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Abstract

A trend in robotics is towards legged robots.
One of the issues with legged robots is the
development of gaits. Typically gaits are de-
veloped manually. In this paper we report
our results of autonomous evolution of dy-
namic gaits for the Sony Quadruped Robot.
Fitness is determined using the robot's dig-
ital camera and infrared sensors. Using this
system we evolve faster dynamic gaits than
previously manually developed.

1 INTRODUCTION

In this paper we present an implementation of an au-
tonomous evolutionary algorithm (EA) for developing
locomotion gaits. All processing is handled by the
robot's onboard computer and individuals are evalu-
ated using the robot's sensors. Our implementation
successfully evolves trot and pace gaits for our robot
for which the pace gait signi�cantly outperforms previ-
ous hand-developed gaits. In addition to achieving our
desired goal of automatically developing gaits these
results show that EAs can be used on real robots to
evolve non-trivial behaviors.

A method to automatically create locomotion con-
trollers is directly applicable for use with our
own robot. Previously, we proposed OPEN-R1

[Fujita & Kageyama, 1997], a set of standard de�ni-
tions of interfaces for entertainment robot architec-
ture. The most signi�cant feature of OPEN-R is style

exibility. This 
exibility allows users to recon�g-
ure their own robots. The current implementation
of OPEN-R components allows us to build both a

�Gregory Hornby is a Visiting Reseacher from Brandeis
University, hornby@cs.brandeis.edu.

1OPEN-R is a trademark of Sony Corporation.

wheel-based robot and a quadruped robot. For the
current quadruped robot we have already developed
a crawl gaiting pattern. Now it is easy for us to
build a di�erent quadruped robot with di�erent me-
chanics and sensors based on OPEN-R. We would
like a method for adapting existing locomotion con-
trollers for new robots as well as being able to gen-
erate new gaits for our robot { a quadruped robot
with 16 degrees of freedom (DOF) and various sen-
sors, [Fujita & Kitano, 1998].

We also wish to show that the autonomous evolu-
tion of behaviors with complex, physical robots can
be practical. Arguments against evolutionary robotics
attack both evolution with real robots and evolution
with a simulator, [Mataric & Cli�, 1996]. Recently, a
methodology for developing simulators for evolution
has been proposed and shown to be successful in 4
sets of experiments, [Jakobi, 1998]. But it is acknowl-
edged that there are cases when this methodology will
not work { such as when a high degree of accuracy is
necessary. When this occurs it is desirable to be able
to evolve with a physical robot.

Problems with using real robots are power, mainte-
nance and time, [Mataric & Cli�, 1996]. Power can
be supplied by a tether (as has been done with Khep-
eras as well as in our experiments) or a power 
oor,
[Watson et al., 1998]. Maintenance is not a large prob-
lemwhen an evolutionary run is measured in hours and
not days. In our case, interchangeable parts allowed
us to easily replace malfunctioning legs with working
ones. Time is not a problem when an evaluation can
be done quickly. For example, evolving 100 individuals
for 100 generations will take 16 hours if an evaluation
takes 6s. This is not unreasonable. In contrast, evolu-
tion will take approximately 40 days if an evaluation
takes 6 minutes. We propose using physical robots
when accuracy cannot be readily simulated and eval-
uation times are short.



Previous autonomous evolution with actual robots
has not evolved behaviors with comparably com-
plex robots nor evolved controllers for tasks requir-
ing precise control of actuators. Examples of au-
tonomously evolved behaviors are: forward, back-
ward and stopping behaviors with a wheeled robot
in [Steels, 1994]; homing navigation with a Khepera
in [Floreano & Mondada, 1996]; and pursuer-evader
behaviors with Kheperas in [Floreano & Nol�, 1998].
None of these behaviors would be particularly di�-
cult to implement by hand nor would they be dif-
�cult to evolve in simulation (comparable behaviors
have been successfully transferred from simulation to
physical robot in [Jakobi, 1998]).

Our test problem is that of developing locomotion
controllers for dynamic gaits. By their nature, dy-
namic gaits are sensitive behaviors for which build-
ing a simulator would be di�cult and for which hand
development of parameters has been di�cult. The
gaits evolved in our experiments outperform hand-
developed gaits. These results show that complex,
physical robots can be used for evolution and with
these robots non-trivial behaviors can be evolved.

The rest of this document is organized as follows. Sec-
tion 2 is a review of related work in evolving gaits for
legged robots. Section 3 is a description of our robot
and the locomotion module. Section 4 consists of a
description of the evolutionary algorithm used for our
evolution. In section 5 we describe the setup of our
experiment and how the robot's sensors are used. Sec-
tion 6 presents the results of our experiments. We
discuss these results in section 7. Finally, section 8 is
a conclusion of this work.

2 RELATED WORK

Development of locomotion gaits for legged robots
is a problem that has been studied for over 20
years and is a research issue becoming more pop-
ular with di�erent research groups (such as: Sony,
[Fujita & Kitano, 1998]; Honda, [Hirai et al., 1998];
and University of Tokyo, [Buehler et al., 1998] and
[Yamaguchi et al., 1998]). In this section we limit our
review of related work to those evolving locomotion
controllers for physical robots. First we describe three
di�erent gaits for a quadruped robot.

Of the gaits a quadruped robot is capable of three of
the most common are the crawl, trot and pace gaits.
A crawl gait consists of moving each leg in turn while
the other three legs are used for support. This is a
static gait and the robot's center of gravity can be
kept inside the triangle of the three support legs. In

contrast trot and pace are dynamic gaits where there
is no such safe area for the robot's center of gravity.
A trot gait consists of the matching two diagonal legs
moving together whereas with a pace gait the two legs
on the same side of the robot move together. Figure 1
shows the leg position for crawl, trot and pace over a
complete swing cycle. Up indicates the speci�ed leg is
o� the ground, down indicates the leg is on the ground.

right front

left front
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Figure 1: Quadruped Gaits

Most research in evolving gaits for physical,
legged robots uses a simulator for the evolu-
tion. In [Gallagher & Beer, 1992] neural controllers
were evolved for a simulated cockroach. Later,
[Gallagher et al., 1996], these networks were trans-
ferred to a physical hexapod robot where they
produced a smooth walking behavior. Again, in
[Parker et al., 1997], a simulator was built for a 6-
legged Stiquito II robot and a genetic algorithm was
used to evolve locomotion controllers for it. Unlike
other examples this robot used nitinol actuators to
control the legs for which the controllers consisted of
binary strings where each bit indicated whether or not
to apply a voltage to a nitinol wire. An OCT1, an 8-
legged robot (2-DOF/leg), was used in [Jakobi, 1998].
Neural controllers were evolved in simulation for ob-
stacle avoidance as well as the locomotion gait. Per-
formance on the physical robot was similar to that in
the simulator and walking gaits were clearly observ-
able. Finally, another example of using both simula-
tor and physical robot is that of [Porta et al., 1998].
A quadruped robot and simulator were developed for
evolving walking and other behaviors. As with the
other examples controllers evolved in the simulator
produced working walking-behaviors for the actual
robot.

More similar toour work is that of using a real
robot for the evolution. In [Lewis et al., 1992]
ANNs were evolved as controllers to get a tri-
pod gait for a 6-legged robot (2-DOF/leg). They
used staged evolution to evolve �rst oscillators then



to evolve a walking behavior. Fitness was deter-
mined by the experimenter. Cellular encoding was
used in [Gruau & Quatramaran, 1996] to interactively
evolve a controller for an OCT1. Again, the experi-
menter input the �tness of the individual and assisted
the evolutionary process through staged evolution.

Before taking an evolutionary approach to the devel-
opment of gaits our lab created gaits by hand. We de-
veloped a crawl gait of 5m/min and a fast-crawl gait
(halfway between a crawl and a trot) of 6m/min. A
pace gait was also developed but this was not very
good and would at times move the robot backwards.
A trot gait was not developed.

The signi�cant di�erences between this work and
those described above are that our evolution is com-
pletely autonomous and we evolve dynamic gaits. Au-
tonomous evaluation involves coordinating di�erent
sensors { for determining location and measuring dis-
tance { which is a challenging problem on its own.
Also, we compare the performance of our evolved con-
trollers with those developed by hand and �nd that the
evolved controllers are better. Finally, even though
joint information is available, our locomotion module
does not use sensor feedback. Evolved controllers must
be able to recover from stumbles without being able
to detect their occurrence.

3 ROBOT PLATFORM AND

LOCOMOTION MODULE

the robot used for our experiments is the Sony
Quadruped Robot. The head and each of the four legs
has 3 degrees of freedom. There is also 1 DOF for the
tail giving a total of 16 DOF. The body length (not
including the head or tail) is approximately 18cm and
the length of the leg (from shoulder to foot) is just un-
der 12cm. Onboard the head is a micro-camera, stereo
microphone, infrared sonar, and a touch sensor. There
is also a touch sensor at the bottom of each leg. In ad-
dition to housing the CPU the body also houses a gyro-
scope and accelerometers. See [Fujita & Kitano, 1998]
for a more detailed description of the robot.

Movement of the legs is controlled by a locomotion
module. This module controls the robot's gait with
a user-speci�ed set of real-valued parameters. Every
20ms it updates the joint angles of the legs to the next
position in their swing phase. This module also de-
tects, and recovers from, the robot falling over.

To smoothen the movement of the robot we developed
a variable gain control algorithm that varies the gain
according to a schedule speci�ed by three real-valued
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Figure 2: The Robot's (right-handed) Coordinate Sys-
tem

parameters. The �rst parameter speci�es the mini-
mum gain to use { the maximum value is �xed to
the maximum possible. The second parameter, shift,
speci�es when in the swing cycle to start reducing the
gain. The third parameter, length, is the duration over
which the gain is reduced from the maximum to the
speci�ed minimumand then back to maximum follow-
ing a sin wave:

gain = min+(max�min)�(1�sin(leg phase�shift))
(1)

The leg phase starts at 0� swinging forward and up,
starts swing back at 180� and ends at 360�. For ex-
ample, with the pace gait, legs on the same side of the
body have the same leg phase and legs on the opposite
side of the body are 180� out of phase.

In total, there are twenty real-valued parameters are
used to de�ne a gait for the locomotion module. Ta-
ble 1 lists these parameters, which are are also the
genes for individuals evolved by the evolutionary al-
gorithm. These parameters specify the position and
orientation of the body, the swing path and rate of
swinging of the legs, the amplitude of oscillation of
the body's location and orientation, and how the gain
varies during the course of a swing cycle for each leg.

4 EVOLUTIONARY ALGORITHM

The evolutionary algorithm is a steady-state EA run-
ning onboard the robot. This consists of an initializa-
tion phase followed by the evolution of the population.
Parameters to the di�erent phase of the EA were cho-
sen based on values used by other researchers and our
own experience. In this section we describe the initial-
ization, selection and reproduction phases of the EA.
Evaluation is described in the following section.



Table 1: Parameter List For A Gait

parameter unit initial
range

best
trot

best
pace

body center x mm. 85 - 95 82.7 89.2
body center z mm. -5 - 5 6.18 -2.05
body pitch degrees -5 - 5 -11.3 3.17
all legs y mm. 5 - 25 10.6 10.0
front legs z mm. 24 - 40 24.7 25.0
rear legs z mm. 15 - 29 24.3 25.3
step length n.a. 80 - 220 152 182
swing height mm. 15 - 29 19.6 29.5
swing time ms. 200 - 400 421 222
swing mult. n.a. 1.5 - 2.5 2.42 1.69
switch time ms. 500 - 900 799 617
ampl body x mm. -2 - 2 0.55 -0.39
ampl body y mm. 0 - 20 10.3 5.09
ampl body z mm. -2 - 2 0.74 -1.27
ampl yaw degrees -2 - 2 -2.93 1.57
ampl pitch degrees -3 - 3 -0.44 3.68
ampl roll degrees -3 - 3 2.15 0.44
min. gain n.a. 25 - 175 103 101
shift degrees 60 - 120 64 125
length degrees 90 - 150 117 103

The initial population is created with a uniform dis-
tribution over a given search range. Table 1 lists the
twenty real-valued parameters used as genes and their
initial search range. This initial range was determined
from experience in hand developing gaits. Once in-
dividuals are created they are evaluated. With a dy-
namic gait many parameter con�gurations result in
the robot falling over. To generate an initial popula-
tion of non-falling individuals, sets of parameters in
the initial population that cause the robot to fall are
replaced with new, randomly generated individuals.
When all individuals in the initial population are non-
falling evolution begins.

A tournament selection is used to select individuals
for parents and the individuals to be replaced. First
the algorithm decides whether to perform recombina-
tion or mutation. Then a number of individuals is
randomly selected to be in the tournament. For re-
combination, 3 individuals are randomly selected and
for mutation 2 individuals are randomly selected. The
parent(s) is the individual(s) with higher �tness, and
the individual with the lowest �tness is replaced by the
o�spring of the parent(s).

Both mutation and recombination are used as vari-
ation operators, with an equal probability of select-
ing either mutation or recombination. Recombina-
tion takes two individuals as parents (p1 and p2)

and creates one child individual (c). Each gene of
the child is given a value according to the equation,
ci = p1i + �i(p1i � p2i). Here, ci is the ith gene of
the child individual; p1i and p2i are the ith gene of
parents p1 and p2; and �i is a random number in the
range of -1 to 1. Mutation takes one parent individual
and perturbs a few values in it by a small amount to
generate a child individual. A random number with
a Gaussian-like distribution is used to determine the
number of genes (1 to 8) to mutate. The genes to be
mutated are selected randomly (it is possible to se-
lect a gene more than once) and the mutated value is,
ci = pi + �imutate; where � is a uniform random value
in the range of -1 to 1. Values for vi;mutate are set to
5% of a parameter's initial search range.

A problem experienced in initial experiments was that
sometimes an individual would receive a signi�cantly
higher �tness than it deserved{such as through an in-
accurate measure of distance from the infrared dis-
tance sensor. This resulted in pulling the search to-
wards poor parameters. To reduce this problem an
individual's age, the number of times it has been used
as a parent, is stored. Age is incremented each time
the individual is used as a parent for either recombi-
nation or mutation. When an individual reaches the
age of 4 it is re-evaluated and its age is reset to 0.

5 EXPERIMENTAL METHOD

The desired result of our experiment is a set of pa-
rameters that moves the robot both quickly and in a
straight line. In this section we describe our experi-
ment and how individuals are evaluated.

Evolution takes place inside a pen (see �gures 3 and 4).
At each end of the pen there is a strip of colored cloth
to mark the center of that end. Using its camera the
robot turns until it is centered on one colored strip of
cloth. Once centered, the robot measures its distance
with its infrared sensor and proceeds to locomote for a
�xed amount of time (7s for these experiments). The
robot stops either at the end of this time or if it en-
counters a wall. Then the robot pans its head to �nd
the color strip and measures its stopping distance. Us-
ing these two distances the robot scores the tested lo-
comotion parameters by calculating its average speed
during the trial. An individual's �tness is the average
of three locomotion trials.

Centering the robot on the color strip is done by use
of the Micro-Camera-Unit (MCU). For the MCU we
have a dedicated LSI chip with 8 color detection tables
(CDTs) for detecting colors within a given range at
each pixel position. A CDT is used for each color



Figure 3: Picture Of The Experimental Environment

strip. For centering, the robot uses a turning gait to
turn in place. The robot turns in a �xed direction until
the desired color is detected. Once detected the robot
�nds the average horizontal location of all the pixels
containing the desired color and converts this to an
angle (the camera covers an angle of 52�). When the
average location falls within �6� of center for a period
of 1.6 seconds the robot is centered.

Head panning uses the CDT in a way similar to the
centering behavior. In this case, the robot's body re-
mains �xed and the head turns. When the color strip
is detected the robot calculates the o�set from the cur-
rent head angle and rotates its head to face the color
strip.

Distances are measured using an infrared sensor lo-
cated in the robot's head. The infrared sensor returns
a value that must be converted to a distance. To cre-
ate a function for this conversion the robot was placed
in the pen at �xed distances from a color strip and the
average of 200 readings was taken. Before a test of a
set of parameters begins the robot tests its distance to
the color strip to determine if it is within its reliable
range. When the robot is further than its maximum
reliable range (80cm) it uses a hand-built crawl gait
to move closer. Closer than 10cm the infrared sensor
readings become unreliable. When the robot comes
within 20cm of a wall it is stopped, giving it 10cm in
which to slow down and stop. This also prevents the
robot from running into walls.

The infrared sensor is used as follows. Before taking
readings the robot's body is moved to a normalized
position. The start distance is determined by averag-
ing seven consecutive infrared sensor readings. If the
robot is more than 80cm from the target color strip
it moves forward (using a hand-designed, crawl gait)
until it is within 80cm. Then the robot moves for a

128cm

76cm

color strip

Figure 4: The Robot Pen

speci�ed amount of time (7 seconds) using a set of lo-
comotion parameters and stops. If the robot has fallen
(detected by the onboard accelerometers) the current
individual is given a score of 0, then the robot gets up
by itself (using a hand-coded behavior) and the next
individual is tried. Otherwise, if the robot does not
fall, the trial ends successfully and the robot pans its
head until it �nds the color strip. The stop distance
is determined by averaging seven consecutive infrared
sensor readings.

To simplify optimizing both velocity and straightness
the score of a trial is the product of its velocity and
straightness scores (averaged over three trials). Veloc-
ity, v(), is the average velocity of the robot during the
trial. Straightness is a function of the angle between
the robot's forward direction and the direction to the
target color strip, �, and the distance to the target
strip, (see �gure 4). Before calculating the straight-
ness function, � is converted to a 0-1 measure of o�set
by the function f(�). The straightness function, s(),
normalizes this value to account for the robot's dis-
tance from the color strip { with the robot at a �xed
orientation � will be larger when the robot is closer to
the color strip. These functions are de�ned as:

score = v(dstart; dstop; time) � s(�; dstop) (2)

v(dstart; dstop; time) =
dstart � dstop

time
(3)

s(�; dstop) =
dstop(f(�) � 1) + 80� 10f(�)

70
(4)

f(�) = 1�
j�j

90�
(5)

For the function s(), 80 and 10 are used as the con-
stants because they are the maximum and minimum
measurable distances. Table 2 lists values of s(�; dstop)
for di�erent values of � and dstop. If the robot cannot
�nd the color strip it is assumed that the robot's gait
caused it to turn so sharply that it cannot pan its head
far enough to face the color strip. In this case the indi-



vidual receives a score of 0 for the trial, the same score
it would receive if � is 0�. An individual's �tness, used
in the selection phase, is the average score over three
trials.

Table 2: Sample Values For s(�; dstop).

� dstop s(�; dstop)

�90� 80 0
�90� 45 0.5
�90� 10 1.0
�45� 80 0.5
�45� 45 0.75
�45� 10 1
�0� 80 1
�0� 45 1
�0� 10 1

Using the method described above we run two exper-
iments. First we evolve a trot gait then we evolve a
pace gait. The di�erence between the two experiments
is in the time we set the legs to swing. For the trot gait
we set the front-left and rear-right leg swing together
at a 180� shift from the other two legs. With the pace
gait we set legs on the same side of the robot to move
together, with the left and right sides at a 180� shift
of each other.

6 EXPERIMENTAL RESULTS

In evolving a trot gait we used a population size of
30 and ran for 21 generations. 30 random individuals
were created to make the initial population of non-
falling individuals. In the initial population most in-
dividuals did not move very well. Some moved back-
wards and the best, while moving as far as 26cm, were
awkward. Individuals also had a tendency to walk in
a curve. By the end of the evolution the individuals
were propelling the robot more smoothly and almost
straight. The best individual had a �tness score of 6.3
and moved 6.5m in a one minute trial. Figure 5 is a
graph plotting the results of evolving a trot gait.

Figure 6 contains a graph showing the results for the
evolution of a pace gait. Initial individuals for this
gait are much less stable than those of the trot gait. It
took 84 randomly generated individuals to create the
initial population of 30, non-falling parameters. Like
with the trot gait, the initial population had a cou-
ple of good individuals that moved quickly but did so
awkwardly. Most individuals had a �tness less than
1.5. With this gait there was a large variance in per-
formance between di�erent trials of the same locomo-
tion parameters. Averaging scores over three trials
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Figure 5: Trot Gait Results

alleviated this problem, as did maintaining an indi-
vidual's age and re-evaluating after 4 reproductions.
After 11 generations of evolution the best individuals
could move 10.2m/minute. Figure 7 contains a se-
quence of images of the best evolved pace gait with a
1

15
s interval between frames.
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Figure 6: Pace Gait Results

In these experiments each generation took approxi-
mately one hour. The evolved parameters of the best
individuals for the trot and pace gaits are listed in
table 1.

7 DISCUSSION

Our �rst implementation of an evolutionary algo-
rithm used the experimenter to enter the �tness
scores in the same way as [Lewis et al., 1992] and
[Gruau & Quatramaran, 1996]. In addition to using
the distance moved by the robot an objective measure
of aesthetics was used to adjust an individual's �tness.
One �nding was that parameters for a dynamic gait
are sometimes erratic in performance, notably in the
early stages of evolution. The same set of parameters
may perform well in one evaluation and poorly in an-
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Figure 7: Example Of A Pace Gait
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Figure 8: Example Of A Trot Gait

other. Averaging �tness over multiple trials resulted
in the evolution of dynamic gaits with consistent per-
formance. This �nding was the reason for averaging
performance over three trials with autonomous evolu-
tion. By hand a trot gait of 5m/min and a pace gait
of 8.1m/min were evolved.

With autonomous evaluation of �tness our �rst eval-
uation metric used the same metric as our hand-
evaluated algorithm: distance over a �xed amount of
time. This evaluation metric became inaccurate as in-
dividuals improved. Often an individual would start
its trial near the middle of the pen. This left it with
approximately 50cm to the far wall. Good individuals
could do this easily in less than allotted time. Conse-
quently they were re-evaluated. If this happened twice
in a row they were given a score of 0 for that trial.

Thus very good individuals were frequently given low
scores resulting in a low upper limit to what could be
evolved (about 5m/min). Changing to variable time
trials and scoring for average speed raised this upper
limit.

Another factor limiting the maximum evolvable speed
is variation in the starting angle of the robot. Initially
we had planned to run the pace experiment for 20 gen-
erations but after 11 generations it appeared to cease
improving. Di�erences in �tness seemed to be the re-
sult of the starting angle of the robot. After centering
on the colored strip the robot spent 1s switching gait
parameters to the current individual's. In doing so it
would often turn slightly. Then the robot would be pe-
nalized through s(�; dstop), sometimes large sometimes
small, even though it ran straight. As a result the
di�erence in �tness between the top individuals was
mostly a matter of luck. With little selective pressure
on these individuals the population ceased to improve.

Our experiments produced pace gaits that were faster
than the trot gait. This was true both for manual
evaluation and for automatic evaluation. A reason for
this may be because of the hardware design. With
the pace gait the robot was able use the shifting of
its body to assist in lifting the forward-swinging legs
o� the ground. The trot gait has a forward-moving
leg on each side of its body. Consequently clearance
of the ground can be done only by moving the legs
and is more di�cult on our robot. A robot with a
twisting torso may be able to twist its body to help lift
the forward-moving legs o� the ground and achieve as
good performance with trot as with pace.

In fact, our evolved trot gaits are not truly dynamic.
The gaits that did evolve would drag one of the for-
ward moving legs along the ground. In one run of our
experiments the robot angled its body forward and and
semi-crawled forward, resting on its front legs. In an-
other run it was the rear legs that dragged along the
ground. Sometimes an individual would crawl with
both front and rear legs sliding along the ground.

A dynamic trot gait is not stable on two legs and will
eventually fall such that it uses a third leg for stabil-
ity. By moving quickly, the legs on the ground keep
switching and the robot does not have time to fall onto
a third leg. In evolving a trot gait, early individuals do
not move very fast and are usually resting on a third
leg. If an individual always leans to one side it will
tend to turn while moving and receive a large penalty
through s(�; dstop). Consistently resting on legs on
both sides of the body removes this lopsided drag and
allows the robot to move in a straight line.



From graph 6 it appears that the best pace parameters
from the initial random population are almost as good
as the best hand tailored controllers. This is not the
case. Running the best individual from the initial pop-
ulation shows that over a period of 1 minute it does
cover almost 5m (a little less than its �tness would
indicate) it does not move smoothly or straight. It
stutters, bounces in-place, and frequently turns. The
average �tness of the population is a better indicator
of performance.

Evolved parameters are both robust in some ways, yet
not robust in others. By the end of evolution, an in-
dividual's o�spring tended to be very similar to its
parent(s). Successful individuals who were robust to
mutation had successful o�spring. These parameters

ourished. Where a parameter was sensitive to a mu-
tation its o�spring were not successful and died out.
Yet individuals were somewhat sensitive to their en-
vironment. With a di�erent carpet, di�erent leg cali-
bration or di�erent voltage an individual would often
perform di�erently. Typically this consisted of more
frequent stuttering in place and moving in a curve. It
is possible that adding sensor feedback would reduce
these a�ects. Regardless, this �nding suggests that
individuals are somewhat specialized to the environ-
ment they evolved in and to generate more general
controllers individuals should be evaluated in di�erent
environments.

Evolving dynamic gaits was hard on the robots. In
the four months of developing and testing the evolu-
tionary algorithm frequent maintenance was necessary.
The neck needed to be repaired three times, the CPU
board was exchanged twice, the wires on the legs had
to be replaced several times and more than a dozen
rubber feet were used. When a simulator can be easily
constructed and the problem does not require a �ne
degree of control the simulator is likely the better op-
tion.

8 CONCLUSION

In this paper we presented our work in the autonomous
evolution of dynamic gaits. We evolved vectors of 20
real-value parameters for our locomotion module. The
evolutionary algorithm for this was run onboard the
robot. Using the robot's sensors the �tness for each
individual evaluated without assistance by the experi-
menter. This algorithm successfully evolved both pace
and trot gaits for our robot. Table 3 shows the �tness
values for the best individual from the initial popula-
tion and the best individual found as well as the actual
speed of the best individual. The best pace gait moved
the robot at approximately 10.2m/min, signi�cantly

better than the best hand developed gaits { 6m/min
for a fast-crawl and unsuccessful development of a pace
gait.

Table 3: Summary Of Results

initial pop
best �tness

overall best
�tness

overall best
speed

pace 5.2 7.6 10.2 m/min
trot 2.6 6.3 6.5 m/min

Previous work in evolution with real robots used
simple robots and evolved controllers for non-brittle
tasks. In addition, minimal simulations of these
robots has been built and similar controllers have
been successfully evolved with them. We used a more
complex robot (16 DOF with various sensors) and
evolved a sensitive behavior (dynamic locomotion on
a quadruped without sensor feedback) achieving bet-
ter results than hand-tailored controllers. These re-
sults show the feasibility of evolving low-level behav-
iors with real robots. In future work we plan to evolve
high-level behaviors in simulation using models of low-
level behaviors evolved with real robots.

Acknowledgements

The authors would like to thank Ronald Arkin, Dario
Floreano, Jun Tani, and the members of Sony D-21,
Group 1.

References

[Buehler et al., 1998] Buehler, M., Battaglia, R., Co-
cosco, A., Hawker, G., Sarkis, J., & Yamazaki, K>
(1998). Scout: A simple quadruped that walks,
climbs and runs. In Proc. of International Confer-

ence on Robotics and Automation, pp. 1707{1712.

[Floreano & Mondada, 1996] Floreano, Dario & Mon-
dada, Francesco (1996). Evolution of homing nav-
igation in a real mobile robot. IEEE Transaction

on Systems, Man and Cybernetics{Part B: Cyber-

netics, 26(3):396{407.

[Floreano & Nol�, 1998] Floreano, Dario & Nol�, Ste-
fano (1998). Competitive co-evolutionary robotics:
From theory to practice. In Pfeifer, R. (Ed.), From
Animals to Animats V. MIT Press.

[Fujita & Kageyama, 1997] Fujita, M. & Kageyama,
K. (1997). An open architecture for robot enter-
tainment. In del Rey, Marina (Ed.), Proc. of First
Intl. Conf. on Autonomous Agents, pp. 234{239.



[Fujita & Kitano, 1998] Fujita, Masahiro & Kitano,
Hiroaki (1998). Development of an autonomous
quadruped robot for robot entertainment. Au-

tonomous Robotics, 5:1{14.

[Gallagher & Beer, 1992] Gallagher, John C. & Beer,
Randall D. (1992). A qualitative dynamical analysis
of evolved locomotion controllers. In Meyer, J.-A.,
Roitblat, Herbert L., & Wilson, S. W. (Eds.), From
Animals to Animats 2, pp. 71{80.

[Gallagher et al., 1996] Gallagher, J. C., Beer, R. D.,
Espenschied, K. S., & Quinn, R. D. (1996). Applica-
tion of evolved locomotion controllers to a hexapod
robot. Robotics and Autonomous Systems, 19(1):95{
103.

[Gruau & Quatramaran, 1996] Gruau, Fr�ed�eric
& Quatramaran, Kameel (1996). Cellular encod-
ing for interactive evolutionary robotics. Technical
Report 425, University of Sussex.

[Hirai et al., 1998] Hirai, K., Hirose, M., Haikawa, Y.,
& Takenaka, T. (1998). The development of honda
humanoid robot. In Proc. of Intl. Conf. on Robotics

and Automation, pp. 1321{1326.

[Jakobi, 1998] Jakobi, Nick (1998). Minimal Simula-

tions for Evolutionary Robotics. PhD thesis, School
of Cognitive and Computing Sciences, University of
Sussex.

[Lewis et al., 1992] Lewis, M. Anthony, Fagg, An-
drew H., & Solidum, Alan (1992). Genetic program-
ming approach to the construction of a neural net-
work for control of a walking robot. In Proc. of In-

trntl. Conf. on Robotics and Automation, pp. 2618{
2623.

[Mataric & Cli�, 1996] Mataric, Maja J. & Cli�, Dave
(1996). Challenges in evolving controllers for phys-
ical robots. Evolutionary Robotics, 19(1):67{83.

[Parker et al., 1997] Parker, Gary B., Braun,
David W., & Cyliax, Ingo (1997). Learning gaits for
the stiquito. In Husbands, P. & Meyer, J-A (Eds.),
Proc. of 8th Intl. Conf. on Advanced Robotics, pp.
285{290.

[Porta et al., 1998] Porta, J., Nicoud, J-D., Floreano,
D., & Michel, O. (1998). Katzi, a four-legged evolu-
tionary robot. Internal report, Laboratory of Micro-
Processors and Interfaces, Swiss Federal Institute of
Technology.

[Steels, 1994] Steels, Luc (1994). Emergent function-
ality in robotic agents through on-line evolution. In
Brooks, R. & Maes, P. (Eds.), Proc. of Fourth Work-

shop on Arti�cial Life, pp. 8{14.

[Watson et al., 1998] Watson, R. A., Ficici, S. G.,
& Pollack, J. B. (1998). Embodied evolution.
http://www.cs.brandeis.edu/~richardw.

[Yamaguchi et al., 1998] Yamaguchi, J., Inoue, S.,
Nishio, D., & Takanishi, A. (1998). Development
of a bipedal humanoid robot having antagonistic
driven joint and three dof trunk. In 1998 IEEE/RSJ

Intl. Conf. on Intelligent Robots and Systems, pp.
96{101.


