Evolution of Non-Deterministic Incremental Algorithms
as a New Approach for Search in State Spaces

Hugues Juillé
Computer Science Department
Volen Center for Complex Systems
Brandeis University

Waltham, MA 02254-9110

Abstract

Let us call a non-deterministic incremental
algorithm one that is able to construct any
solution to a combinatorial problem by se-
lecting incrementally an ordered sequence of
choices that defines this solution, each choice
being made non-deterministically. In that
case, the state space can be represented as
a tree, and a solution is a path from the
root of that tree to a leaf. This paper
describes how the simulated evolution of a
population of such non-deterministic incre-
mental algorithms offers a new approach for
the exploration of a state space, compared
to other techniques like Genetic Algorithms
(GA), Evolutionary Strategies (ES) or Hill
Climbing. In particular, the efficiency of
this method, implemented as the Evolving
Non-Determinism (END) model, is presented
for the sorting network problem, a reference
problem that has challenged computer sci-
ence. Then, we shall show that the END
model remedies some drawbacks of these op-
timization techniques and even outperforms
them for this problem. Indeed, some 16-input
sorting networks as good as the best known
have been built from scratch, and even a 25-
year-old result for the 13-input problem has
been improved by one comparator.

1 INTRODUCTION

In the field of optimization and machine learning tech-
niques, some very efficient and promising tools like Ge-
netic Algorithms (GA), Evolutionary Strategies (ES),
Hill Climbing or Simulated Annealing (SA) have been
designed. Each of these techniques uses a set of opera-
tors to generate new states (offsprings) from a current
set of states (parents). These operators are crossover
and mutation for GA| recombination and mutation for
ES ([Back et al., 1991]), and “jump” to a local neigh-

boring state for classical Hill Climbing or SA.

These approaches appear to be very efficient for many
NP-complete problems like the Traveling Salesman
Problem (TSP), the design of VLSI circuits or the
Job Shop Scheduling problem (JSP). However, when
the subspace of valid solutions is defined by a set of
complex constraints, the design of a good represen-
tation for a state, and therefore the design of use-
ful operators, can be very difficult. For example,
efficient GA or ES implementations for TSP or the
Number Partitioning problem ([Ruml et al., 1995]) in-
volve non-trivial operators in order to introduce some
problem-specific knowledge. This paper presents an-
other well-known problem for which there is only lit-
tle information about the topology of the subspace of
valid solutions: the sorting network problem. Hillis
([Hillis, 1992]) and Drescher ([Drescher, 1994]) used
GA to tackle this problem. However, because no oper-
ator 1s known that restricts the search in the subspace
of valid sorting networks, it is only at the cost of a
very large population size that significant results have
been achieved. On the contrary, the searching tech-
nique presented in this paper manages to restrict the
exploration only to valid solutions. Indeed, the state
space that is explored is described by a tree in which
leaves correspond to valid solutions and a path from
the root of that tree to a leaf represents the sequence
of choices necessary to generate the corresponding so-
lution. So, this searching technique requires the design
of an incremental algorithm which is able to generate
any valid solution represented in the tree. Such an al-
gorithm begins at the root of the tree and, at each step
of the incremental construction, selects a node among
the children of the current node until a leaf is reached.
Then, a population-based model we called Evolving
Non-Determinism (END) simulates the evolution of a
population of such incremental algorithms for which
the selection of the successor to the current node is
performed wuniformly randomly. The laws that drive
the evolution of this population of non-deterministic
mcremental algorithms are such that individuals whose
first choices seem to be more promising to generate a
good solution reproduce more than others.

This paper presents the END model and com-
pares its efficiency to GA for the sorting net-
work problem. This is the follow-up of an estab-
lished problem for which several approaches have
been used to try to improve some 25 years old
results ([Belew & Kammayer, 1993, Drescher, 1994,
Hillis, 1992, Levy, 1992, Parberry, 1991]). Actually,
this problem was also the origin of an early paper
[Tufts & Juillé, 1994] in which GA were used to try
to replicate Hillis” experiments ([Hillis, 1992]) for the
16-input problem and in which some ideas of the END
model were presented. Encouraging results described
in this paper show how the END model both outper-
forms GA for this problem and even lets us expect that
a broader field of applications can be tackled by this
model.

This paper is organized as follows: Principles and pa-
rameters of the END model are presented in details
in Section 2. Section 3 describes the sorting network
problem and Section 4 analyzes GA and the END
model approaches for this problem. Section b presents
a summary and possible future research.

2 EVOLVING NON-DETERMINISM

2.1 PRINCIPLES

In this paper, it is assumed that the search state
space can be represented by a tree. Leaves of this
tree represent valid solutions and internal nodes repre-
sent partial solutions (or steps necessary to reach valid
solutions). There is a well-known AT algorithm for
search in directed graphs and trees called Beam search
([Winston, 1984]). Beam search examines in parallel
a number of nearly optimal alternatives (the beam).
This search algorithm progresses level by level in the
tree of states and it moves downward only from the
best w nodes at each level. Consequently, the number
of nodes explored remains manageable: if the branch-
ing factor in the tree is atmost b then there will be
atmost wb nodes under consideration at any depth.
The END model i1s similar to this algorithm in the
sense that each individual of the population can be
seen as one alternative in the beam. Moreover, a fit-
ness (or score) must be assigned to internal nodes of
the tree in order to determine which nodes will be ex-
plored further and which nodes will be ignored by the
search algorithm. Here, beam search uses heuristics
to score the different alternatives and to select alter-
natives that are most promising, i.e., the nodes with
largest scores. However, this approach assumes the ex-
istence of a score operator used to evaluate the nodes.

The new idea proposed by the END model is to es-
timate the score of a given internal node by doing a
random sampling from this node. That is, a path is
constructed incrementally and randomly until a leaf
(or valid solution) is reached. Then, the score of this

solution is directly computed according to the problem
objective function. If the problem is to find a shortest
path, the score can be the length of the path necessary
to reach the corresponding leaf in the tree where the
different edges are eventually weighted according to a
cost function. If the problem is to find a strategy to
play a game, the score can be the evaluation of the
game configuration defined by the leaf. Finally, the
score of this non-deterministically and incrementally
constructed solution is assigned to the initial node.

In fact, the END model performs the search by driv-
ing the evolution of the population of incremental al-
gorithms according to the following procedure:

1. Initially, the search 1is restricted to the first level
of the tree and each individual of the population
randomly selects one of the first-level nodes.

2. Fach individual scores its associated node (or al-
ternative) by doing a random sampling as dis-
cussed above.

3. A reproduction round is operated in the popula-
tion. The purpose of this operation of reproduc-
tion is to simulate the Darwinian mechanism of
natural selection and survival of the fittest.

4. A test 1s performed and the result determines
whether the level of search is increased by one
or not. In the affirmative, each individual selects
uniformly randomly one of the children of its as-
sociated node and this node becomes the new al-
ternative assigned to the individual.

5. The search stops if no new node can be explored;
otherwise it continues with step 2.

So, the simulated evolution is a sequence of competi-
tive rounds. In the END model, the level of search in
the tree is called the commitment degree since it cor-
responds to a commitment to the first choices of the
incremental construction of an optimal solution.

The next two sections describe the reproduction oper-
ation and the management of the commitment degree.

2.2 REPRODUCTION

The mechanisms used for the reproduction operation
have been inspired by the parallel architecture used
for the implementation of the END model. Indeed, the
current implementation of the END model uses a Mas-
par MP-2 parallel computer. This system is a SIMD
2D wrap-around mesh (i.e., a torus) architecture with
a number of processor elements (PEs) ranging from
1K to 16K (our configuration is composed of 4K PEs).

So, our population has been modeled as a 2D wrap-
around mesh where an individual is assigned to each
point of intersection of the mesh and, therefore, has
four neighbors.

Then, the reproduction operation is performed in the
following way:

e Each individual compares its score with the score
of the individualsin its neighborhood. This neigh-
borhood is composed of the individuals whose
Hamming distance from the first individual is
lesser than a given value of the parameter: ra-
dius.

e If one individual in the neighborhood has a better
score than all the others then it is copied instead
of the current individual. If several individuals in
the neighborhood have an identical score which is
better than all the others then one is selected uni-
formly randomly and copied instead of the current
individual. If no individual in the neighborhood
is better than the current individual, then this
individual remains unchanged.

So, if a given node of the current level of search in the
tree is more likely to lead to a more promising solution
then the reproduction operation allows individuals as-
sociated to this node to reproduce more than other
individuals (therefore focussing the beam).

2.3 MANAGEMENT OF THE
COMMITMENT DEGREE

Because of the reproduction operation, alternatives
that seem to be more promising are represented by
a larger and larger number of individuals. Ultimately,
if one waits until all the individuals in the population
agree on the same alternative before continuing the
search on the next level, this means that the beam 1is
reduced to the exploration of a single alternative. On
the contrary, if the level of search is increased too fre-
quently, the beam can become very wide. Indeed, in
that case, many different alternatives are represented
in the population and each alternative is represented
by a small number of individuals. So, the disappear-
ance of a promising alternative during the reproduc-
tion operation because of a non-favourable random
sampling score evaluation is more likely.

Clearly, for the search to be efficient, these two ex-
tremes must be avoided. This goal is reached by using
a strategy that manages the level of search. In fact, the
purpose of this strategy is to drive the search by decid-
ing when the commitment degree is incremented. In
the current implementation, two strategies have been
designed.

The first one is the simpler since the commitment de-
gree is increased every n rounds, where n is fixed. n
has to be chosen astutely so that the number of in-
dividuals that correspond to better alternatives can
reach a significant size. The problem with this strat-
egy is that the value of n is difficult to estimate a
prior.

The second strategy uses a measure of the state of the
model called disorder measure. The disorder measure
evaluates the width of the beam. To compute this

measure, each individual of the population counts the
number of individuals among its four nearest neighbors
that correspond to a different alternative than itself.
Then, this number is summed over all the members
of the population and the result is the disorder mea-
sure. This measure reflects the degree of convergence
of the population. If a large part of the population
corresponds to a few alternatives then this measure is
small because most of the individuals are identical. On
the other hand, if many alternatives are explored, and
each alternative is represented by a few individuals,
then the disorder measure is large. As individuals of
the population focus on most promising alternatives
because of the reproduction operation, the disorder
measure decreases. When this measure reaches an ar-
bitrarily fixed threshold (which is a parameter of the
model), one considers that the width of the beam is
small enough and the search can continue on the next
level of the tree. The drawback of this strategy is that
it can take a long time for the disorder measure to
reach the given threshold if several alternatives lead
to equivalent optimal solutions. This problem doesn’t
appear with the first strategy. Most of the time, a
combination of these two strategies offers a good com-
promise.

2.4 PARAMETERS OF THE MODEL

The description of the END model in the previous sec-
tion shows that it is characterized by the following pa-
rameters:

Population size : If the number of individuals in
the population increases then the width of the
beam can also be larger without decreasing the
efficiency of the search. Therefore, the size of the
explored state space is directly related to the size
of the population.

Neighborhood used for reproduction : The size
of the neighborhood for which the fitness of indi-
viduals is compared during a reproduction round
drives the dynamics of evolution of the popula-
tion. Indeed, if the radius of this neighborhood is
large then the search focusses quickly on the best
individuals and discards apparently less promis-
ing alternatives. On the contrary, a small radius
allows the search to converge slowly. Therefore,
this parameter manages the tradeoff between ex-
ploration and exploitation.

Management of the commitment degree : As it
is described in the previous section, this parame-
ter also plays an important role in managing the
balance between exploration and exploitation.

The above description of the influence of these param-
eters on the search has been confirmed experimentally

in [Juillé, 1994].

2.5 IDEA OF THE END APPROACH

Another approach to describe how the END model
works is to make the following analogy: Children of
the root of the tree of solutions can be seen as a parti-
tion of the space of states, each child corresponding to
a particular subset of this partition. Then, the repro-
duction process allows alternatives for which the score
(or fitness) evaluation by random sampling is better on
average to be represented by a larger number of indi-
viduals than other alternatives. Such alternatives cor-
respond to the domains of the space of states for which
the mean value for the fitness is larger. Therefore, at
this stage, details and gradient of the landscape of the
space of states are not considered. Then, as the com-
mitment degree increases, each domain is partitionned
into smaller sub-domains and, therefore, details of the
landscape take more and more importance. Schrau-
dolph and Belew ([Schraudolph & Belew, 1992]) im-
plemented a similar idea for GA by tracking the
convergence of the population to restrict subsequent
search using a zoom operator.

Of course, it is easy to define a landscape such that
this strategy doesn’t work. For example, take a fitness
function such that the optimal correspond to a peak
located in a region with a very low fitness and for which
another region, far from this optimal peak, has a high
average value. This strategy will be inclined to find out
a local optimum in the region of high average fitness.
As it is shown in [Juillé, 1995], the landscape of the
space of states for the sorting network problem is of

this kind.

However, the ability of the END model to maintain di-
versity by managing the balance between exploration
and exploitation allows it to be an efficient search al-
gorithm.

3 THE SORTING NETWORK
PROBLEM

An oblivious comparison-based algorithm is such that
the sequence of comparisons performed is the same
for all inputs of any given size. This kind of algo-
rithm has received much attention since it admits an
implementation as circuits: comparison-swap can be
hard-wired. Such an oblivious comparison-based algo-
rithm for sorting n values is called an n-input sort-
ing network (a survey of sorting network research is in
[Knuth, 1973)]).

There is a convenient graphical representation of sort-
ing networks as shown in figure 1, which is a 10-input
sorting network (from [Knuth, 1973]). Each horizon-
tal line represents an input of the sorting network
and each connection between two lines represents a
comparator which compares the two elements and ex-
changes them if the one on the upper line is larger than
the one on the lower line. The input of the sorting net-

1 .
1.
.)
1 .
.)
) G
.)

.)

1

Figure 1: A 10-input sorting network using 29 com-
parators and 9 parallel steps.

Table 1: Current upper and lower bounds on the depth
of n-input sorting networks.

Inputs || 1 | 2 3 4 5 6 7 8
Upper || 0 | 1 3 3 5 5 6 6
Lower 011 3 3 5 5 6 6
Inputs 9 (10 | 11 |12 | 13 | 14 | 15 | 16
Upper || 7T | 7 8 8 9 9 9 9
Lower T 7 7 7 7 7 7

work is on the left of the representation. Elements at
the output are sorted and the largest element migrates
to the bottom line.

Performance of a sorting network can be measured in
two different ways:

1. Its depth which is defined as the number of parallel
steps that it takes to sort any input, given that
in one step disjoint comparison-swap operations
can take place simultaneously. Current upper and
lower bounds are provided in [Parberry, 1991].
Table 1 presents these current bounds on depth
for n < 16.

2. Its length, that is the number of comparison-swap
used. Optimal sorting networks for n < 8 are
known exactly and are presented in [Knuth, 1973]
along with the most efficient sorting networks to
date for 9 < n < 16. Table 2 presents these re-
sults.

The 16-input sorting network has been the most
challenging one. Knuth [Knuth, 1973] recounts its
history as follows. First, in 1962, Bose and Nel-
son discovered a method for constructing sorting
networks that used 65 comparisons and conjec-
tured that it was best possible. Two years later,
R. W. Floyd and D. E. Knuth, and independently
K. E. Batcher, found a new method and designed
a sorting network using 63 comparisons. Then, a
62-comparator sorting network was found by G.
Shapiro in 1969, soon to be followed by M. W.
Green’s 60 comparator network (see [Green, 1969]

and [Knuth, 1973]).

Table 2: Best upper bounds currently known for length
of sorting networks. Previously, the best known upper
bound for the 13-input problem was 46.

Inputs 1 2 3 4 5 6 7 8

Comparators || 0 1 3 5 9 12 | 16 | 19
Inputs 9 10 | 11 | 12 | 13 14 | 15 | 16
Comparators 25 129 |35 [39| 45 | 51 | 56 | 60

4 Comparison of GA and END
approaches

4.1 GA approach

4.1.1 Description

As in [Drescher, 1994] and [Hillis, 1992], the intuitive
representation of sorting networks is that each genome
encodes a sorting network as a sequence of pairs, each
pair representing a comparator. Then, crossover is
performed by exchanging groups of comparators be-
tween two mating individuals. A mutation consists in
modifying one of the two indices defining a compara-
tor. The fitness of individuals is then scored using the
following criteria:

e Using the zero-ome principle ([Knuth, 1973]), it
is sufficient to test the 2" possible binary in-
put vectors (where n is the number of inputs
of the sorting network) to determine if a sort-
ing network is correct. Hillis ([Hillis, 1992]) and
Drescher ([Drescher, 1994]) used the ratio of cor-
rectly sorted binary vectors to score the fitness of
individuals in the population.

e Some comparators in the representation can be
non-significant because they don’t reduce the size
of the unsorted vector set. This criterion is used
by Drescher to allow convergence towards short
networks. The technique used by Hillis is a little
different because of his representation of sorting
networks as pairs of chromosomes. Shorter net-
works are created when identical comparators oc-
cur at the same position in the two chromosomes
of a pair.

Using this representation for networks, one can see
that it is highly probable that crossover or mutation
creates offsprings outside the space of correct sorting
networks. For example, let us study the space of states
in the very simple case of a 4-input sorting network.
Table 3 presents, for networks of a given length, the
proportion of valid sorting networks among all possi-
ble networks (restricted to networks for which no two
consecutive comparators are identical) that constitute
the state space explored by GA.

As the length of networks increases, the ratio of valid
sorting networks increases since adding a comparator
cannot transform a valid sorting network into an in-
correct one. However, this ratio becomes very small
when one comes close to the optimal length. In that
case, the probability that crossover or mutation im-
proves individuals is very low and, as is shown in the
next section, the population size has to be large to
counterbalance this undesirable property.

4.1.2 Results

Hillis and Drescher both tackled the 16-input sorting
network problem. However, the size of the search space
1s considerably reduced since their population is initial-
ized with the first 32 comparators of Green’s network
and this “prefix” is protected from changing. Indeed,
since there are no regular pattern for the last 28 com-
parators of Green’s construction, one can think that
a better solution exists with the same initial 32 com-
parators. Moreover, since there are only 151 remaining
unsorted vectors after this initial construction, the fit-
ness can be computed within reasonable time.
Details of GA implementation are not relevant here
and are described in [Drescher, 1994] and [Hillis, 1992].
Results along with population size and number of gen-
erations for Hillis and Drescher’s experiments are pre-
sented in table 4.

Drescher’s GA evolved sorting networks as compact as
the best known. However, in all experiments, a very
large population size is used to reach these results.
The next section presents experiments for the END
model approach and shows that this model is able to
tackle even much more complex instances of the sort-
ing network problem.

4.2 END approach

4.2.1 Description

A non-deterministic incremental algorithm (see figure
2) is run by each individual of the population to gener-
ate incrementally valid sorting networks. A run of this
algorithm corresponds to the incremental construction
of a path in the tree representing all valid and fair sort-
ing networks; that 1s, valid sorting networks with no
useless comparators. Valid sorting networks are built
using the zero-one principle. So, only the 2" possible
binary input vectors need to be considered (instead of
the n! permutations of n distinct numbers).

The fitness of a sorting network is defined as its length.
However, for the reproduction operation, ties are bro-
ken using the depth of sorting networks. In that way,
efficient sorting networks are generated regarding the
number of parallel steps.

Begin with an empty or a partial network N
DO BEGIN
Compute the set S of significant comparators
IF (S is not empty) THEN
Pick randomly a comparator from S
and append it to N
END_IF
UNTIL (S is empty)
/* Now N is a valid and fair sorting network */

Figure 2: Non-deterministic incremental algorithm
run by each individual.

4.2.2 Results

Experiments were performed on a Maspar MP-2 par-
allel computer. The configuration of our system is
composed of 4K processors elements (PEs). The peak
performance of this system for 32-bit integer compu-
tation is 17,000Mips. In the maximal configuration a
MP-2 system has 16 K PEs and a peak performance of
68,000Mips. Each PE simulates one individual if one
wants to study a 4K population, but it can also simu-
late several individuals to evolve a larger population.

Results for the 16-input problem initialized with the
first 32 comparators of Green’s sorting network will
not be presented. The last version of the model is able
to evolve a sorting network as good as the best known
with a 4K population size and a success rate of almost
100% within 5 to 10 minutes. This time performance
is comparable to Drescher’s results ([Drescher, 1994])
presented in section 4.1.2. Actually, the interesting
comparison between his GA approach and the END
model is that:

e GA evolved a population of 219 (= 524, 288) sort-
ing networks (compared to a 4,096 population size

for END),

e 29 to 100 generations are enough for GA to find
the optimum but 150 to 200 generations are often
required for END.

To show the efficiency of the END model for the sort-
ing network problem, the construction of networks
from scratch, i.e., without any initialization, has been
studied. So, there 1s no restriction on the search in the
space of states. Then, the END model has been able
to find all best known upper bounds for the length of
sorting networks (for the number of inputs in the range
of 9 to 16) and even improved the upper bound for the
13-input problem.

Table 5 presents parameters and results of experiments
for the 13-input and the 16-input problems *.

' A new algorithm that doesn’t use the zero-one princi-
ple but that maintains the set of unsorted vectors using a
list of masks has been recently designed and implemented.

1 .
.)
1 .
. .)
1 .) G
) + 3
. .)
) — .
. i .)
) —
.)
)
1 .
1 .
. :) G
)) D¢
D
. D
) . D¢
: 1 . 1
)) D¢
.)
.)
1

Figure 3: Two 13-input 45-comparator sorting net-
works using 10 parallel steps.

For the 13-input problem, the END model discovered
two sorting networks using only 45 comparators (pre-
sented in figure 3), one comparator less than the best
current known. Moreover, these two sorting networks
use 10 parallel steps which is very good since to get
smaller delay time one often has to add one or two ex-
tra comparator modules ([Knuth, 1973]) and the best
known delay for 13-input sorting networks is 9.

For the 16-input sorting network problem, two 60
comparator sorting networks have been evolved from
scratch, each of them using 10 parallel steps. This is
as good as the best human-built sorting network de-
signed by M. W. Green. Figure 4 presents one of these
two 16-input sorting networks.

5 CONCLUSION AND FUTURE
RESEARCH

This paper presented a new and very promising search
algorithm. By using a population-based approach for
the search in the state space and by constructing so-

This algorithm improves the execution time by a factor of
about seven for the 16-input problem. Now, reliable re-
sults can be obtained within an execution time of 12 hours
for this problem. Using the maximal configuration for the
Maspar, a run would take about 3 hours.

lutions incrementally, this model outperforms GA in
the case of problems for which the constraints that
define the sub-space of valid states are complex and
result in a topology for which no useful operator is
known to explore this sub-space efficiently. We were
interested in studying the sorting network problem be-
cause it is a very challenging problem and results of
experiments could be compared to the GA approach
that have been used by Hillis and Drescher. Moreover,
analysis of this problem also revealed that the topol-
ogy of the sub-space of valid sorting networks makes
the use of crossover and mutation harmful.

In another field, board games can also be considered as
a subset of this class of “topologically” complex prob-
lems since rules of such games define valid configura-
tions of the board and these valid configurations often
represent only a very small subset of the whole set of
possible configurations. In [Juillé, 1995], an example
of a board game is presented to show how a strat-
egy 1s evolved by the END model to play this game.
Moreover, the END model is intrinsically highly paral-
lelizable and scalable. Using a 2-D mesh architecture
where each processor simulates one or several individ-
uals, it is possible to evolve a very large population.

The END model could also be enhanced by adding
some features like:

e Allowing the use of some heuristics for solution
generating in order to reduce the number of po-
tential extensions at each node of the tree of so-
lutions.

e Managing a local memory for each individual that
would memorize its “past” and would allow learn-
ing.

e Each individual could look for a local optimum
before reproduction rounds. When possible, this
technique allows a faster convergence.

Finaly, we are currently working to replace the global
strategy for the commitment degree management by a
local strategy that would be managed by the individ-
uals of the population themselves.

Acknowledgements

I am pleased to acknowledge the support of the
W. M. KECK Foundation for the Volen National Cen-
ter for Complex Systems. I would like to thank Jor-
dan Pollack, Patrick Tufts and Martin Cohn for their
valuable advice and discussions. Thanks also to the
NSF whose grant allowed the Brandeis Computer Sci-
ence Department to get a Maspar computer. Finally,
I want to thank my wife, Anne, for the moral support
she provided me while I was working on this project
and for her constant curiosity.

References

[Béck et al., 1991] Back, T., Hoffmeister, F. &
Schwefel, H.-P. (1991). A survey of evolution strate-
gies. In Belew, R. K. & Booker, L. B. (Eds.), Pro-
ceedings of the Fourth International Conference on
Genetic Algorithms, pp. 2-9, San Mateo, California.
Morgan Kaufmann.

[Belew & Kammayer, 1993] Belew, R. K. & Kam-
mayer, T. (1993). Evolving sesthetic sorting net-
works using developmental grammars. In Forrest, S.
(Ed.), Proceedings of the Fifth International Confer-
ence on Genetic Algorithms, San Mateo, California.
Morgan Kauffmann.

[Drescher, 1994] Drescher, G. L. (1994). Evolution
of 16-number sorting networks revisited. Personal
communication.

[Green, 1969] Green, M. W. (¢.1969). Some improve-
ments in nonadaptive sorting algorithms. Techni-
cal report, Stanford Research Institute, Menlo Park,
California.

[Hillis, 1992] Hillis, W. D. (1992). Co-evolving para-
sites improve simulated evolution as an optimization
procedure. In Langton, C. et al. (Eds.), Artificial
Life I1. Addison Wesley.

[Juillé, 1994] Juillé, H. (1994). Evolving non-
determinism: An inventive and efficient tool for op-
timization and discovery of strategies. Draft paper.

[Juillé, 1995] Juillé, H. (1995). Incremental co-
evolution of organisms: A new approach for opti-
mization and discovery of strategies. To appear in
the proceedings of the Third European Conference
on Artificial Life.

[Knuth, 1973] Knuth, D. E. (1973). The Art of Com-
puter Programmang, volume 3: Sorting and Search-

ing. Addison Wesley.
[Levy, 1992] Levy, S. (1992). Artificial Life: the Quest

for a New Creation. Pantheon Nooks.

[Parberry, 1991] Parberry, I. (1991). A computer-
assisted optimal depth lower bound for nine-input
sorting networks. Mathematical Systems Theory,

24:101-116.

[Ruml et al., 1995] Ruml, W., Ngo, J. T., Marks, J.,
& Shieber, S. (1995). Easily searched encodings for
number partitioning. To appear in the Journal of
Optimization Theory and Applications.

[Schraudolph & Belew, 1992] Schraudolph, N. N. &
Belew, R. K. (1992). Dynamic parameter encoding
for genetic algorithms. Machine Learning, 9:9-21.

[Tufts & Juillé, 1994] Tufts, P. & Juillé, H. (1994).
Evolving non-deterministic algorithms for efficient
sorting networks. Poster, Artificial Life IV Confer-
ence. First 60-comparator results.

[Winston, 1984] Winston, P. H. (1984). Artificial In-
telligence. Addison-Wesley. Second edition.

Table 3: Ratio of valid sorting networks in the space of all possible networks

Network length 4 5 6 7 8 9 10

Size of state space 750 | 3,750 | 18,750 | 93,750 | 468,750 | 2,343,750 | 11,718,750
Valid sorting networks 0 12 840 11,580 | 105,000 776,412 5,097,960
Ratio 0.0 | 0.0032 | 0.0448 | 0.12352 | 0.22400 | 0.331269 0.435026

Table 4: Results for Hillis and Drescher’s GA experiments

W. David Hillis

Gary L. Drescher

Population size

65,536

524,288

Number of generations

up to 5,000

29 to 100

Results

61 comparators using
co-evolution of parasites

100% success for 10 consecutive runs,
6 constructions use 10 parallel steps

60 comparators,

(like Greens’s sorting network)

Parallel computer used

64K processor CM-1

64-node CM-5

Execution time

100 to 1,000 generations
per minute

5 to 18 minutes

Table 5: Results for the END model experiments for the 13-input and the 16-input problem

13-input problem

16-input problem

Population size 65,536 65,536

each PE simulates 16 individuals | each PE simulates 16 individuals
Number of generations 160 to 250 300 to 500
Neighborhood radius Jord 5

for reproduction

Results

Number of runs: 6
For 2 runs: 45 comparators

Number of runs: 3
For 2 runs: 60 comparators

Execution time

about 8 hours for each run

about 48 to 72 hours for each run

J1 .

:)
1 .
) G)
1.
.) G
. o4 D¢
:) + 4 o
G|
. MR
: M .
.) G)

: D¢

.)

1

Figure 4: A 16-input 60 comparator sorting networks using 10 parallel steps.

