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ABSTRACT
Bioinformatics techniques are introduced for the analysis of
evolutionary search. These techniques are tested on build-
able robots evolved in a virtual simulator for a locomotion
task. By using bioinformatic visualizations properties of
evolutionary search and relatedness between differing robot
genotypes and phenotypes can be examined.

Categories and Subject Descriptors
I.2.9 [Computing Methodologies]: Artificial Intelligence—
Robotics; I.6.6 [Computing Methodologies]: Simulation
and Modeling—Simulation Output Analysis

General Terms
Design, Experimentation, Measurement

Keywords
Evolutionary Algorithms, Robotics, Evolution, Behavior, Phy-
logenetics, Evolutionary, Late Breaking Abstract

The study of evolutionary algorithms (EAs) is often com-
plicated by local optima, fitness plateaus, and other degen-
erate behaviors. We introduce the use of bioinformatic vi-
sualizations to gain insights into search spaces and trajecto-
ries of EAs. Analysis techniques originally developed for the
study of natural evolution are presented in the context of an
artificial evolutionary substrate as robot phylogenetics.

Evolutionary robotics involves searching a space of geno-
types that map onto robot phenotypes. Successful examples
include searching through spaces of robotic truss structures
[4] and L-systems [2]. Our robots, evolved in breve, a 3D
multi-agent simulator [3] and shown in Figures 1a & 1b, are
similar to [6]. Some structural and all control parameters are
evolved. A genetic algorithm with two-point crossover, and
mutation (single-point randomization and +/− unit shift)
is used on genomes of 18 genes. A population of size 100 is
evaluated for 100 generations with tournament selection.

Evolutionary computation has been used numerous times
to solve bioinformatics problems [1]. However, bioinformat-
ics techniques have not been used to solve evolutionary com-
putation problems. We introduce the use multiple bioinfor-
matics techniques to explore an EA. Heat maps of both the
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historically-ranked, Figures 1c and 1d, and fitness-ranked
individuals, Figures 1e and 1f, show the evolutionary tra-
jectory and the similarity in fitness landscapes, respectively.
A cluster heat map [7] of genotype/phenotype observations,
Figures 1g and 1h, suggests separate basins within the space
and a close coupling between fitness and limb length. Pear-
son’s correlation metric [5] clusters individuals which tend
to be closer by minor mutation and intra-cluster crossover.
Comparison of fitness landscapes suggest that the wave com-
pression gene is the primary difference between optimal ra-
dial and bilateral robot phenotypes. Finally, the long leg
bias is made apparent by the fitness landscape.

Bioinformatics techniques can elucidate analysis of evo-
lutionary search. Clustering can provide insight into the
roughness of a fitness landscape. Design of evolutionary sys-
tems can be clarified by using bioinformatics visualization of
evolutionary trajectories, spaces, and fitness landscapes.
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(a) Virtual and real robot, bilateral. (b) Virtual and real robot, radial.

(c) Evolutionary trajectory, bilateral. (d) Evolutionary trajectory, radial.

(e) Fitness landscape, bilateral. (f) Fitness landscape, radial.

(g) Phylogenetics and clustering, bilateral. (h) Phylogenetics and clustering, radial.

Figure 1: Bilateral and radial virtual robots next to respective posed real robots, (a) and (b). Heat map of evolutionary
trajectories over 100 generations of populations consisting of 100 individuals, (c) and (d). Heat map of fitness-ranked explored
genotypes, (e) and (f). Heat maps present 18-dimensional genome space as well as fitness score. Clustering of explored
genotypes, (g) and (h). Colors indicate discretized value with dark red as the maximum and dark blue as the minimum. Rows
are labeled with gene names, except the row containing fitness values.


