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Abstract- [Hofbauer and Sigmund, 1998, Dugatkin and Reeve, 1998].
The replicator equation used in evolutionary game Evolutionary game theory has also lead to a proliferation
theory (EGT) assumes that strategies reproduce in di- of various non-evolutionary alternatives to agent rational-
rect proportion to their payoffs; this is akin to the use ity that include social learning methods such as imitation
of fithess-proportionate selection in an evolutionary al- [Fudenberg and Levine, 1998]. In all these studies, an un-
gorithm (EA). In this paper, we investigate how various  derstanding of the dynamics of “replication"—the engine of
other selection methods commonly used in EAs can af- learning—is key.
fect the discrete-time dynamics of EGT. In particular, we Yet, the selection methods (replicators) used in evolu-
show that the existence of evolutionary stable strategies tionary algorithms (EA) have escaped careful game-theoretic
(ESS) is sensitive to the selection method used. Rather scrutiny. This paper investigates the properties of four
than maintain the dynamics and equilibria of EGT, the =~ common EA selection methods from a game-theoretic and
selection methods we test impose a fixed-point dynamic dynamical-systems perspective: truncatigpn, A)-ES, lin-
virtually unrelated to the payoffs of the game matrix, give  ear ranking, and Boltzmann selection. Selection meth-
limit cycles, or induce chaos. These results are signifi- ods used in EAs are reviewed in [Goldberg and Deb, 1991,
cant to the field of evolutionary computation because EGT  Hancock, 1994, Mitchell, 1996]. But, how do these meth-
can be understood as aoevolutionary algorithmoperat-  ods compare to the canonical fithess-proportionate selection
ing under ideal conditions: an infinite population, noise- when used in EGT? Do they exhibit similar dynamics and
less payoffs, and complete knowledge of the phenotype promote the same fixed-points and attractors?
space. Thus, certain selection methods, which may oper- Rather than maintain the dynamics and equilibria of EGT,
ate effectively in simple evolution, are pathological in an the selection methods we test impose a fixed-point dynamic
ideal-world coevolutionary algorithm, and therefore du-  virtually unrelated to the payoffs of the game matrix, give

bious under real-world conditions. limit cycles, or induce chaos. Only Boltzmann selection (and
only at low selection pressures) is faithful to EGT dynam-
1 Introduction ics. These results transcend evolutionary game theory, how-

ever. Because our analysis is game-theoretic, we are im-

A central achievement of evolutionary game theory (EGT)plicitly considering the effects of these selection mechanisms
was the introduction of a method by which agents cann an evolutionary environment where stratégieractionis
play “optimal” strategies in the absence of rationality taken into account—otherwise known asaevolutionary al-
[Maynard-Smith, 1982]. Through a process of Darwinian se-gorithm We conclude that certain selection methods, while
lection, a population of agents can evolve toeaolutionary  they may be effective in ordinary evolutionary algorithms, are
stable strategyESS), which is a Nash equilibrium with an likely to be inappropriate for coevolution.
additional stability criterion. While the dynamics and equilib- ~ We begin with a brief introduction to evolutionary game
ria in EGT are influenced by the payoff matrix, the system’stheory and thédawk-Dovegame. The next two sections out-
general dynamical properties are determined byré¢jptica-  line our dynamical systems approach, where we first look at
tor equation The canonical replicator used in EGT is a differ- the dynamical features of the Hawk-Dove game, and then
ence (or differential) equation that selects agents to reprodua®nsider the role of the selection method (the replicator). We
offspring in direct proportion to fitness. then consider each of the four selection haets, in turn. Dis-

The dynamics of various replicator equations is a topiccussions of how our results generalize to larger games, and
of intense study, particularly with respect to the game-what the results mean for coevolutionary algorithms follow.
theoretic equilibria [Weibull, 1995, Samuelson, 1997]. Fur-We then review a general methodology used in dynamical
ther, ties between EGT, quantitative genetics, and animalystems to determine the stability characteristics of an arbi-
behavior have launched a host of more biologically in-trary differentiable replicator function. We finish with con-
spired investigations into the dynamics of replicator systemsluding remarks.



2 Evolutionary Game Theory Hawks in the next generatiots-1. Where the curve of a one-

_ o _ dimensional map crosses the diagonal line, there existed
This section introduces evoluthnary game theory an_d th@oint; that is,pi1 = Map(p;). This implies that all strate-
Hawk-Dovegame [Maynard-Smith, 1982].  As explained gies that participate in a fixed point must receive the same
above, the key contribution of EGT s the notion that Dar-finess, otherwise their proportions would have to change.
winian selection can replace the need for agent rationalityyjathematically, we can denote a fixed pointfas: ¢ T, for
Let us consider a concrete example. The (Symmetric) payany constant, which implies a vector of strategy proportions
off matrix for the Hawk-Dove gamé5, is shown in Equation  ,, — (G + wo)—lcT). The Hawk-Dove game has three fixed
1. We imagine an infinitely large population of ager#ach  noints: 1) the population is composed of all Hawks, 2) the

playing one of the game’s twaure strategiesH’ or ‘D’. The population is all Doves, and 3) whef@12t%* of the popula-
state of the population can be represented by a column vectgg, is Hawk ands/12'%* is Dove.

p, that represents the proportion with whieach strategy ap-
pears in the population; the elements of the vector thus sum
to 1.0. Thefitnessof each strategy (and hence of all agents
that play that strategy) is a weighted sum of payoff&irthe 0.9+
weights being determined by the composition of the popula-
tion. The fithess vectorf, is computed by matrix multipli- 08r
cation, as in Equation 2. To the result of the multiplication,

1r

we add the constanty,, such that all fitness values are pos- ‘:EZW
itive. Once the fithess of each strategy is known, the next £ gl
generation of the populatiop;, can be created by apply- ©
ing Darwinian selection to the current populatign, This s05f
process is accomplished by the difference equation in Equa-t
tion 3. According to this equation, each strategy oejorces §°'4’
in direct proportion to its fitness—evolutionary game theory § |
assumesitness-proportionate selection «
0.2t
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Figure 1: Hawk-Dove game under EGT replicator dynamics.
Y (3) In a one-dimensional map, the slope of the curve at a

: , fixed point determines thetabilitycharacteristics of the fixed
wherewo = 26 s a Co,n.Stam added to f'mes.sefs S_UCh that fhey ar%oint. If the slope has an absolute value less than one, then
?” greater than zero,<" is emmem'W'S? mu'?'p"cat'on‘ ar.]d s the fixed point isstable if the absolute value is greater than
inner product. The lower term in Equation 3 is for normalization. one, then the fixed point imstable A dynamical system that

) is started with an initial conditioryg, in the neighborhood

3 The Dynamics of the Hawk-Dove Game (basin of attraction) of a stable fixed-poipt, will converge

: . . . : he fixed-point. Mathematically we can write this as: if
What is the behavior of Equation 3? Let us consider it from:\0 ; _epﬁxe||d<pg (for a specific:) th)(/anlimH p = p™. In

3d31nar!1tlr::?kl1 S%Stﬁ rr\w/? ?e:,sfpici'ivi' [3v3i/tr;1armlca:l i/yeSter:)nSetrrt]izzt e Hawk-Dove game, the two fixed points where the popu-
eais wi € behaviorottunctions ecursive prop lation is composed entirely of a single strategy are unstable.

such as difference and differential equations. Its tools are defhe third fixed point is stable, and is avolutionary stable

S|_gned to identify and classify varnous behaviors common tOs}rategy(ESS). All evolutionary stable strategies are stable
different systems. These behaviors include many classes Q

fixed-points, bifurcations, and orbits, as well as chaos ixed points. If the population at an ESS is composed of more
X ' ' .. than a single pure strategy, as it is in the Hawk-Dove game,

Though the Hawk-Dove game has two strategies, it i hen the ESS igolymorphic

actually a one-dimensional system: given t.he proportion o " Figure 1 can be used to createabwebdiagram, which

ogoseftrategy, W,Slwckin deducg the proportion of t_he o.therdepicts the trajectory, aorbit, of an arbitrary initial condi-

p — ,1 P I. For th.'s reg;s;, \é\{e can vLsuallze tion. To find the orbit of an initial conditiory, we begin on

the game’s dynamical properties withrap diagramshown the x-axis afpy and draw a vertical line to the curve; then we

in Figure 1. The curve In Figure 1 depicts the func.t|on thatalternately draw a horizontal line to the diagonal and a verti-
maps the proportion of Hawks at timgto the proportion of



cal line to the curve to trace the evolution of the population  Truncation selection is easily implemented for the infinite
for each subsequent time step. In the Hawk-Dove game, urpopulation assumed by evolutionary game theory. Since all
der Equation 3, we find that any initial condition other thanagents that play the same strategy will receive the same fit-

po = 0 andpy = 1.0 will converge onto the ESS. ness, we only need to sort the strategies and note the pro-
portions with which each strategy appears in plogulation.
4 The Role of Selection Given a game ofn strategies, we represent the state of the

population with a vectorp, of sizem, wherep’ represents
We should understand that the dynamics of evolutionarghe proportion of strategy in the population. Sorting these
game theory are not determined solely by the payoff matrixstrategies yields a new vectgrwhereg®: is the proportion of
of the game . Indeed, Equation 3 can be rewritten as thestrategys;, with sorted rank. To select the agents to remove,
composition of two constituent functions, which describes ave construct a vectar (representing the worgt%) that in-

more general difference equation: dicates the proportion afach strategy we are to remove from
the population. Another vector,(representing the beso),
per1 = M(pt) = S(F(pt), pt) (4) indicates the proportion @fach strategy we are to add to the

population. The new proportiong, areq¢’ = ¢ —w + b. Fig-
ure 2 gives an example wheyds comprised of three strate-

opulation, as before. The m is the composition of . . .
ng sub-functions. The functioi?( ) is thefitrF:ess func- 2> each used by 1/3 of tipepulation. Selection pressure
) Pt is at the maximum ok = 50%. We see that the worst 50%

tion, which calculates each strategy’s fitness, given the cur- . .
' i . ' f th I f all I
rent state of the populatiop;. In evolutionary game theory, of the population is composed of all agents playing strategy

the fitness function is Equation 2, and this is where the payofﬁ?3 and one hqlf Of. those playing. Similarly, the best half
. o . "7~ of the population is all those agents that pkayand half of
matrix exerts its influence. But, there is a second function in- .
. : . X i those that play.. In the new population, therefore, strategy
volved. The functiorf(f, p:) is theselection functiorwhich s, composes 2/3 of the population, 1/3 of the population
takes vectors of strategy fithessgsand corresponding pro- 1n d strate is eIiminatF()a dp ' pop '
portionsp;, of the current generation, and returns the state o? 9¥s '
the population for the next generation. In evolutionary game
theory,S performs fithess-proportionate selection.

This paper examines what happens to EGT dynamics T gs T
when the selection mechanisr, is changed: when are S
the stable-state dynamics maintained and when are they per- 1=
turbed? AnysS that maintains the stable fixed points of Equa- 213 s
tion 3 must obey the identity™ = S(cT,p™), as well { 1/6 1

The column vectop represents strategy proportionsin the

1/3

o
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w
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as show convergence properties aropfitl Failure to meet S, =13
these two necessary and sufficient conditions will inevitably

disrupt the ESS properties of the system. The alternatives to
fitness-proportionate selection that we investigate are four se- S, = 1/3
lection methods commonly found in evolutionary algorithms:

truncation, fi, A)-ES, linear rank, and Boltzmann selection. Worst

1/6

1/3 0 1/3] S,

5 Truncation Selection

) o ) o Figure 2: Truncation selection on an infinite population.
Truncation selections used primarily in the branch of evo-

lutionary computation known asvolutionary programming How does truncation selection behave when the popula-
[Fogel, 1997]. Given a population of size and selection tjon contains more than one strategy and all strategies present
pressurek, truncation selection operates by first sorting thej, the populationeceive the same fitness? Suchoadition
populationaccording to fitness and then replacing the wors§mpjies the existence of a fixed point, such as a polymorphic
k percent of the population with variations of the begier-  gss. since the result of sorting is ill-defined in the case of
cent. For example, for a population sizesof= 200 and tjes, so too is the operation of truncation selection. Unless
selection pressure df = 25, variations of the best 50 in- gpecial precautions are taken to deal with ties in fitness, trun-
dividuals in the population will be copied over the worst 50 cation selection is unable to maintain arbitrary fixed points.
individuals. Thus, selection pressure must be in the range How are the dynamics of the Hawk-Dove game affected
0 < k < 50, with higher values of giving higher selec- \yhen we replace fitness-proportionate selection with trunca-
tion pressure. Since evolutionary game theory excludes vartion selection? We find that truncation selection exhibits three
ational operators, we simply replace the wdi% with exact  modes of behavior over the range of selection pressure.
copies of the best%. For selection pressure®% < k < 50%, truncation
selection causes most initial conditions to converge to all



Hawks, though some initial conditions lead to cyclic behav-
ior. The map diagram produced by truncation with= 50

is shown in Figure 3 (top). We know that at the ESS pro-
portion of 7/12, both strategies receive the same payoff. If
the proportion of Hawks is below 7/12, then Hawlezeive
higher fitness than Doves; and, if the proportion of Hawks is
above 7/12, then Doves receive higher fithess than Hawks. If
fitness-proportionate selection were used, this would produce
a simple feedback mechanism that would keep the population
at the ESS proportion.

Truncation, however, breaks this feedback mechanism. To
understand why, let us consider a population state where the
proportion of Hawks ist < p < L. Because' is be-
low the ESS, the Hawks will receive higher fitness than the
Doves. But, the Hawks also comprise at least half of the pop-
ulation. Thus, the best 50% of agents in the population can
only be playing the Hawk strategy, and the next generation
will be 100% Hawks. AtpH = % we have already noted
that truncation cannot maintain the fitness equilibrium. Thus,
the orbit of almost every initial condition that includes both
strategies) < pi! < 1, will eventually fall into the critical
interval% <pf < % and therefore converge to the attractor
of all Hawks. An example of an initial condition that leads to
a cycle of period two ig*! = 2 atk = 50%.

For selection pressuresl% < k < 41%, truncation
causes most initial conditions to have chaotic orbits, while
some give cycles. Figure 3 (middle) shows one such chaotic
orbit wherek = 36. An indicator of chaos is theiapunov
exponentA, which measures sensitivity to initial condition.
The Liapunov exponent is negative for fixed-point dynamics,
approaches zero for limit cycles, and is greater than zero for
chaos. Itis normally calculated by measuring the derivative
of the map at each point in an orbit. Because the truncation
map has discontinuities, it is not differentiable. Nevertheless,
it is piece-wise linear, and the lack of smoothness is negligi-
ble. Therefore, we use the slope of the line segment. This
yields a Liapunov exponent of = 0.69.

If the selection pressure is in the range< & < 30%,
all initial conditions0 < pf' < 1 result in cyclic behavior.

A sample orbit is shown in Figure 3 (bottom) with= 15.

We should take note of the map’s discontinuity at the ESS
proportion: forp!! < =, the map is above the diagonal; for
pt > -, the map is below. This means that for a cycle to oc-
cur, the ESS proportion must be crossed. Thus, all cycles go
around the ESS. Neverthelesgchuse theipper and lower
segments of the map are parallel to the diagonal, the exact lo-
cation of the cycle is determined by where the orbit first enters
the cycle inducing region of the map. As selection pressure
is decreased, the cycles exhibit tighter orbits around the ESS
proportion.

6 (i, A)-ES Selection
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. _ _ Figure 3: Map diagram of truncation selection with selection
The (x,A\)-ES selection method is used in the branchpressure at 50% (top), 36% (middle), and 15% (bottom).

of evolutionary computing known asvolution strategies



[Béack, 1995]. Given a population of offspring, the besf:
offspring are chosen to parent the next generation. Normally,
variational operators are applied during reproduction, but we
omit variation here, as we did with truncation selection. The
(i, A)-ES selection method is similar to truncation selection,
but more drastic. Ifiu, A)-ES selection, the be§t% expands

to replace the entire population rather than just the wp?st

The implementation of i, A\)-ES selection for infinite
populations is identical to that of truncation selection, except
that now vectorw is discarded and vectéris normalized to
create the new population. The fractipfiA determines the
selection pressure—the actual valueg @indA are unimpor-
tant for an infinite population. Thus, fgy, A)-ES selection,
the selection pressure can be in the rahge & < 1.0, where
lower values indicate higher selection pressure.

For the Hawk-Dove gameu, A)-ES selection also has
three regimes of behavior, none of which are able to maintain
arbitrary fixed points and all of which include some initial 17
conditions that lead to cycles. For the rangg < £ < 1.0,
the behavior is usually chaotic. Figure 4 (top) shows an exam-
ple orbit wheref = 0.6. The measured Liapunov exponent 0.8f
is 0.52. In the ranget2 < £ < .58, the system converges
to all Hawks in a manner very similar to truncation selection.
The range) < & < .41 introduces the additional possibil-
ity of converging onto all Doves. This is shown in Figure
4 (bottom), wheref: = 0.3. Because the map @f:, A)-ES
selection is not differentiable, the stability properties of the
all-Hawk and all-Dove fixed points are unusual—they are at-
tractors, but they are not locally stable. The same is true for
the all-Hawk attractor seen in truncation selection.
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7 Linear Rank Selection ST S
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Rankingis a method commonly used genetic algorithms
[Mitchell, 1996]. Agents are sorteatcording to fitness, and  Figure 4: Map diagram ofi1, A)-ES selection wittt = 0.6
then assignedewfitness values according to their rank. In (top) and 0.3 (below).

linear ranking, the new assigned fithess values change lin-

early with rank. Fitness-proportionate roulette-wheel selec- 1
tion is then applied using the new fitness values. This method
is useful in ordinary genetic algorithms because, psgula-

tion converges, the differences between agents’ fithesses can 0.8}
become too small for the roulette wheel to resolve, given the
population size. Ranking ensures that small the differences
between fitness levels are expanded. Ranking also attenuates
very large differences between fitness levels, which helps pre-
vent premature convergence.

No special modifications are needed to implement linear
ranking for our infinite population: we rank strategies ac-
cording to fitness, and then assign new values. Because the
Hawk-Dove game has only two strategies, the strategy with 0.2
lower fitness is assigned a new fitness of one, and the other 0l
strategy gets a new fitness of two. After normalization, the
new fitnesses are either [1/3; 2/3], [2/3; 1/3], or, if special 01 02 03 04 05 06 07 08 09 1
care is taken to handle ties (at the ESS), [.5; .5]. We then Proportion Hawks @ Time ¢
proceed with ppportional selection on these new fitnesses.
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Figure 5: Map diagram of linear rank selection method.



As Figure 5 shows, linear ranking produces cycles around
the ESS. In fact, this is the only behavior that linear ranking
can exhibit. The rates of change for the two strategies are ex-
actly inverted as the ESS proportionis crossed, thus ensuring
a simple period-two cycle. Because ranking maps all possi-
ble fitness proportions to a single proportion, rates of change
never approach equality; thus, ranking cannot have attractive
fixed points. This is visible in the map diagram. The map
never crosses the diagonal—there is only a discontinuity at
the ESS proportion. Another version of rank-based selection
assigns new fitness values that vary exponentially with rank.
This method, too, fails to attain the ESS.

8 Boltzmann Selection

In Boltzmann selectigna method inspired by the tech-
nique of simulated annealingselection pressure is slowly
increased over evolutionary time to gradually focus search
[Mitchell, 1996]. Given a fitness of, Boltzmann selection
assigns a new fitnesg),, according to the differentiable func-
tion:

f/ =P (5)

wheres > 0 and higher values gf give higher selection pressure.

Agents are then selected in proportion to their new fit-
nesses,/’. In contrast to the selection methods seen above,
this selection method can maintain arbitrary fixed points
without modification. But, it too exhibits multiple regimes
of behavior. For low selection pressures, Boltzmann selec-
tion can preserve the ESS attractor. Figure 6 (top) shows the
map of Boltzmann selection in the Hawk-Dove game with
£ = 0.05; we see that the ESS is intact. If we increase the se-
lection pressure t¢ = 0.2, as in Figure 6 (middle), a true
limit cycle results and the ESS becomes an unstable fixed
point. A higher pressure gf = 0.5 brings the system to the
edge of chaos, seen in Figure 6 (bottom), yielding a small but
positive Liapunov exponent. The analogy between low an-
nealing temperature and high selection pressure is strained—
too low a “temperature” actually destabilizes the system.

9 Large Games

How much can we generalize from the results obtained with
the two-strategy Hawk-Dove game? The discontinuities
found in truncation,(x, A)-ES, and rank selection disrupt
evolutionary dynamics regardless of the number of strate-
gies because they are unable, in principle, to attain arbitrary
fixed points. Specifically, these methods can neither attain nor
maintain a Nash equilibrium that has more than one strategy
in support, such as a polymorphic ESS.

For Boltzman selection, the destabilizing effect of high se-
lection pressure is dampened as the number of strategies in-
creases. The higher number of dimensions of large gamé:
tends to bring fitness values closer together. Thus, higher sg
lection pressure is required to induce chaos in large games.
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10 Implications for Coevolutionary Algorithms tion, and not finite populations, noisy payoffs, or incomplete
mixing. Indeed, in light of our results, we believe that the
Our results show that truncatiofy, A)-ES, and rank selec- many coevolutionary (and game-theoretic) investigations in
tion methods disrupt the “normal” dynamics of evolutionary the |iterature that use these selection methods may require a
game theory. Indeed, they introduce new dynamics that argecond look, especially where a single population is used and

incapable of having attractive polymorphic population statesine gomain under investigation is not a constant-sum game.
regardless of the payoff matriXhe significance of these re-

sultsis perhaps better appreciated once we recognize that e
lutionary game theory corresponds to a generaticoabolu-

tionary algorithm with fitness-proportionate selection, oper- e have analyzed the stability properties of four particular
ating under “ideal” conditions: an infinite population, com- sg|ection methods. In this section, we review a standard test
plete mixing (such that every agent plays against every othenpa; can be applied to any differentiable selection function to
noiseless payoffs, and complete knowledge of the phenotyRgetermine its stability properties [Easton, 1998]. This test is
space. Given the strategy set of any coevolutionary gamgyased on the Hartman-Grobman theorem, which allows us to
game theory will indicate the set of Nash equilibria (the ra-yeat a system as if it were linear in the vicinity of the fixed-

tional” strategies).Evolutionarygame theory will highlight it By doing so, we can apply the simple stability tests of
the subset of Nash equilibria that can be attained througfeay maps to the fixed points.

fitness-proportionate differential reproduction (the evolution- | et ,, .. = A/ (;) be a map with a fixed point af™*.

ary stable strategies). That truncatigp, A)-ES, and rank e first linearize the system by calculating its first derivative
selection all fail to converge onto polymorphic ESSs and faily; p7%. For a game of: strategies, we have an = n — 1

to maintain polymorphic Nash equilibria under “ideal” condi- yimensional map. If > 2, then the map is aulti-variable
tions raises reasonable doubt that they wilceedunder the function, and we need to calculate Jdscobian Matrix
less-than-ideal conditions of real world coevolutionary algo-

*P1 When does a map have a stable fixed-point?

rithms. Indeed, results obtained are likely to represent the oM oMy
peculiarities of the reproductive dynamical system more than opt ottt opm
any fundamental feature of the domain under study. We there- M (p) = : . : (6)
fore conclude that these methods are probably inappropriate oMy m OMpm

. . . . . op!t C apm
for use in single-population coevolutionary algorithms. oar

Boltzman selection, on the other hand, is capable of rewhere 5,5 IS the partial derivative of function variabjg with
specting the dynamics and equilibria of evolutionary gameespect to variablg’.
theory, provided the selection pressure is not too high. In- The test for convergence is to check whether the eigen-
deed, any number of differentiable functions can be substivalues ofd M (p™*) are within the interior of the unit-circle.
tuted for fitness proportional selection, and provide variableThat is, we check each eigenvalue,of the Jacobian to see
selection pressure while maintaining “proper” operation.  if ||\|| < 1 (where) is potentially a complex number). If all

Empirical evidence in [Meuleau and Lattaud, 1995] andeigenvalues fall within the unit circle, then the fixed point is
[Fogel and Fogel, 1995, Fogel et al., 1998] agrees with oustable. If one of the eigenvalues falls outside, then the fixed
findings with respect to(x, \)-ES and truncation selec- pointis unstable.
tion, respectively. The former study notes dramatic dif- To gain some intuition about this test, consider a one-
ferences between results obtained usifjg A\)-ES and  dimensional map, such as the one we saw for fitness-
fitness-proportionate selection in coevolving strategies foproportionate selection in Figure 1. This map contains a
the iterated prisoner's dilemma. The latter studiesstable fixed-point, such that if we iterate the map from a
[Fogel and Fogel, 1995, Fogel et al., 1998] are testing the efpoint near the fixed-point, we will converge onto the fixed-
fects of finite populations, noisy payoffs, and incompletepoint. Why do points in the neighborhood of the fixed-
mixing on the dynamics and equilibria of evolutionary gamepoint converge onto it? Take a point at an offset from the
theory. They use the Hawk-Dove game as an experimentdixed point,p, = p™ + p, close enough to the fixed point
framework, but use truncation selection instead of the canorthat we can treat the map as linear. The linearization of
ical fitness-proportional selection in their experiments. Asthe map in the region allows us to approximate the map as
we have seen, truncation selection is unable to reproduce the (p) ~ pf™ + A(p — p™*), where corresponds to the
“correct” dynamics for the Hawk-Dove game, even undersiope of the map at the fixed point. An iteration of the
ideal conditions. The results of Fogel, et al, are consistenthap has the effect of multiplying the offset by the slope,
with ours, but they attribute the absence of normal Hawkp, = M (po) ~ p™ + A(p™ 4+ p — p™) = pf™ 4+ Ap. If
Dove dynamics to the factors under their studgcéuse the || is less than 1, then application of the map will capséo
ESS of7/12!"* Hawks does not emerge, Fogel, et al, con-be closer t* thanp,. Therefore, multiple iterations of the
clude that evolutionary game theory loses it predictive powemap cause the offset to be multiplied repeatedly by the slope,
under real-world conditions. We strongly suspect that the,, = pfi* + X", and (if|\| < 1) bring it closer and closer to
salient factor in their results is the use of truncation selecthe fixed-point.




Thus, the one-dimensional map test is whether the abfBack, 1995] Bick, T. (1995). Evolution strategies: An al-
solute value of the derivative (slope) at the fixed point is ternative evolutionary algorithm. In [Alliot et al., 1995],
less than one. The multi-dimensional test is based on the pages 3-20.
same convergence properties as the one-dimensional case. . ,

In a way, taking the eigenvalues of the Jacobian matrix isDu9atkin and Reeve, 1998] Dugatkin, L. A. and Reeve,
equivalent to breaking the multi-dimensional system down - K. editors (1998).Game Theory and Animal Behav-
into constituent one-dimensional systems, wheseh eigen- ior. Oxford University Press.

value represents the rate of change (derivative) of each ONBEaston, 1998] Easton, R. W. (199&eometric methods for
dimensional degree of freedom of the multi-dimensional sys-  jiscrete dynamical system®xford University Press.
tem. These eigenvalues can be complex numbers, rather than

reals. Nevertheless, the test stays the same in the sense tffaegel, 1997] Fogel, D. B. (1997). An overview of evolu-
we still test whether multiplying an offset by an eigenvalue tionary programming. In Davis, L. D., De Jong, K., Vose,
will shrink the offset. Thus, in the multi-dimensional case, M. D., and Whitley, L. D., editorsEvolutionary Algo-
the test becomes whether all the eigenvalues’ magnitudes are rithms, pages 89-109. Springer.

less than one, i.e., in the unit circle.
[Fogel and Fogel, 1995] Fogel, D. B. and Fogel, G. B.

(1995). Evolutionary stable strategies are not always stable
under evolutionary dynamics. Bvolutionary Program-
ming IV, pages 565-577.

12 Conclusion

We investigate the game-theoretic properties of selection

methods commonly used in evolutionary algorithms to segrogel et al., 1998] Fogel, G. B., Andrews, P. C., and Fo-
if they are able to maintain the dynamics and equilibria of ge| D. B. (1998). On the instability of evolutionary sta-

evolutionary game theory. Using the Hawk-Dove game as pje strategies in small populatior&cological Modelling
a backdrop, we substitute the fitness-proportionate selection 109:283-294.

method assumed in evolutionary game theory with these other

selection schemes. We find that truncati¢m, \)-ES, and  [Fudenberg and Levine, 1998] Fudenberg, D. and Levine,
linear rank selection are unable to maintain polymorphicevo- D. K. (1998). The Theory of Learning in GameMIT
lutionary stable strategies. Instead, these methods exhibit be- Press.

haviors such as limit cycles, chaos, or fixed points that are eTGoIdberg and Deb, 1991] Goldberg, D. E. and Deb, K

sentially unrelated to the values of the payoff matrix. Boltz- " . .
: . : ) (1991). A comparitive analysis of selection schemes used
man selection, however, is able to retain the dynamics and | . : : .
in genetic algorithms. In Rawlins, G. J., editégunda-

ggf:gﬁgﬁ ;?::slunrs\i/glrlljct)lto tgir{]%?]r_ne theory, provided that the tions of Genetic Algorithms (FOGA ,lpages 69-93.
These results transcend the field of evolutionary game thgHancock, 1994] Hancock, P. J. (1994). An empirical com-

ory, however. Because of the copesidence between evolu-  parison of selection methods in evolutionary algorithms.

tionary game theory and coevolutionary algorithms, our re-  |n Fogarty, T. C., editorEvolutionary Computing (AISB

sults indicate that selection methods cannot be moved whole- '94), pages 80-94.

sale from evolutionary teoevolutionary frameworks without

careful consideration. Specifically, three of the four methoddHofbauer and Sigmund, 1998] Hofbauer, J. and Sigmund,

we consider in this paper appear to be pathologicalin the con- K. (1998). Evolutionary Games and Population Dynam-

text of single-population coevolution in non-zero sum games. i¢s. Cambridge University Press.

Nevertheless, a test from dynamical systems theory allow aynard-Smith, 1982] Maynard-Smith, J. (1982Evolu-

one to determme qnalyﬂcglly the app_roprlateqess for.coev " tion and the Theory of GamesCambridge University
lution of specific differentiable selection functions, without Press

the need for empirical investigation.
[Meuleau and Lattaud, 1995] Meuleau, N. and Lattaud, C.
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