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ABSTRACT

Coevolution provides a frame-
work to implement search heuris-
tics that are more elaborate than
those driving the exploration of
the state space in canonical evolu-
tionary systems. However, some
drawbacks have also to be over-
come in order to ensure contin-
uous progress on the long term.
This paper presents the concept
of coevolutionary learning and in-
troduces a search procedure which
successfully addresses the underly-
ing impediments in coevolutionary
search. The application of this al-
gorithm to the discovery of cellu-
lar automata rules for a classi�ca-
tion task is described. This work
resulted in a signi�cant improve-
ment over previously known best
rules for this task.

1 Introduction

Some problems are di�cult because solutions have to be
evaluated against a very large number of test cases in or-
der to determine their score accurately. The discovery of
game strategies and learning control procedures for au-
tonomous agents are a few examples of such problems.
To make learning tractable, solutions can be evaluated
only with respect to a training environment composed
of a subset of all the test cases. For such problems, a
common approach in machine learning consists in de-
signing a �xed training environment. Usually, a signi�-
cant amount of knowledge about the problem is explic-
itly introduced by the designer in that stage. Then, the
learning algorithm follows the gradient implemented in
the training environment. However, the performance of
solutions relies heavily on this training environment and

on the search procedure to explore the state space. If
little knowledge is available or if it is is di�cult to in-
troduce in the training environment, the performance of
the system is very limited.

Coevolution is an alternative to get around that prob-
lem in the sense that the training environment for learn-
ers doesn't have to be designed explicitly. In coevolution,
the performance of individuals is evaluated with respect
to other members of the population, resulting in a dy-
namic �tness landscape. The counter part is to ensure
that the changing environment does provide useful in-
formation to drive the search towards good solutions. In
this paper, we de�ne coevolutionary learning as a frame-
work in which a population of learners coevolve with a
population of problems such that continuous progress re-
sults from this interaction. By continuous progress, we
mean that learners are able to solve an increasing range
of problems (and eventually the entire set of problems
that compose the task). However, multiple reasons can
prevent such a system from continuously improving it-
self. In the literature, at least two such reasons have
been recognized. The �rst one, named the Red Queen
e�ect, comes from the fact that individuals are evaluated
in a changing environment. As a result, they tend to spe-
cialize with respect to the current training environment
and they tend to forget some of the traits they learnt
some generations earlier because the relevant test cases
for those traits are no longer present in the current train-
ing environment. Later, if those test cases reappear, the
agents have to learn again the appropriate traits. The
second reason is that the coevolving agents can enter a
mediocre stable or meta-stable state in which a number
of average performance species coexist in the population
in a stable manner. In this situation, there is no driving
force for agents to evolve. Any slight alteration of an
individual in one species results in no improvement or a
smaller performance.

In the research literature, Hillis' work marked an im-
portant step by showing that coevolution can be used to
improve search performance (Hillis 1992). In his work, a
population of sorters (the hosts) coevolve with input vec-



tors (the parasites). The goal of sorters is to construct se-
quences of comparator-swaps that sort the input vectors
that are proposed by the parasites while parasites search
for input vectors that are di�cult to sort. In a sense,
this can be seen as an implementation of a coverage-
based heuristic: a construction is sought that sorts cor-
rectly every possible input vector, thus resulting in a
sorting network. This heuristic adaptively focuses the
search for solving problem instances (i.e., input vectors)
that are the most di�cult for the population of networks.
This work has been followed by others using both com-
petitive and cooperative models of coevolution. For in-
stance, Husbands implemented a model similar to Hillis'
to address a generalized version of the job-shop schedul-
ing problem (Husbands 1994). Paredis (Paredis 1996)
used competition between a population of solutions and
a population of problems as a search strategy for applica-
tions in inductive learning (Paredis 1994b) and constraint
satisfaction problems (Paredis 1994a). Pursuer/evader
games have also been used as a test problem for re-
search in coevolution. In particular, Cli� and Miller
(Cli� and Miller 1995, Cli� and Miller 1996) developed
several tools to track progress and detect loss of traits re-
sulting from the Red Queen e�ect. Sims' block-creatures
(Sims 1994) and Reynolds' experiments with the game
of tag (Reynolds 1994) are also two successful applica-
tions of competitive evolution. Rosin's work on coevo-
lutionary learning (Rosin 1997) addresses the di�erent
issues related to competitive evolution in the context of
adversarial problems (e.g., game strategies). The goal
of this work is to de�ne a framework for coevolutionary
search that results in continuous progress on the long
term. In a theoretical analysis (Rosin and Belew 1996),
Rosin and Belew described a coevolutionary environment
and proved it allows the discovery of perfect game strate-
gies.

Cooperative models of coevolution have also been im-
plemented. Such models have been used for function op-
timization (Potter and De Jong 1994) and for the design
of control systems (Potter et al. 1995). Another applica-
tion is the search of a space of problem decompositions
to construct modular solutions (Potter 1997, Moriarty
1997). Following a di�erent track, Paredis (Paredis 1995)
designed a model exploiting a symbiotic relationship to
coevolve solutions and their representation.

In this paper, we introduce a framework which ad-
dresses the impediments related to coevolution just dis-
cussed and which does result in continuous improvement.
Coevolutionary learning is based on the controlled evo-
lution of the training environment in response to the
improvement of the learners. The goal is to discover
the \best" training environment, given the population
of learners, hence the name of our approach: \coevolv-
ing the \ideal" trainer". The application of this sys-
tem to a di�cult problem, namely the discovery of cel-

lular automata rules to implement the majority classi�-
cation task, is described. Signi�cantly better results are
achieved by the coevolutionary approach compared to
previously known solutions to that problem.
This paper is organized as follows. First, our new co-

evolutionary search procedure is described and the un-
derlying heuristics exploited by this algorithm are iden-
ti�ed. Then, section 3 presents cellular automata and
the problem of evolving rules to implement a particular
classi�cation task. Section 4 describes the application
of our coevolutionary approach to this problem, followed
by experimental results in section 5.

2 Coevolving the \Ideal" Trainer

As it was discussed before, the main issues we want to
address are how to escape from mediocre stable or meta-
stable states and how to avoid the Red Queen e�ect.

2.1 Description

Since the space of problems to which learners can be
exposed is huge, learners can be evaluated only against a
subset of the problems. Therefore, the goal is to discover
learners that are able to generalize to unseen problem
instances after they have been exposed to this sample.
The central idea of the coevolutionary learning ap-

proach presented in this paper consists in exposing learn-
ers to problems that are just beyond those they know
how to solve. By maintaining this constant pressure
towards slightly more di�cult problems, a arms race
among learners is induced such that learners that adapt
better have an evolutionary advantage. The underlying
heuristic implemented by this arms race is that adapt-
ability is the driving force for improvement. In order to
achieve this result, our search algorithm tries to satisfy
the following two goals:

� to provide an \optimum" gradient for search. This
means that the training environment de�ned by the
population of problems can determine reliably which
learners are the most promising at each stage of the
search process. This means that problems must be
informative. If problems are too di�cult, nobody
can solve them. On the contrary, if they are too
easy, everybody can solve them. In both of those
cases, learners get little feedback and there is no
gradient to determine in which direction the search
should focus.

� to allow continuous progress. The goal is to avoid
the Red Queen e�ect by providing a training en-
vironment which continues to test learners about
problems they solved in the past. In a sense, the
training environment must also play the role of
memory.

The di�culty resides in the accurate implementation of
those concepts in a search algorithm. So far, our method-



ology to implement such a system consists in the con-
struction of an explicit topology over the space of prob-
lems by de�ning a partial order between problems. This
partial order is de�ned with respect to the relative di�-
culty of problems among each other. In our current work,
the concept of \relative di�culty" has been de�ned by
exploiting some a priori knowledge about the global task
and is task-speci�c. The de�nition of this topology over
the space of problems makes possible the implementation
of the two goals to achieve coevolutionary learning:

� since learners can be evaluated against a known
range of di�culty for problems, it is possible to mea-
sure their progress and to expose them to problems
that are just a little more di�cult. However, this
last operation also requires the de�nition of a dis-
tance measure in order to formalize the concept of
\a little more di�cult". Indeed, the topology over
the space of problems is independent of the topol-
ogy over the space of learners. The distance between
two problems with respect to their relative di�culty
is not necessarily a direct mapping with the proba-
bility for a learner that solves only one of them to
adapt in order to solve both problems. In practice,
several de�nitions might be tested and some tuning
is required to get the appropriate result.

� the progress of learners can be monitored indirectly
by tracing the evolution of problems towards in-
creased di�culty. Conversely, the evolution in prob-
lems di�culty is controlled by the evolution of the
performance of learners. Thus, the evolution of the
training environment can be controlled such that the
Red Queen e�ect is prevented (or at least such that
its e�ect is limited).

In the future, our goal is to eliminate some of those
explicit components by introducing some heuristics that
automatically identify problems that are appropriate for
the current set of learners while preventing the Red
Queen e�ect. The work of Rosin (Rosin 1997) already
describes some methods to address this issue.

2.2 Discussion

As stated previously, the coevolutionary learning frame-
work introduces a pressure towards adaptability. The
central assumption is that individuals that adapt faster
than others in order to solve the new challenges they
are exposed to are also more likely to solve even more
di�cult problems. The main di�culty is to setup a co-
evolutionary framework that implements this heuristic
accurately and e�ciently.
The idea of introducing a pressure towards adapt-

ability as the central heuristic for search is not new.
Schmidhuber (Schmidhuber 1995) proposed the Incre-
mental Self-Improvement system in which adaptability is
the measure that is optimized. In this system, the search

is performed in a stochastic depth-�rst way and a Re-
inforcement Acceleration Criterion (RAC) is computed
regularly in order to determine if there has been contin-
uous acceleration of the amount of reinforcement infor-
mation received from the environment since the birth of
the individual. If RAC is not satis�ed, a backtracking
operation is performed. That is, the individual undoes
its last modi�cations until RAC is satis�ed again and
new modi�cations are tried.

3 Discovery of CA Rules for a

Classi�cation Task

3.1 One-Dimensional Cellular Automata

A one-dimensional cellular automaton (CA) is a linear
wrap-around array composed of N cells in which each
cell can take one out of k possible states. A rule is de-
�ned for each cell in order to update its state. This rule
determines the next state of a cell given its current state
and the state of cells in a prede�ned neighborhood. For
the model discussed in this paper, this neighborhood is
composed of cells whose distance is at most r from the
central cell. This operation is performed synchronously
for all the cells in the CA. From now on, we will con-
sider that the state of cells is binary (k = 2), N = 149
and r = 3. This means that the size of the rule space is
22

2�r+1

= 2128.

Cellular automata have been studied widely as they
represent one of the simplest systems in which complex
emergent behaviors can be observed. This model is very
attractive as a means to study complex systems in na-
ture. Indeed, the evolution of such systems is ruled by
simple, locally-interacting components which result in
the emergence of global, coordinated activity.

3.2 The Majority Function

The task consists in discovering a rule for the one-
dimensional CA which implements the majority function
as accurately as possible. This is a density classi�cation
task, for which one wants the state of the cells of the
CA to relax to all 0's or 1's depending on the density of
the initial con�guration (IC) of the CA, within a maxi-
mum of M time steps. Following (Mitchell et al. 1994),
�c denotes the threshold for the classi�cation task (here,
�c = 1=2), � denotes the density of 1's in a con�guration
and �o denotes the density of 1's in the initial con�gura-
tion. Figure 1 presents two examples of the space-time
evolution of a CA for N = 149 with �0 < �c on the left
and �0 > �c on the right. The initial con�guration is at
the top of the diagram and the evolution in time of the
di�erent con�gurations is represented downward.

The task �c = 1=2 is known to be di�cult. In par-
ticular, it has been proven that no rule exists that will
result in the CA relaxing to the correct state for all pos-
sible ICs (Land and Belew 1995). Indeed, the density is
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Figure 1 Two space-time diagrams describing the evolution of CA states for the new rule Coevolution

(2) which scores 86:0% for N = 149. White squares represent cells in state 0 while black squares

correspond to cells in state 1. The initial state of the CA is at the top and the evolution for the �rst

200 time steps is represented by moving downward.

a global property of the initial con�guration while indi-
vidual cells of the CA have access to local information
only. Discovering a rule that will display the appropriate
computation by the CA with the highest accuracy is a
challenge, and the upper limit for this accuracy is still un-
known. Table 1 describes the performance for that task
for di�erent published rules and di�erent values of N .
The Gacs-Kurdyumov-Levin (GKL) rule was designed in
1978 for a di�erent goal than the �c = 1=2 task (Mitchell
et al. 1994). However, for a while it provided the best
known performance. (Mitchell et al. 1994) and (Das et
al. 1994) used Genetic Algorithms (GAs) to explore the
space of rules. This work resulted in an analysis of some
of the complex behaviors exhibited by CAs using \parti-
cles". The GKL and Das rules are human-written while
the Andre-Bennett-Koza (ABK) rule has been discov-
ered using the Genetic Programming paradigm (Andre
et al. 1996). For the �c = 1=2 task, it is believed that the
rules that perform reasonably well have a density close
to 0:5 and, indeed, the GKL rule has density 0:5 ex-
actly. An intuitive argument to support this hypothesis
is presented in (Mitchell et al. 1993). It is also believed
that the most di�cult ICs are those with density close
to 0:5 (since only a little modi�cation can make them
switch from �0 < 1=2 to �0 > 1=2, and vice versa). This
information is useful for the understanding of the exper-
imental analysis presented in the following sections.

In the research literature, initial work performed by
(Das et al. 1994, Mitchell et al. 1994) has been followed
by (Andre et al. 1996) whose rule improved the case
N = 149 but doesn't generalize as well as the GKL
or the Das rule. (Sipper 1994) evolved rules for non-
homogeneous CA for which each cell has its own inde-
pendent version of a rule. (Paredis 1997) describes a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
at

io
 c

or
re

ct
 c

la
ss

ifi
ca

tio
n

Density initial configurations

N = 149
N = 599
N = 999

Figure 2 Distribution of performance for the

GKL rule for �0 2 [0:0; 1:0].

coevolutionary approach to search the space of rules and
shows the di�culty of coevolving consistently two popu-
lations towards continuous improvement. (Capcarrere et
al. 1996) also reports that by changing the speci�cation
of the convergence pattern of the CA from all 00s or all
10s to a pattern in which a block of at least two consec-
utive 10s exists if and only if �0 > 1=2 and a block of at
least two consecutive 00s exists if and only if �0 < 1=2,
then a two-state, r = 1 cellular automaton exists that
can perfectly solve the density problem.

4 Implementation of the Concept

The coevolutionary approach described in section 2 is
applied to the �c = 1=2 task. It is believed, that ICs be-
come more and more di�cult to classify correctly as their
density gets closer to the �c threshold. This hypothesis is



Table 1 Performance of di�erent published CA rules and two new rules discovered using the coevo-

lutionary learning paradigm for the �c = 1=2 task.

N 149 599 999

Coevolution (1) 0.851 +/- 0.001 0.810 +/- 0.001 0.795 +/- 0.001

Coevolution (2) 0.860 +/- 0.001 0.802 +/- 0.001 0.785 +/- 0.001

Das rule 0.823 +/- 0.001 0.778 +/- 0.001 0.764 +/- 0.001

ABK rule 0.824 +/- 0.001 0.764 +/- 0.001 0.730 +/- 0.001

GKL rule 0.815 +/- 0.001 0.773 +/- 0.001 0.759 +/- 0.001

supported by the distribution of the performance for the
GKL rule for �0 2 [0:0; 1:0] presented in �gure 2. There-
fore, our idea is to construct a framework that adapts
the distribution of the density for the population of ICs
as CA-rules are getting better to solve the task. The
following de�nition for the �tness of rules and ICs has
been used to achieve this goal.

f(Ri) =

nICX

j=1

W ICj � covered(Ri; ICj)

where:

W ICj =
1PnR

k=1 covered(Rk; ICj)

and

f(ICj) =

nRX

i=1

W R0

i �E(Ri; �(ICj))� covered(Ri; ICj)

where:

W R0

i =
1

PnIC
k=1 E(Ri; �(ICk))� covered(Ri; ICk)

where covered(Ri; ICj) returns 1 if a CA using rule Ri

and starting from initial con�guration ICj relaxes to the

correct state. Otherwise, it returns 0. covered(Ri; ICj)
returns the complement of covered(Ri; ICj).
This de�nition implements a competitive relationship

between rules and ICs. Rules get a higher payo� by cov-
ering more ICs accurately while ICs get a higher payo�
by defeating more rules. This de�nition also implements
a form of niching called resource sharing. Resource shar-
ing implements a coverage-based heuristic by giving a
higher payo� to problems that few individuals can solve.
In our case, it is introduced in the de�nition of the �t-
ness of rules and ICs by weighting the outcome of each
interaction rule{IC. The weight of an IC corresponds to
the payo� it returns if a rule covers it. The underlying
mechanism is that if few rules cover an IC, this weight
will be much larger than if a lot of rules cover that same
IC. The de�nition for the weight of rules is similar. The
bene�t of resource sharing in the context of search has
already been discussed in (Juill�e and Pollack 1996).

The de�nition of the ICs' �tness has been extended with
a new component, namely E(Ri; �(ICj)). The purpose
of this new component is to penalize ICs with density
�(ICj) if little information is collected with respect to
the rule Ri. Indeed, we consider that if a rule Ri has a
50% classi�cation accuracy over ICs with density �(ICj)
then this is equivalent to random guessing and no payo�
should be returned to ICj . On the contrary, if the per-
formance of Ri is signi�cantly better or worse than the
50% threshold for a given density of ICs this means that
Ri captured some relevant properties to deal with those
ICs. Once again, the idea is that the training environ-
ment for rules should be composed of ICs that provide
useful information to identify good rules from poor ones.
ICs for which the performance of rules is close to 50% are
useless to satisfy this goal and they shouldn't be explored
further. The training environment should also allow con-
tinuous progress by preventing the Red Queen e�ect. In
our implementation, there is no explicit mechanism to
satisfy this purpose. Instead, an intrinsic property of the
�c = 1=2 task is exploited in order to satisfy this goal in-
directly. Indeed, it seems that CA-rules that cover ICs
with density �0 < 1=2 (respectively �0 > 1=2) with high
performance will also be very successful over ICs with
density �00 < �0 (respectively �00 > �0). Therefore, as
ICs become more di�cult, their density is approaching
�0 = 1=2 but rules don't have to be tested against easier
ICs.
Following this idea, we de�ned E() as the complement of
the entropy of the outcome between a rule and ICs with
a given density:

E(Ri; �(ICj)) = log(2) + p log(p) + q log(q)

where: p is the probability that an IC with density
�(ICj) defeats the rule Ri and q = 1 � p. Because of
this credit assignment strategy, a balance is maintained
between the search for more di�cult ICs (competitive
mode of interaction) and ICs that can be solved by rules
(cooperation between rules and ICs). In practice, en-
tropy is evaluated by performing some statistics over the
population of ICs.



5 Experimental Results

The best two CA-rules discovered so far are presented in
table 1. Those two new rules exhibit a very signi�cant
improvement over the previously known best rules with
respect to the case N = 149 as well as the generalization
ability (tested with N = 599 and N = 999). The de-
scription of those CA rules is presented in table 2. along
with the description for the Das, ABK and GKL rules.
The lookup tables described in table 2 are using the triv-
ial coding: the leftmost bit corresponds to the output of
the rule with input 0000000, the second bit corresponds
to input 0000001, : : : and the rightmost bit corresponds
to input 1111111.

In a �rst set of experiments composed of about 20
runs, the population size for rules and ICs was 400. The
implementation to search the space of rules is similar to
the one described in (Mitchell et al. 1994). Each rule is
coded on a binary string of length 22�r+1 = 128. One-
point crossover is used with a 2% bit mutation probabil-
ity. The population of rules is initialized according to a
uniform distribution over [0:0; 1:0] for the density. Each
individual in the population of ICs represents a density
�0 2 [0:0; 1:0]. This population is also initialized accord-
ing to a uniform distribution over �0 2 [0:0; 1:0]. At
each generation, each member generates a new instance
for an initial con�guration with respect to the density
it represents. All rules are evaluated against this new
set of ICs. The generation gap is 5% for the popula-
tion of ICs (i.e., the top 95% ICs reproduce to the next
generation). There is no crossover nor mutation. The
new 5% ICs are the result of a random sampling over
�0 2 [0:0; 1:0] according to a uniform probability distri-
bution. The generation gap is 80% for the population
of rules. New rules are created by crossover and muta-
tion. Parents are randomly selected from the top 20%.
This choice for the value of the generation gap is a com-
promise between speed of search and performance. As a
result, some of the runs return a poor result because of
unfavorable sampling (in those runs, evolved rules don't
score more than 76%). The rule \Coevolution (1)" pre-
sented in table 1 resulted from one of the runs in this
experiments.

In a second of experiments composed of 8 runs, using
a population size of 400 for rules and ICs and a genera-
tion gap of 10% for the population of rules, some rules
were evolved that consistently scored above 80%. In that
case, good rules are less likely to disappear from the pop-
ulation but progress is very slow. It might however be
possible to improve the time performance by avoiding
redundant computation for the evaluation of rules that
have been in the population for several generations.

In another set of experiments composed of 6 runs, us-
ing a population size of 1000 for both rules and ICs and
the same value for the generation gaps as for the �rst set
of experiments, all runs consistently evolved some rules

that score above 82%. The rule \Coevolution (2)" pre-
sented in table 1 resulted from one of those runs. The
goal of those experiments was to test how the perfor-
mance of evolved rules would scale when increasing the
population size. It might be possible to evolve even bet-
ter rules with a larger population size. However, with
our current implementation, a run takes about one week
on a workstation for 5000 generations and a population
size of 1000.

As a comparison, (Andre et al. 1996) used a population
of size 51; 200. In their work, the training environment
was composed of a �xed training set constructed from
a uniform sampling from the space of all ICs (thus, the
distribution for the density of ICs in the training set is
binomial, centered on 1=2). In experiments described
in (Das et al. 1994, Mitchell et al. 1994), the learning
environment is composed of a set of ICs sampled at
each generation according to a uniform distribution over
�0 2 [0:0; 1:0]. Those authors acknowledged that this
distribution for the sampling of the space of ICs, while
helpful to bootstrap the search, might no longer provide
useful information once some average performance rules
have been discovered.

Figures 3 and 4 describe the evolution of the density
of rules and ICs for two runs. As rules improve, their
density gets closer to 1=2 and the density of ICs is dis-
tributed on two peaks on each side of � = 1=2. In the case
of �gure 4, it is only after 1; 300 generations that a signif-
icant improvement is observed for rules. It is only at that
time that the population of ICs adapts dramatically in
order to propose more challenging initial con�gurations.
This shows that our strategy to coevolve the training
environment and the learners has been successfully im-
plemented in the de�nition of the �tness functions. How-
ever, it should be noted that the two-peak distribution
is a side-e�ect of the method implemented to measure
entropy. Indeed, because of the small population size
with respect to the range of values for the density (i.e.,
N values), ICs were grouped in bins of size two. That
is, there are N=2 bins instead of N to cover the range of
densities. The two-peak distribution means that, in our
experiments, evolved rules have an accuracy very close to
50% with respect to the set of ICs in the bin composed of
ICs with density 1=dN

2
e and 1=bN

2
c. In experiments that

use N bins, the �nal distribution is composed of a single
peak centered on �0 = 1=2. However, empirical evidence
seems to show that this two-peak distribution results in
better performance for the �nal CA-rules. This is sup-
ported by �gure 5 which compares the distribution of
the performance of the new rules to the GKL rule. This
distribution is represented only in the neighborhood of
�0 = 1=2. Outside the range represented in those �g-
ures, the ratio of correct classi�cation is (or is very close
to) 100% for the three rules. As discussed before, those
�gures con�rm that for rules with good classi�cation per-



Table 2 Description of the current best rules and previously published rules for the �c = 1=2 task.

Coevolution (1) 00000001 00010100 00110000 11010111 00010001 00001111 00111001 01010111

00000101 10110100 11111111 00010111 11110001 00111101 11111001 01010111

Coevolution (2) 00010100 01010001 00110000 01011100 00000000 01010000 11001110 01011111

00010111 00010001 11111111 01011111 00001111 01010011 11001111 01011111

Das rule 00000111 00000000 00000111 11111111 00001111 00000000 00001111 11111111

00001111 00000000 00000111 11111111 00001111 00110001 00001111 11111111

ABK rule 00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101

01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

GKL rule 00000000 01011111 00000000 01011111 00000000 01011111 00000000 01011111

00000000 01011111 11111111 01011111 00000000 01011111 11111111 01011111
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Figure 3 Evolution in time of the distribution of CA rules density (left) and ICs density (right)

describing the coevolution of rules and ICs.
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Figure 4 Evolution in time of the distribution of CA rules density (left) and ICs density (right). In

that case, the sharp transition around generation 1,300 corresponds to an improvement of rules and

results in an adaptation of the distribution of ICs to present more challenging problems.
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Figure 5 Comparison of the distribution of per-

formance for the two new rules and the GKL rule

for N = 149 (top), 599 and 999 (bottom).

formance, the most di�cult ICs are the ones with density
close to �0 = 1=2. Therefore, if the density of ICs in the
population of initial conditions converge to a single peak
centered on �0 = 1=2, the training environment would
provide only little feedback (since the ratio of correct
classi�cation is very close to 50%). It would be di�cult
to distinguish rules with high performance from others
because even average performance rules have a similar
behavior in this area of the space of ICs.

6 Conclusion

This paper presents the concept of coevolutionary learn-

ing, a new framework for learning based on the coevo-
lution between learners and problems. The exploration

of the space of learners and problems is performed such
that:

� \optimum" gradient information is provided to
learners, and

� continuous progress is maintained.

The work presented in this paper addresses those is-
sues by de�ning a topology over the space of problems.
Then, a procedure is implemented such that the train-
ing environment automatically adapts in response to the
progress of learners by proposing more challenging prob-
lems. This approach allows a more reliable estimate of
the absolute performance of learners while providing an
e�cient gradient for search. We apply this framework
to the problem of evolving CA rules for a classi�ca-
tion task. Our experiments resulted in new rules whose
performance improves very signi�cantly over previously
known rules for that particular task.
Another goal of this paper is to provide some insights

on the use of coevolutionary approaches for search al-
gorithms. By providing a methodology in which indi-
viduals are evaluated in a changing environment, more
elaborate heuristics can be implemented for search. In
the system presented in this paper, the principal underly-
ing heuristic introduces a pressure towards adaptability.
In previous work (Juill�e and Pollack 1996), coevolution
was used as a niching technique to implement a coverage-
based heuristic.
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