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Abstract-
The replicator equation used in evolutionary game

theory (EGT) assumes that strategies reproduce in di-
rect proportion to their payoffs; this is akin to the use
of fitness-proportionate selection in an evolutionary al-
gorithm (EA). In this paper, we investigate how various
other selection methods commonly used in EAs can af-
fect the discrete-time dynamics of EGT. In particular, we
show that the existence of evolutionary stable strategies
(ESS) is sensitive to the selection method used. Rather
than maintain the dynamics and equilibria of EGT, the
selection methods we test impose a fixed-point dynamic
virtually unrelated to the payoffs of the game matrix, give
limit cycles, or induce chaos. These results are signifi-
cant to the field of evolutionary computation because EGT
can be understood as acoevolutionary algorithmoperat-
ing under ideal conditions: an infinite population, noise-
less payoffs, and complete knowledge of the phenotype
space. Thus, certain selection methods, which may oper-
ate effectively in simple evolution, are pathological in an
ideal-world coevolutionary algorithm, and therefore du-
bious under real-world conditions.

1 Introduction

A central achievement of evolutionary game theory (EGT)
was the introduction of a method by which agents can
play “optimal” strategies in the absence of rationality
[Maynard-Smith, 1982]. Through a process of Darwinian se-
lection, a population of agents can evolve to anevolutionary
stable strategy(ESS), which is a Nash equilibrium with an
additional stability criterion. While the dynamics and equilib-
ria in EGT are influenced by the payoff matrix, the system’s
general dynamical properties are determined by thereplica-
tor equation. The canonical replicator used in EGT is a differ-
ence (or differential) equation that selects agents to reproduce
offspring in direct proportion to fitness.

The dynamics of various replicator equations is a topic
of intense study, particularly with respect to the game-
theoretic equilibria [Weibull, 1995, Samuelson, 1997]. Fur-
ther, ties between EGT, quantitative genetics, and animal
behavior have launched a host of more biologically in-
spired investigations into the dynamics of replicator systems

[Hofbauer and Sigmund, 1998, Dugatkin and Reeve, 1998].
Evolutionary game theory has also lead to a proliferation
of various non-evolutionary alternatives to agent rational-
ity that include social learning methods such as imitation
[Fudenberg and Levine, 1998]. In all these studies, an un-
derstanding of the dynamics of “replication”—the engine of
learning—is key.

Yet, the selection methods (replicators) used in evolu-
tionary algorithms (EA) have escaped careful game-theoretic
scrutiny. This paper investigates the properties of four
common EA selection methods from a game-theoretic and
dynamical-systems perspective: truncation,(�; �)-ES, lin-
ear ranking, and Boltzmann selection. Selection meth-
ods used in EAs are reviewed in [Goldberg and Deb, 1991,
Hancock, 1994, Mitchell, 1996]. But, how do these meth-
ods compare to the canonical fitness-proportionate selection
when used in EGT? Do they exhibit similar dynamics and
promote the same fixed-points and attractors?

Rather than maintain the dynamics and equilibria of EGT,
the selection methods we test impose a fixed-point dynamic
virtually unrelated to the payoffs of the game matrix, give
limit cycles, or induce chaos. Only Boltzmann selection (and
only at low selection pressures) is faithful to EGT dynam-
ics. These results transcend evolutionary game theory, how-
ever. Because our analysis is game-theoretic, we are im-
plicitly considering the effects of these selection mechanisms
in an evolutionary environment where strategyinteractionis
taken into account—otherwise known as acoevolutionary al-
gorithm. We conclude that certain selection methods, while
they may be effective in ordinary evolutionary algorithms, are
likely to be inappropriate for coevolution.

We begin with a brief introduction to evolutionary game
theory and theHawk-Dovegame. The next two sections out-
line our dynamical systems approach, where we first look at
the dynamical features of the Hawk-Dove game, and then
consider the role of the selection method (the replicator). We
then consider each of the four selection methods, in turn. Dis-
cussions of how our results generalize to larger games, and
what the results mean for coevolutionary algorithms follow.
We then review a general methodology used in dynamical
systems to determine the stability characteristics of an arbi-
trary differentiable replicator function. We finish with con-
cluding remarks.



2 Evolutionary Game Theory

This section introduces evolutionary game theory and the
Hawk-Dovegame [Maynard-Smith, 1982]. As explained
above, the key contribution of EGT is the notion that Dar-
winian selection can replace the need for agent rationality.
Let us consider a concrete example. The (symmetric) pay-
off matrix for the Hawk-Dove game,G, is shown in Equation
1. We imagine an infinitely large population of agents,each
playing one of the game’s twopure strategies, ‘H’ or ‘D’. The
state of the population can be represented by a column vector,
p, that represents the proportion with whicheach strategy ap-
pears in the population; the elements of the vector thus sum
to 1.0. Thefitnessof each strategy (and hence of all agents
that play that strategy) is a weighted sum of payoffs inG, the
weights being determined by the composition of the popula-
tion. The fitness vector,f , is computed by matrix multipli-
cation, as in Equation 2. To the result of the multiplication,
we add the constant,w0, such that all fitness values are pos-
itive. Once the fitness of each strategy is known, the next
generation of the population,pt+1, can be created by apply-
ing Darwinian selection to the current population,pt. This
process is accomplished by the difference equation in Equa-
tion 3. According to this equation, each strategy reproduces
in direct proportion to its fitness—evolutionary game theory
assumesfitness-proportionate selection.

G =
H D

H �25 50
D 0 15

(1)

f = G � p+w0 (2)

pt+1 = pt �
f

pt � f
(3)

wherew0 = 26 is a constant added to fitnesses such that they are
all greater than zero, ‘�’ is element-wise multiplication, and ‘�’ is
inner product. The lower term in Equation 3 is for normalization.

3 The Dynamics of the Hawk-Dove Game

What is the behavior of Equation 3? Let us consider it from
a dynamical systems perspective. Dynamical systems theory
deals with the behavior of functions with recursive properties,
such as difference and differential equations. Its tools are de-
signed to identify and classify various behaviors common to
different systems. These behaviors include many classes of
fixed-points, bifurcations, and orbits, as well as chaos.

Though the Hawk-Dove game has two strategies, it is
actually a one-dimensional system: given the proportion of
one strategy, we can deduce the proportion of the other:
pdoves = 1 � phawks. For this reason, we can visualize
the game’s dynamical properties with amap diagram, shown
in Figure 1. The curve in Figure 1 depicts the function that
maps the proportion of Hawks at timet, to the proportion of

Hawks in the next generation,t+1. Where the curve of a one-
dimensional map crosses the diagonal line, there exists afixed
point; that is,pt+1 = Map(pt). This implies that all strate-
gies that participate in a fixed point must receive the same
fitness, otherwise their proportions would have to change.
Mathematically, we can denote a fixed point asf = c

�!
1 , for

any constantc, which implies a vector of strategy proportions
p = (G + w0)

�1c
�!
1 . The Hawk-Dove game has three fixed

points: 1) the population is composed of all Hawks, 2) the
population is all Doves, and 3) where7=12ths of the popula-
tion is Hawk and5=12ths is Dove.
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Figure 1: Hawk-Dove game under EGT replicator dynamics.

In a one-dimensional map, the slope of the curve at a
fixed point determines thestabilitycharacteristics of the fixed
point. If the slope has an absolute value less than one, then
the fixed point isstable; if the absolute value is greater than
one, then the fixed point isunstable. A dynamical system that
is started with an initial condition,p0, in the neighborhood
(basin of attraction) of a stable fixed-point,p�x, will converge
to the fixed-point. Mathematically we can write this as: if

p0 � p�x



 < " (for a specific"), thenlimt!1 pt = p�x. In
the Hawk-Dove game, the two fixed points where the popu-
lation is composed entirely of a single strategy are unstable.
The third fixed point is stable, and is anevolutionary stable
strategy(ESS). All evolutionary stable strategies are stable
fixed points. If the population at an ESS is composed of more
than a single pure strategy, as it is in the Hawk-Dove game,
then the ESS ispolymorphic.

Figure 1 can be used to create acobwebdiagram, which
depicts the trajectory, ororbit, of an arbitrary initial condi-
tion. To find the orbit of an initial condition,p0, we begin on
the x-axis atp0 and draw a vertical line to the curve; then we
alternately draw a horizontal line to the diagonal and a verti-



cal line to the curve to trace the evolution of the population
for each subsequent time step. In the Hawk-Dove game, un-
der Equation 3, we find that any initial condition other than
p0 = 0 andp0 = 1:0 will converge onto the ESS.

4 The Role of Selection

We should understand that the dynamics of evolutionary
game theory are not determined solely by the payoff matrix
of the game,G. Indeed, Equation 3 can be rewritten as the
composition of two constituent functions, which describes a
more general difference equation:

pt+1 = M (pt) = S(F (pt); pt) (4)

The column vectorp represents strategy proportions in the
population, as before. The mapM is the composition of
two sub-functions. The functionF (pt) is the fitness func-
tion, which calculates each strategy’s fitness, given the cur-
rent state of the population,pt. In evolutionary game theory,
the fitness function is Equation 2, and this is where the payoff
matrix exerts its influence. But, there is a second function in-
volved. The functionS(f; pt) is theselection function, which
takes vectors of strategy fitnesses,f , and corresponding pro-
portions,pt, of the current generation, and returns the state of
the population for the next generation. In evolutionary game
theory,S performs fitness-proportionate selection.

This paper examines what happens to EGT dynamics
when the selection mechanism,S, is changed: when are
the stable-state dynamics maintained and when are they per-
turbed? AnyS that maintains the stable fixed points of Equa-
tion 3 must obey the identityp�x = S(c

�!
1 ; p�x), as well

as show convergence properties aroundp�x. Failure to meet
these two necessary and sufficient conditions will inevitably
disrupt the ESS properties of the system. The alternatives to
fitness-proportionate selection that we investigate are four se-
lection methods commonly found in evolutionary algorithms:
truncation, (�; �)-ES, linear rank, and Boltzmann selection.

5 Truncation Selection

Truncation selectionis used primarily in the branch of evo-
lutionary computation known asevolutionary programming
[Fogel, 1997]. Given a population of sizen and selection
pressurek, truncation selection operates by first sorting the
populationaccording to fitness and then replacing the worst
k percent of the population with variations of the bestk per-
cent. For example, for a population size ofn = 200 and
selection pressure ofk = 25, variations of the best 50 in-
dividuals in the population will be copied over the worst 50
individuals. Thus, selection pressure must be in the range
0 � k � 50, with higher values ofk giving higher selec-
tion pressure. Since evolutionary game theory excludes vari-
ational operators, we simply replace the worstk% with exact
copies of the bestk%.

Truncation selection is easily implemented for the infinite
population assumed by evolutionary game theory. Since all
agents that play the same strategy will receive the same fit-
ness, we only need to sort the strategies and note the pro-
portions with which each strategy appears in thepopulation.
Given a game ofm strategies, we represent the state of the
population with a vector,p, of sizem, wherepi represents
the proportion of strategyi in the population. Sorting these
strategies yields a new vector,q, whereqsi is the proportionof
strategy,si, with sorted ranki. To select the agents to remove,
we construct a vectorw (representing the worstk%) that in-
dicates the proportion ofeach strategy we are to remove from
the population. Another vector,b (representing the bestk%),
indicates the proportion ofeach strategy we are to add to the
population. The new proportions,q0, areq0 = q�w+ b. Fig-
ure 2 gives an example whereq is comprised of three strate-
gies, each used by 1/3 of thepopulation. Selection pressure
is at the maximum ofk = 50%. We see that the worst 50%
of the population is composed of all agents playing strategy
s3 and one half of those playings2. Similarly, the best half
of the population is all those agents that plays1 and half of
those that plays2. In the new population, therefore, strategy
s1 composes 2/3 of the population,s2 1/3 of the population,
and strategys3 is eliminated.
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Figure 2: Truncation selection on an infinite population.

How does truncation selection behave when the popula-
tion contains more than one strategy and all strategies present
in the population receive the same fitness? Such a condition
implies the existence of a fixed point, such as a polymorphic
ESS. Since the result of sorting is ill-defined in the case of
ties, so too is the operation of truncation selection. Unless
special precautions are taken to deal with ties in fitness, trun-
cation selection is unable to maintain arbitrary fixed points.

How are the dynamics of the Hawk-Dove game affected
when we replace fitness-proportionate selection with trunca-
tion selection? We find that truncation selection exhibits three
modes of behavior over the range of selection pressure.

For selection pressures42% � k � 50%, truncation
selection causes most initial conditions to converge to all



Hawks, though some initial conditions lead to cyclic behav-
ior. The map diagram produced by truncation withk = 50
is shown in Figure 3 (top). We know that at the ESS pro-
portion of 7/12, both strategies receive the same payoff. If
the proportion of Hawks is below 7/12, then Hawks receive
higher fitness than Doves; and, if the proportion of Hawks is
above 7/12, then Doves receive higher fitness than Hawks. If
fitness-proportionate selection were used, this would produce
a simple feedback mechanism that would keep the population
at the ESS proportion.

Truncation, however, breaks this feedback mechanism. To
understand why, let us consider a population state where the
proportion of Hawks is1

2
� pH < 7

12
. BecausepH is be-

low the ESS, the Hawks will receive higher fitness than the
Doves. But, the Hawks also comprise at least half of the pop-
ulation. Thus, the best 50% of agents in the population can
only be playing the Hawk strategy, and the next generation
will be 100% Hawks. AtpH = 7

12
, we have already noted

that truncation cannot maintain the fitness equilibrium. Thus,
the orbit of almost every initial condition that includes both
strategies,0 < pH0 < 1, will eventually fall into the critical
interval 1

2
� pH < 7

12
, and therefore converge to the attractor

of all Hawks. An example of an initial condition that leads to
a cycle of period two ispH = 2

3
atk = 50%.

For selection pressures31% � k � 41%, truncation
causes most initial conditions to have chaotic orbits, while
some give cycles. Figure 3 (middle) shows one such chaotic
orbit wherek = 36. An indicator of chaos is theLiapunov
exponent, �, which measures sensitivity to initial condition.
The Liapunov exponent is negative for fixed-point dynamics,
approaches zero for limit cycles, and is greater than zero for
chaos. It is normally calculated by measuring the derivative
of the map at each point in an orbit. Because the truncation
map has discontinuities, it is not differentiable. Nevertheless,
it is piece-wise linear, and the lack of smoothness is negligi-
ble. Therefore, we use the slope of the line segment. This
yields a Liapunov exponent of� = 0:69.

If the selection pressure is in the range0 < k � 30%,
all initial conditions0 < pH0 < 1 result in cyclic behavior.
A sample orbit is shown in Figure 3 (bottom) withk = 15.
We should take note of the map’s discontinuity at the ESS
proportion: forpH < 7

12
, the map is above the diagonal; for

pH > 7

12
, the map is below. This means that for a cycle to oc-

cur, the ESS proportion must be crossed. Thus, all cycles go
around the ESS. Nevertheless, because theupper and lower
segments of the map are parallel to the diagonal, the exact lo-
cation of the cycle is determined by where the orbit first enters
the cycle inducing region of the map. As selection pressure
is decreased, the cycles exhibit tighter orbits around the ESS
proportion.

6 (�; �)-ES Selection

The (�; �)-ES selection method is used in the branch
of evolutionary computing known asevolution strategies
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Figure 3: Map diagram of truncation selection with selection
pressure at 50% (top), 36% (middle), and 15% (bottom).



[Bäck, 1995]. Given a population of� offspring, the best�
offspring are chosen to parent the next generation. Normally,
variational operators are applied during reproduction, but we
omit variation here, as we did with truncation selection. The
(�; �)-ES selection method is similar to truncation selection,
but more drastic. In(�; �)-ES selection, the best�

�
% expands

to replace the entire population rather than just the worst�

�
%.

The implementation of(�; �)-ES selection for infinite
populations is identical to that of truncation selection, except
that now vectorw is discarded and vectorb is normalized to
create the new population. The fraction�=� determines the
selection pressure—the actual values of� and� are unimpor-
tant for an infinite population. Thus, for(�; �)-ES selection,
the selection pressure can be in the range0 < �

�
� 1:0, where

lower values indicate higher selection pressure.
For the Hawk-Dove game,(�; �)-ES selection also has

three regimes of behavior, none of which are able to maintain
arbitrary fixed points and all of which include some initial
conditions that lead to cycles. For the range:59 � �

�
< 1:0,

the behavior is usually chaotic. Figure 4 (top) shows an exam-
ple orbit where�

�
= 0:6. The measured Liapunov exponent

is 0.52. In the range:42 � �

�
� :58, the system converges

to all Hawks in a manner very similar to truncation selection.
The range0 < �

�
� :41 introduces the additional possibil-

ity of converging onto all Doves. This is shown in Figure
4 (bottom), where�

�
= 0:3. Because the map of(�; �)-ES

selection is not differentiable, the stability properties of the
all-Hawk and all-Dove fixed points are unusual—they are at-
tractors, but they are not locally stable. The same is true for
the all-Hawk attractor seen in truncation selection.

7 Linear Rank Selection

Rankingis a method commonly used ingenetic algorithms
[Mitchell, 1996]. Agents are sortedaccording to fitness, and
then assignednewfitness values according to their rank. In
linear ranking, the new assigned fitness values change lin-
early with rank. Fitness-proportionate roulette-wheel selec-
tion is then applied using the new fitness values. This method
is useful in ordinary genetic algorithms because, as apopula-
tion converges, the differences between agents’ fitnesses can
become too small for the roulette wheel to resolve, given the
population size. Ranking ensures that small the differences
between fitness levels are expanded. Ranking also attenuates
very large differences between fitness levels, which helps pre-
vent premature convergence.

No special modifications are needed to implement linear
ranking for our infinite population: we rank strategies ac-
cording to fitness, and then assign new values. Because the
Hawk-Dove game has only two strategies, the strategy with
lower fitness is assigned a new fitness of one, and the other
strategy gets a new fitness of two. After normalization, the
new fitnesses are either [1/3; 2/3], [2/3; 1/3], or, if special
care is taken to handle ties (at the ESS), [.5; .5]. We then
proceed with proportional selection on these new fitnesses.
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Figure 4: Map diagram of(�; �)-ES selection with�
�
= 0:6

(top) and 0.3 (below).
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Figure 5: Map diagram of linear rank selection method.



As Figure 5 shows, linear ranking produces cycles around
the ESS. In fact, this is the only behavior that linear ranking
can exhibit. The rates of change for the two strategies are ex-
actly inverted as the ESS proportion is crossed, thus ensuring
a simple period-two cycle. Because ranking maps all possi-
ble fitness proportions to a single proportion, rates of change
never approach equality; thus, ranking cannot have attractive
fixed points. This is visible in the map diagram. The map
never crosses the diagonal—there is only a discontinuity at
the ESS proportion. Another version of rank-based selection
assigns new fitness values that vary exponentially with rank.
This method, too, fails to attain the ESS.

8 Boltzmann Selection

In Boltzmann selection, a method inspired by the tech-
nique of simulated annealing, selection pressure is slowly
increased over evolutionary time to gradually focus search
[Mitchell, 1996]. Given a fitness off , Boltzmann selection
assigns a new fitness,f 0, according to the differentiable func-
tion:

f 0 = e�f (5)

where� > 0 and higher values of� give higher selection pressure.
Agents are then selected in proportion to their new fit-

nesses,f 0. In contrast to the selection methods seen above,
this selection method can maintain arbitrary fixed points
without modification. But, it too exhibits multiple regimes
of behavior. For low selection pressures, Boltzmann selec-
tion can preserve the ESS attractor. Figure 6 (top) shows the
map of Boltzmann selection in the Hawk-Dove game with
� = 0:05; we see that the ESS is intact. If we increase the se-
lection pressure to� = 0:2, as in Figure 6 (middle), a true
limit cycle results and the ESS becomes an unstable fixed
point. A higher pressure of� = 0:5 brings the system to the
edge of chaos, seen in Figure 6 (bottom), yielding a small but
positive Liapunov exponent. The analogy between low an-
nealing temperature and high selection pressure is strained—
too low a “temperature” actually destabilizes the system.

9 Large Games

How much can we generalize from the results obtained with
the two-strategy Hawk-Dove game? The discontinuities
found in truncation,(�; �)-ES, and rank selection disrupt
evolutionary dynamics regardless of the number of strate-
gies because they are unable, in principle, to attain arbitrary
fixed points. Specifically, these methods can neither attain nor
maintain a Nash equilibrium that has more than one strategy
in support, such as a polymorphic ESS.

For Boltzman selection, the destabilizing effect of high se-
lection pressure is dampened as the number of strategies in-
creases. The higher number of dimensions of large games
tends to bring fitness values closer together. Thus, higher se-
lection pressure is required to induce chaos in large games.
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Figure 6: Map diagram of Boltzman selection method with
� = 0:05 (top), 0.2 (middle), and 0.5 (bottom).



10 Implications for Coevolutionary Algorithms

Our results show that truncation,(�; �)-ES, and rank selec-
tion methods disrupt the “normal” dynamics of evolutionary
game theory. Indeed, they introduce new dynamics that are
incapable of having attractive polymorphic population states,
regardless of the payoff matrix. The significance of these re-
sults is perhaps better appreciated once we recognize that evo-
lutionary game theory corresponds to a generationalcoevolu-
tionary algorithm, with fitness-proportionate selection, oper-
ating under “ideal” conditions: an infinite population, com-
plete mixing (such that every agent plays against every other),
noiseless payoffs, and complete knowledge of the phenotype
space. Given the strategy set of any coevolutionary game,
game theory will indicate the set of Nash equilibria (the “ra-
tional” strategies).Evolutionarygame theory will highlight
the subset of Nash equilibria that can be attained through
fitness-proportionate differential reproduction (the evolution-
ary stable strategies). That truncation,(�; �)-ES, and rank
selection all fail to converge onto polymorphic ESSs and fail
to maintain polymorphic Nash equilibria under “ideal” condi-
tions raises reasonable doubt that they will succeedunder the
less-than-ideal conditions of real world coevolutionary algo-
rithms. Indeed, results obtained are likely to represent the
peculiarities of the reproductive dynamical system more than
any fundamental feature of the domain under study. We there-
fore conclude that these methods are probably inappropriate
for use in single-population coevolutionary algorithms.

Boltzman selection, on the other hand, is capable of re-
specting the dynamics and equilibria of evolutionary game
theory, provided the selection pressure is not too high. In-
deed, any number of differentiable functions can be substi-
tuted for fitness proportional selection, and provide variable
selection pressure while maintaining “proper” operation.

Empirical evidence in [Meuleau and Lattaud, 1995] and
[Fogel and Fogel, 1995, Fogel et al., 1998] agrees with our
findings with respect to(�; �)-ES and truncation selec-
tion, respectively. The former study notes dramatic dif-
ferences between results obtained using(�; �)-ES and
fitness-proportionate selection in coevolving strategies for
the iterated prisoner’s dilemma. The latter studies
[Fogel and Fogel, 1995, Fogel et al., 1998] are testing the ef-
fects of finite populations, noisy payoffs, and incomplete
mixing on the dynamics and equilibria of evolutionary game
theory. They use the Hawk-Dove game as an experimental
framework, but use truncation selection instead of the canon-
ical fitness-proportional selection in their experiments. As
we have seen, truncation selection is unable to reproduce the
“correct” dynamics for the Hawk-Dove game, even under
ideal conditions. The results of Fogel, et al, are consistent
with ours, but they attribute the absence of normal Hawk-
Dove dynamics to the factors under their study; because the
ESS of7=12ths Hawks does not emerge, Fogel, et al, con-
clude that evolutionary game theory loses it predictive power
under real-world conditions. We strongly suspect that the
salient factor in their results is the use of truncation selec-

tion, and not finite populations, noisy payoffs, or incomplete
mixing. Indeed, in light of our results, we believe that the
many coevolutionary (and game-theoretic) investigations in
the literature that use these selection methods may require a
second look, especially where a single population is used and
the domain under investigation is not a constant-sum game.

11 When does a map have a stable fixed-point?

We have analyzed the stability properties of four particular
selection methods. In this section, we review a standard test
that can be applied to any differentiable selection function to
determine its stability properties [Easton, 1998]. This test is
based on the Hartman-Grobman theorem, which allows us to
treat a system as if it were linear in the vicinity of the fixed-
point. By doing so, we can apply the simple stability tests of
linear maps to the fixed points.

Let pt+1 = M (pt) be a map with a fixed point atp�x.
We first linearize the system by calculating its first derivative
at p�x. For a game ofn strategies, we have anm = n � 1
dimensional map. Ifn > 2, then the map is amulti-variable
function, and we need to calculate itsJacobian Matrix:

@M (p) =

0
BB@

@Mp1

@p1
: : :

@Mp1

@pm

...
. . .

...
@Mpm

@p1
: : :

@Mpm

@pm

1
CCA (6)

where
@M

pi

@pj
is the partial derivative of function variablepi with

respect to variablepj.
The test for convergence is to check whether the eigen-

values of@M (p�x) are within the interior of the unit-circle.
That is, we check each eigenvalue,�, of the Jacobian to see
if k�k < 1 (where� is potentially a complex number). If all
eigenvalues fall within the unit circle, then the fixed point is
stable. If one of the eigenvalues falls outside, then the fixed
point is unstable.

To gain some intuition about this test, consider a one-
dimensional map, such as the one we saw for fitness-
proportionate selection in Figure 1. This map contains a
stable fixed-point, such that if we iterate the map from a
point near the fixed-point, we will converge onto the fixed-
point. Why do points in the neighborhood of the fixed-
point converge onto it? Take a point at an offset from the
fixed point,p0 = p�x + �, close enough to the fixed point
that we can treat the map as linear. The linearization of
the map in the region allows us to approximate the map as
M (p) � p�x + �(p � p�x), where� corresponds to the
slope of the map at the fixed point. An iteration of the
map has the effect of multiplying the offset by the slope,
p1 = M (p0) � p�x + �(p�x + � � p�x) = p�x + ��. If
j�j is less than 1, then application of the map will causep1 to
be closer top�x thanp0. Therefore, multiple iterations of the
map cause the offset to be multiplied repeatedly by the slope,
pn = p�x +�n�, and (ifj�j < 1) bring it closer and closer to
the fixed-point.



Thus, the one-dimensional map test is whether the ab-
solute value of the derivative (slope) at the fixed point is
less than one. The multi-dimensional test is based on the
same convergence properties as the one-dimensional case.
In a way, taking the eigenvalues of the Jacobian matrix is
equivalent to breaking the multi-dimensional system down
into constituent one-dimensional systems, whereeach eigen-
value represents the rate of change (derivative) of each one-
dimensional degree of freedom of the multi-dimensional sys-
tem. These eigenvalues can be complex numbers, rather than
reals. Nevertheless, the test stays the same in the sense that
we still test whether multiplying an offset by an eigenvalue
will shrink the offset. Thus, in the multi-dimensional case,
the test becomes whether all the eigenvalues’ magnitudes are
less than one, i.e., in the unit circle.

12 Conclusion

We investigate the game-theoretic properties of selection
methods commonly used in evolutionary algorithms to see
if they are able to maintain the dynamics and equilibria of
evolutionary game theory. Using the Hawk-Dove game as
a backdrop, we substitute the fitness-proportionate selection
method assumed in evolutionary game theory with these other
selection schemes. We find that truncation,(�; �)-ES, and
linear rank selection are unable to maintain polymorphic evo-
lutionary stable strategies. Instead, these methods exhibit be-
haviors such as limit cycles, chaos, or fixed points that are es-
sentially unrelated to the values of the payoff matrix. Boltz-
man selection, however, is able to retain the dynamics and
equilibria seen in evolutionary game theory, provided that the
selection pressure is not too high.

These results transcend the field of evolutionary game the-
ory, however. Because of the correspondence between evolu-
tionary game theory and coevolutionary algorithms, our re-
sults indicate that selection methods cannot be moved whole-
sale from evolutionary tocoevolutionary frameworks without
careful consideration. Specifically, three of the four methods
we consider in this paper appear to be pathological in the con-
text of single-population coevolution in non-zero sum games.
Nevertheless, a test from dynamical systems theory allows
one to determine analytically the appropriateness for coevo-
lution of specific differentiable selection functions, without
the need for empirical investigation.
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