(t) if it is a valid destination for t

and compute its merge count

else

/* Operate a merge */

Select t0 2 T with the highest merge count (break ties at random)

Merge the destination node for t0 in the pre�x tree with the destination

state corresponding to this highest merge count

Remove t0 from T

For each t 2 T , update Sdest(t) and the merge counts

endif

until (T is empty)

Fig. 2. A construction procedure using the evidence-driven heuristic.

5 Experimental Results

5.1 Problems in the Abbadingo Competition

In a �rst stage, we used a sequential implementation of SAGE since small popula-
tions were enough to solve the smallest instances of the Abbadingo competition.
Then, we used a network of workstations to scale the population size and ad-
dress the most di�cult problem instances in the competition. In particular, the
solution to problems 5 and 7 involved around 16 workstations on average. This
parallel implementation is composed of a server that manages the population
of partial solutions and distributes the work load among several clients. This
architecture presents the advantage that clients can be added or removed at any
time.

SAGE has been able to solve problems 1, 2, 4, 5 and 7 from table 1. To
solve problem 7, we proceeded in two steps. First, the construction procedure
described previously has been extended with the evidence-driven heuristic in



order to prune the search tree. The construction procedure switches to this
heuristic when the number of states in the current DFA has reached a given
size. Before that threshold size is reached, the construction procedure remains
unchanged. After about 10 runs, a DFA with 103 states has been discovered
very early. Then, in a second step, more experiments were performed using the
original construction procedure but starting with the same �rst few choices as
those that had been made for the 103-state DFA. This resulted in a DFA of
size 65. This second step uses SAGE for local search, starting from a good
pre�x for the DFA construction. The appropriate size for the pre�x has been
determined experimentally. It is clear from those experiments that the density
for the training data available for problem 7 is at the edge of what SAGE can
manage. This observation is con�rmed by the analysis presented in the following
section.

Table 2 presents the population size, the size of the DFA hypothesis and
an estimate of the computation time for the di�erent problems that SAGE has
been able to solve. We decided to report in that table the values when each
problem was solved for the �rst time. Parameters could be tune to improve the
execution time (on average up to a fourfold factor). Experiments for problems 1,
2 and 4 have been performed on a Pentium PC 200MHz. For problems 5 and 7,
a network of Pentium PCs and SGI workstations has been used. The evidence-
driven heuristic can solve all the problems in the �rst and the second group in
table 1 except problem 5 on which it fails.

Table 2. Experimental results for the SAGE search algorithm applied to problems 1,

2, 4, 5 and 7 of the Abbadingo competition.

Problem name 1 2 4

Population size 64 64 256 (+ best of

2 samples)

Size of DFA model 63 states 150 states 71 states

Execution time 1 hour 40 hours 4 hours

(sequential) (sequential) (sequential)

Problem name 5 7 (step 1) 7 (step 2)

Population size 576 (+ best of 1024 4096

8 samples)

Size of DFA model 131 states 103 states 65 states

Execution time 40 hours 2 hours 4 hours

(parallel) (parallel) (parallel)

Comparative Performance Analysis. In a comparative study, the perfor-
mance of the three approaches: Trakhtenbrot-Barzdin (T-B) algorithm, evidence-
driven heuristic and SAGE has been evaluated against a set of random problem



instances generated using the procedure described in the previous section. For
each target DFA, the three algorithms were evaluated across a range of density
for the training data in order to observe the evolution of each approach when
working with sparser data. For the �rst two algorithms, 1000 problems were used
while only 100 problems were used to evaluate SAGE because of the requirement
in computational resources. This comparison has been performed for three val-
ues of the population size for SAGE: 64, 256 and 1024 and for two values of the
targets nominal size: 32 and 64 states (�gures 3 and 4 respectively).

In those experiments, the performance is the ratio of problems for which the
predictive ability of the model constructed by the algorithm is at least 99% ac-
curate. This threshold is the same as the success criterion for solving problems
in the Abbadingo competition. Figures 3 and 4 show the dependence of SAGE
on the population size for its performance. Indeed, a larger population results in
a better reliability for the control of the focus of the search because of a larger
sample. For the set of problems generated for the purpose of this analysis, SAGE
and the evidence-driven heuristic clearly outperform the T-B algorithm. With a
population size large enough, SAGE also exhibits a performance consistently bet-
ter than the evidence-driven heuristic. However, it is di�cult to compare those
two approaches since SAGE is a general purpose search algorithm using very
little knowledge about the problem (i.e., the one introduced in the construction
procedure) while the other is a greedy algorithm using a strong problem-speci�c
heuristic. For this reason, SAGE doesn't scale up as well as the evidence-driven
heuristic (or the T-B algorithm) for larger target DFAs. The introduction of
problem-speci�c heuristics in the construction procedure becomes necessary for
SAGE to address this scaling issue.
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6 Conclusion

One property of the state merging approach for DFA learning is that early
merges play a very important role since they propagate constraints that control
the future merges. This property is exploited by the underlying heuristics imple-
mented in SAGE. Indeed, the random sampling strategy used to evaluate partial
solutions is likely to return a better score (that is a smaller DFA hypothesis) on
average if the early merges implemented in those partial solutions are correct.

The comparative analysis presented in this paper shows that for average size
target DFAs (on the order of 64 to 128 states) SAGE compares favorably to
the well-known Trakhtenbrot-Barzdin algorithm and to a new evidence-driven
heuristic. However, as the size of the target DFA increases, SAGE doesn't scale
up and requires a prohibitive amount of computer resource. To search such a large
state space, the introduction of problem-speci�c heuristics becomes necessary.

DFA induction is not the only �eld of application for SAGE. In a previous
work, we applied SAGE to the construction of sorting networks with a minimum
number of comparators [9].
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