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Abstract. The fundamental distinction between ordinary evolutionary
algorithms (EA) and co-evolutionary algorithms lies in the interaction
between coevolving entities. We believe that this property is essentially
game-theoretic in nature. Using game theory, we describe extensions that
allow familiar mixing-matrix and Markov-chain models of EAs to address
coevolutionary algorithm dynamics. We then employ concepts from evo-
lutionary game theory to examine design aspects of conventional coevo-
lutionary algorithms that are poorly understood.

1 Introduction

While formal models of evolutionary algorithm (EA) dynamics burgeon in gen-
eral [24,26,21], co-evolutionary algorithms, in particular, still have few formal
tools for their analysis—investigations of coevolutionary algorithm dynamics are
typically empirical in nature [7, 3, 1, 14, 16]. The reason for this divide stems from
the need to formally account for the defining characteristic of coevolutionary al-
gorithms: the interaction of coevolving entities. We believe that this property of
coevolution is fundamentally game-theoretic in nature. Thus, we incorporate no-
tions from evolutionary game theory (EGT) [15] and replicator dynamics [12]
into the familiar mixing-matrix [26] and Markov-chain [24] models of (non-
coevolutionary) EAs to arrive at a preliminary, yet principled framework for
coevolutionary algorithm analysis.

While we are unaware of other formal coevolutionary algorithm models in
the evolutionary computation (EC) community, we have discovered at least two
precedents that originate, perhaps not surprisingly, from the economics com-
munity, which has come increasingly to study agent-based models of economic
evolution [4,19]. Both discuss Markov-chain models of genetic algorithms (GA)
(i.e., bit-string encodings) where agent fitness is dependent upon population
state. While the game structure assumed in the former study is not explicitly
stated, the description is consistent with that of the latter study, which assumes
an N-player game, where N is the size of the agent population. Such games
typify economic domains, in contrast to the two-player games implied by the
pair-wise contests frequently used by the EC community.

Coevolutionary dynamics have also been studied from the perspective of
mathematical biology, for example in [10] and [5]. The “street-car” theory of the



former study is concerned with reconciling the peculiar constraints of Mendelian
genetics with game-theoretic notions of phenotypic stability. In contrast, the
latter study presents a continuous-time dynamical systems approach to coevo-
lution that operates strictly in the phenotype realm, and does not assume any
constraints due to an underlying genotype structure. Nevertheless, both stress
the existence of short-term and long-term time scales in the dynamics. Com-
ing from an entirely different approach, computational learning theory (COLT)
has been used to analyze machine learning of competitive (zero-sum) two-player
games and construct a specialized form of coevolutionary algorithm [20].

Thus, we see that many sources exist for insight into coevolutionary dynam-
ics. Nevertheless, neither the fields of economics nor biology ultimately concern
themselves with modeling coevolutionary algorithms, and N-player and zero-sum
games do not represent the entirety of coevolutionary domains. Many important
aspects of coevolutionary algorithm dynamics remain to be explicated, for the
gap between the hypothesized potential of coevolutionary algorithms and real-
ized practice is substantial—the many successes of coevolution (e.g., [11,22,13])
are balanced by many irksome modes of failure that commonly recur (e.g., as
discussed in [7,18]). Investigation into these modes of failure has proven to be
a challenge. We believe that an understanding of evolutionary game theory and
replicator dynamics will help to meet this challenge.

Our fundamental assumption is that we are using coevolution as an opti-
mization method. This assumption has important game-theoretic consequences
in phenotype space that exist independently of any underlying genetic represen-
tation. These consequences must be appreciated in their own right before the
dynamics of genetical constraints can be taken into account. After describing the
game-theoretic extensions necessary to allow mixing-matrix and Markov-chain
methods to model the “simple coevolutionary algorithm” (SCA), we move on
to demonstrate how a principled game-theoretic approach can illuminate our
understanding of coevolutionary algorithms.

2 The Simple Coevolutionary Algorithm

Building on familiar mixing-matrix and Markov-chain models of the so-called
Simple Genetic Algorithm (SGA) [26,24], we describe extensions that utilize
a game-theoretic approach to formalize coevolutionary algorithms. Using the
notational convention of Vose [24], the SGA heuristic G is the composition of
the function M (which includes the mixing matrices that implement the varia-
tional operators) with the function F (which includes the objective function, or
evaluator), as shown in Equation 1. The input to F is a column vector p in the
n-dimensional simplex A, where n is the number of possible phenotypes and p; 1s
the proportion of agents in the population that have phenotype 7. The output of
F is another n-dimensional vector on the simplex representing the fitness of each
phenotype. Assuming fitness-proportionate selection, M performs the appropri-
ate variational operations to produce the phenotype distribution of the next
generation. If the population size is infinity, G represents a mizing-matriz model



that is sufficient to study the dynamics of the EA. If the population is finite,
however, one must distinguish between population states that are representable,
given the population’s size, and those that are not. This can be accomplished
with a Markov-chain model. Each representable population state is a state of
the Markov chain, and each transition probability is the likelihood of a finite-
population approximation of the map G to produce the various representable
population states.

G=MoF (1)

Since the distinguishing feature of coevolution is agent interaction, the neces-
sary extensions revolve around the computation of fitness by the objective func-
tion. The modifications we describe below are compatible with mixing-matrix
and Markov-chain models. In accord with the discrete-time equations of basic
evolutionary game theory [15] and much of current EC practice, our modifi-
cations assume generational reproduction and domains where agents interact
pair-wise (though, steady-state dynamics and N-player games are not excluded
by our general approach). Coevolving agents may exist in a single population
(e.g., [14,1]), or two genetically isolated populations (e.g., [11]).

2.1 The Objective Function F

Single-Population Domains We abstract the domain of agent interaction
into an n by n payoff matriz, G, where G; ; gives the ezpected payoff for an
agent of phenotype ¢ when played against an agent of phenotype j. We interpret
each distinct phenotype as a genetically determined pure strategy for the game
(domain) in question. Note that a behavior that blends two or more phenotypes
into a “mixed” strategy is not excluded—we simply require it to have a genetic
basis and can therefore give it the status of a pure strategy, as well.

The fitness of strategy 7 represents the fitness value that each agent (and
genotype) playing strategy i receives after complete mizing, i.e., pair-wise en-
counters with every agent in the population (including itself, in the case of a
finite population [8]). As shown in Equation 3, we first calculate for each strat-
egy 1 a weighted sum of the payoffs in row i of G, the weights being determined
by the phenotypic composition of the population, p; this operation is accom-
plished by matrix multiplication. Since G may contain negative payoff values,
we add a constant baseline fitness, wq, to the result of the multiplication so
that all fitness values are greater than zero; this is to allow normalization, as
performed in Equation 2.

F0) = Tois @
F(p)= Gp + wol (3)
wyg = 1 — min(GQ) 4)

where ‘@’ is inner product.



Two-Population Domains In coevolution between two genetically isolated
populations, agents from Population 1 only play against agents from Population
2. Let the column vector q represent the phenotype (strategy) distribution of the
second population. The payoffs for agents from the second population are given
by an additional payoff matrix, H. A pair-wise interaction between an agent
(from Population 1) playing strategy ¢, and a second agent (from Population
2) playing strategy j, will yield the payoff G;; for the first agent and H;;
for the second. The calculation of fitness requires two equations, Equations 5
and 6, which assume that every agent in one population plays against every
agent in the other population. Because the two populations can have entirely
distinct genotype representations, a second set of mixing matrices is required to
implement the variational operators. The state space of a two-population Markov
chain is the Cartesian product of the two sets of representable population states,

PxQ,pePqeqQ.

Fi(q) = Ga+ wg'l (5)
Fy(p) = Hp 4+ wi1 (6)

2.2 The Selection Operator S

A common assumption of evolutionary game theory, as well as mixing-matrix
and Markov-chain models of EAs, is that agents reproduce in proportion to
fitness. Nevertheless, many popular alternative selection methods exist that are
used both in ordinary EAs and coevolutionary algorithms. We wish our model to
accommodate these alternatives. Thus, to Equation 1 we add a new function, S,
representing the selection operator, as shown in Equation 7. & accepts a vector
of normalized fitness values and produces a new normalized distribution of agent
proportions.

Fitness-proportionate selection is achieved by making & the identity opera-
tor. Linear rank selection, for example, is easily implemented by replacing an
agent’s fitness value f; with a new value based upon the agent’s fitness rank,
ri: S(f) = %, where R computes the rank of each agent based on fitness,
r; = n...1 (higher fitness results in higher rank values). Implementations of
other selection methods for infinite populations are found in [6]. We discuss the
effects of alternative selection methods below.

G=MoSoF (7)

3 Evolutionary Game Theory

If we are using coevolutionary algorithms for optimization, and understand the
coevolutionary domain to be representable by a payoff matrix, then the appro-
priate optimality concept is that of the Nash equilibrium [2]. This is a strategy
that, when used by one player, offers no better alternative to the second player



than to use the same strategy. If there exists another alternative that does no
worse than the Nash strategy, then the Nash strategy is weak, otherwise it is
strict. Thus, classical Nash equilibrium is achieved through the assumption of
agent rationality.

In a biological context, however, we cannot appeal to rationality to achieve
optima. The central contribution of evolutionary game theory [15] is the substi-
tution of agent rationality with Darwinian selection. In EGT, replicator dynam-
tcs allow Nash equilibria to be achieved. But, we find that only certain Nash
equilibria are attractors of the dynamical system, while others are not.

Evolutionary game theory operates exclusively in phenotype space; the repli-
cator equations perform selection only, since no genotype space is assumed upon
which to construct variational operators. This fact has been the focal point of de-
bate between Darwinian adaptionists, who have used EGT with great success in
analyzing empirical data, and population geneticists, whose mathematics clearly
show that Mendelian genetics can easily contradict Darwinian reasoning. Ham-
merstein’s “streetcar” theory of evolution [10] addresses this apparent paradox
and shows how the long-term outcome of coevolution can, in fact, be adequately
described on the phenotypic level. Of course, we do not presume this result
to apply directly to coevolutionary algorithms, for the genotypic constraints
imposed by representations used in EAs differ considerably from those found
in Mendelian genetics. Nevertheless, the pressure to achieve optima is clearly
found in the selection mechanism, which can be described in a game-theoretic
framework. Thus, we suggest that game-theoretic properties must underlie the
behavior of coevolutionary algorithms if they are to optimize successfully.

3.1 Polymorphic Attractors

Polymorphic attractors [15] can occur in single-population coevolution when the
game is not constant-sum. A polymorphic attractor is a point attractor of the
replicator dynamical system where the population contains more than one phe-
notype: p; > 0 for > 2 values of ;. All phenotypes present in a polymorphic
attractor p (and hence all agents) receive the same fitness: Vp; > 0 : f; = ¢. The
proportions with which the strategies appear in the population can be inter-
preted as a mixed Nash equilibrium. Surprisingly, a pure strategy with the same
behavior as the polymorphism need not be an attractor of replicator dynamics
[15]. This is because replicator dynamics act upon individual fitness rather than
population-wide fitness.

Thus, we see that the simple coevolutionary algorithm, as with the simple
genetic algorithm, operates with an agent-centric view of performance. This
makes recognizing (as opposed to achieving) polymorphic attractors problematic.
For example, the Hawk-Dove game is a simple two-strategy, non-constant sum
game that has a single, and polymorphic, attractor where Praur = % and
Phove = % How 1s this equilibrium to be comprehended by an agent-centric
view? To begin, sorting the population of agents by fitness has an 1ill-defined
result due to ties—all agents receive the same fitness, and the “best” agent, with
respect to sorting, could be either a Hawk or a Dove. Of course, neither strategy



alone constitutes an optimal solution. Not only are both strategies needed, but
they are needed in a particular proportion. The “solution” to the Hawk-Dove
game is not a single strategy, but an ecology.

We may argue, then, that a coevolutionary algorithm should report the popu-
lation’s phenotypic proportions once fitness converges. This is straight-forward if
the genotype-phenotype mapping is known to be one-to-one. But, with real-world
representations, a particular phenotype is often achievable through a variety
genotypes. Since we only have knowledge of an agent’s genotype, the question
of phenotypic equivalence between two agents is generally undecidable. How,
then, are we to distinguish between fitness convergence with phenotypic poly-
morphism, on the one hand, and genuine phenotypic convergence, on the other?
This distinction is not important in the Simple Genetic Algorithm—any opti-
mal phenotype will do. But, in coevolution, polymorphic optima are achieved
through specific phenotype proportions, which must remain intact.

3.2 Time Scales of Selection and Search

Given an initial population state, p°, what will iteration of the selection op-
erator on p° (without variation) do in the limit? Because variation operators
are not applied, we know that phenotypes that are absent in p°® cannot appear
later. Also, we know that some phenotypes present in p° may be eliminated
by selection. In ordinary evolution, the limit behavior is the point attractor p,
which is composed exclusively of the most fit phenotype in p° (assuming the
absence of neutrality). In coevolution, however, the limit behavior can be very
different: assuming fitness-proportionate selection, the attractor may be a limit
cyclic rather than a fixed point. Further, if a point attractor p exists and the
game is not constant-sum, then p may easily be composed of a phenotype other
than the most fit phenotype in p°.

Linear stability analysis [23] tells us that the strategies in support of a co-
evolutionary point attractor—that is, all strategies i where p; > 0—must be
the highest scoring strategies in all population states within some epsilon of the
attractor. Otherwise, the attractor could not be locally stable. But, the region
within which this is true need not be the attractor’s entire basin of attraction.
Indeed, population states that are outside of the epsilon, |p — p| > ¢, but still
within the basin of attraction, may contain very many phenotypes that out-score
those in support of p, but which eventually drive each other to extinction, leaving
only the strategies in p. Fitness values in this region of population-state space
are “deceptive” in the sense that they favor phenotypes that will eventually be
selected against.

For example, in randomly generated non-constant sum games of 100 strate-
gies, we can easily find examples of an initial population state, p°, that leads
to an attractor composed of a single strategy, i = Win : p; = 1.0,Vi # Win :
P; = 0, but that exhibits fitness deception at the beginning of its orbit towards
the attractor. In one instance of p® that we have found, the eventual “winner”
strategy Pwin 18 actually out-scored by 54 of the 100 game strategies and over
50% of the population in p°, as well as in the next ten generations (iterations



of selection), p'...p!% Indeed, some 39 generations are required before P win

becomes the most fit in the population. Other initial conditions in the neighbor-
hood of p? yield similar behavior. This result is in stark contrast to the dynamics
of selection in ordinary evolution, where the winning strategy of the attractor
D win 1s made apparent after a single round of evaluation.

This example raises a concern about the efficiency with which conventional
coevolutionary algorithms may perform search in non-constant sum games. In
each generation, decisions are made regarding which strategies should be kept
and form the basis for future search; these decisions can easily be misled by fitness
values. Note that this form of “deception” does not involve the genotype space
at all (as it does in GA trap functions, for example)—it exists purely within the
game-theoretic relationships of phenotype proportions. Strategies that exhibit
superior performance only in transient population states, p® ?, may be less
useful guideposts for search than the strategies in p, which at least have some
stability properties with respect to p™. Should the application of variation
operators be delayed until fitness values are “believable”? If so, how should the
coevolutionary algorithm be modified to improve efficiency yet avoid premature
convergence?

3.3 Dynamics of Alternative Selection Methods in Coevolution

The constraint of finite populations creates at least three problems for the canon-
ical fitness-proportionate roulette-wheel selection method used in EAs. First, the
multinomial distribution of roulette-wheel operation introduces a great deal of
noise into the selection process. Second, this noise makes resolving small dif-
ferences in genotype fitness impossible for realistic population sizes. Third, an
excessive difference in fitness between the best individuals and the rest of the
population can cause premature convergence. These problems have lead to the
development of many alternative selection methods for evolutionary algorithms,
such as truncation selection, (p, A)-ES selection, and ranking [17]. We have used
EGT to test these selection methods and have shown that none of them are
able to attain polymorphic attractors, even if the population is infinite [6]. In-
stead, these selection methods exhibit attractors (sometimes chaotic) that are
unrelated to the game. Thus, implementation decisions that may be sound for
ordinary evolutionary algorithms can be pathological in an idealized coevolu-
tionary context (where the search problem is solved, leaving only the problem
of selection), and therefore dubious in a real-world algorithm. Indeed, we have
shown [8] that the use of truncation selection is one reason why the simulations
by Fogel, et al [9] lead them to claim that EGT loses predictive power in finite
populations.

3.4 Population Structures

Coevolutionary algorithms that use two genetically isolated populations typically
involve asymmetric games, where agents from one population can only play
against agents from the other [11,7]. Evolutionary game theory tells us that



asymmetric games never result in polymorphic equilibria [12]. This feature is
actually not a property of the games themselves, but rather a property of the
two-population structure, which asymmetric games happen to require. Thus, if
we use a two-population structure on a symmetric game that has a polymorphic
attractor, then the polymorphic attractor will disappear. In the case of the Hawk-
Dove game, a single population of agents yields the polymorphic attractor of
% Hawks and 15—2 Doves. But, when the game is played between two separate
populations, one population will converge to all Hawks and the other to all
Doves.

Multiple-population structures are often used in evolutionary algorithms (in-
cluding coevolution) to maintain genetic diversity (e.g., [22]). In a coevolutionary
context, however, the influence of population structure can transcend the pro-
cess of genotypic search to exert an independent (and unintentional) effect on
the process of phenotype selection. Evolutionary game theory shows that, even
when the search problem is solved a prior:, different population structures may
lead to different outcomes, even though the game remains the same.

3.5 Local Optima

When variational operators are unable to reach new phenotypes that are suf-
ficiently good to survive selection with respect to the current population (and
thereby allow search to continue), the state of the evolutionary system is at a
local optimum. In stationary fitness environments, local optima are easy to con-
ceptualize. In coevolutionary domains, however, fitness landscapes are dynamic.
In this case, game theory provides a natural way of describing a coevolutionary
local optimum: it is a search-constrained attractive Nash equilibrium. That 1s,
the coevolutionary state 1s a “best reply” to itself only to the extent that all
locally reachable population states are inferior to the Nash state—all paths to
superior population states are blocked by the convergent force of selection.

3.6 Dominating Strategies

An important concept in game theory is that of dominance [2]. Strategy s,
(pure or mixed) is said to dominate strategy s if s, does as well or better than
sp against all strategies in the game and strictly better against at least one:
Sq > Sp & Vi G(sq,8:) > G(se,s:) A 3j: G(sa,s5) > G(sp,s5). If sq = sp,
but there exists some strategy against which s, does no better than s, then s,
weakly dominates sp. Otherwise, s, strictly dominates sp. If s4 1s a pure strategy
and strictly dominates sp, then the replicator dynamics will remove s, from the
population. This is not necessarily true for weak dominance [12].

That replicator dynamics removes strategies that are strictly dominated (by
pure strategies, in the case of non-overlapping generations [25]) suggests that
it is performing an operation akin to multi-objective optimization, where every
strategy represents an objective of the coevolutionary problem. That is, in com-
paring two strategies, s, and sp, the salient question is not whether s, beats
sp in the game, or out-scores s, when played against a series of opponents, but



rather whether s, Pareto dominates sp with respect to a given set of opponent
strategies (including themselves). (The notion of Pareto dominance, as used in
multi-objective optimization, is not to be confused with Pareto dominance with
respect to game payoffs, as used in game theory.)

This observation leads to the realization that multi-objective optimization
techniques may be explicitly applied to coevolutionary domains without the use
of replicators, such that both strictly as well as weakly dominated strategies are
rejected in favor of Pareto-optimal strategies. Though such an approach may no
longer qualify as a coevolutionary algorithm, we suspect that it may nevertheless
provide a powerful method of optimizing coevolutionary domains.

4 Conclusion

We have argued for the relevance of evolutionary game theory to the study of
coevolutionary algorithms. We have presented game-theoretic extensions that
allow mixing-matrix and Markov-chain models of EAs to address coevolutionary
algorithm dynamics. Additionally, we have shown that a game-theoretic view of
coevolutionary algorithm design and operation reveals that the simple coevolu-
tionary algorithm 1) cannot recognize polymorphic equilibria, 2) can be made
inefficient by a newly-recognized form of fitness deception, 3) exhibits patholog-
ical behaviors if certain commonly-used selection methods are employed, and 4)
can have different attractors depending upon population structure. Finally, we
have used game-theoretic concepts to formulate a notion of coevolutionary local
optima, and to understand coevolution as a form of multi-objective optimiza-
tion. We believe that EGT can help with the design and validation of new search
methods for coevolutionary domains. This is the subject of our current work.
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