
17Massively Parallel Genetic Programming

Hugues Juill�e and Jordan B. Pollack

As the �eld of Genetic Programming (GP) matures and its breadth of application increases,

the need for parallel implementations becomes absolutely necessary. The transputer-based

system presented in the chapter by Koza and Andre ([11]) is one of the rare such parallel

implementations. Until today, no implementation has been proposed for parallel GP using

a SIMD architecture, except for a data-parallel approach ([20]), although others have

exploited workstation farms and pipelined supercomputers. One reason is certainly the

apparent di�culty of dealing with the parallel evaluation of di�erent S-expressions when

only a single instruction can be executed at the same time on every processor. The aim of

this chapter is to present such an implementation of parallel GP on a SIMD system, where

each processor can e�ciently evaluate a di�erent S-expression. We have implemented this

approach on a MasPar MP-2 computer, and will present some timing results. To the

extent that SIMD machines, like the MasPar are available to o�er cost-e�ective cycles for

scienti�c experimentation, this is a useful approach.

17.1 Introduction

The idea of simulating a MIMD machine using a SIMD architecture is not new
([8, 15]). One of the original ideas for the Connection Machine ([8]) was that it
could simulate other parallel architectures. Indeed, in the extreme, each processor
on a SIMD architecture can simulate a universal Turing machine (TM). With di�er-
ent turing machine speci�cations stored in each local memory, each processor would
simply have its own tape, tape head, state table and state pointer, and the simula-
tion would be performed by repeating the basic TM operations simultaneously. Of
course, such a simulation would be very ine�cient, and di�cult to program, but
would have the advantage of being really MIMD, where no SIMD processor would
be in idle state, until its simulated machine halts.
Now let us consider an alternative idea, that each SIMD processor would simulate
an individual stored program computer using a simple instruction set. For each
step of the simulation, the SIMD system would sequentially execute each possible
instruction on the subset of processors whose next instruction match it. For a
typical assembly language, even with a reduced instruction set, most processors
would be idle most of the time.
However, if the set of instructions implemented on the virtual processor is very small,
this approach can be fruitful. In the case of Genetic Programming, the \instruction
set" is composed of the speci�ed set of functions designed for the task. We will
show below that with a precompilation step, simply adding a push, a conditional,
and unconditional branching and a stop instruction, we can get a very e�ective
MIMD simulation running.
This chapter reports such an implementation of GP on a MasPar MP-2 parallel
computer. The con�guration of our system is composed of 4K processor elements

1

(PEs). This system has a peak performance of 17; 000 Mips or 1; 600 Mops. In
the maximal con�guration, with 16K PEs, the speed quadruples. As an example,
using a population of 4096 members, we achieved more than 30 generations/minutes
on the trigonometric identities problem, and up to 5 matches per second for each
individual for the co-evolution of Tic-Tac-Toe players.
Section 2 describes the implementation of the kernel of our current GP, which
deals with the evaluation of S-expressions. Then, the implementation of di�erent
models for �tness evaluation and interactions among individuals of the population
are presented in section 3. Results and performance are presented in section 4.

17.2 Description of the implementation

17.2.1 The Virtual Processor

The individual structures that undergo adaptation in GP are represented by expres-
sion trees composed from a set of primitive functions and a set of terminals (either
variables or functions of no argument). Usually, the number of functions is small,
and the size of the expression trees are restricted, in order to restrict the size of the
search space.
In our implementation, each PE simulates a virtual processor. This virtual processor
is a Stack Machine which is composed of the following elements:

� a memory block where the program is stored,

� a memory block where constants and variables are stored,

� a stack where intermediate results are stored.

� a set of registers: the Instruction Pointer (IP), the Stack Pointer (SP) and
general purpose registers: A0, A1, : : : , An.

Figure 1 presents the memory mapping and registers of the virtual processor.
To be able to evaluate a GP expression, the following instructions are supported by
the abstract machine:

� one instruction for each primitive function of the function set. At execution
time, arguments for these instructions are popped from the stack into general
purpose registers, the function is computed, and the result is pushed on the
top of the stack.

� a PUSH instruction which pushes on the top of the stack the value of a terminal,

� a IFGOTO and a GOTO instruction which are necessary for branching if condi-
tional functions are used,

2

Registers

Program

Variables

Constants

Stack

SP

IP

A0
A1
A2

An

Figure 1: Memory mapping and registers of the virtual processor.

3

S-expression:

(- 1 (* (* (SIN X) (SIN X)) 2))

Corresponding program:

PUSH ID_CONST_`1'

PUSH ID_VAR_`X'

SIN

PUSH ID_VAR_`X'

SIN

*

PUSH ID_CONST_`2'

*

-

STOP

Figure 2: An S-expression and its post�x program.

� a STOP instruction which indicates the end of the program.

As we will argue in the next section, it is more e�ective to precompile pre�x GP
expressions into an equivalent post�x program which can be interpreted by the vir-
tual machine. This post�x program is generated by traversing the tree representing
the S-expression. Two program examples resulting from such a precompilation are
provided in �gures 2 and 3. The IFGOTO instruction jumps to the label if the result
of the test is FALSE, otherwise, the execution of the program continues with the
next instruction (the �rst instruction of the Then statement).
To reiterate, in our implementation, each parallel element is running a di�erent
genetic program. The parallel interpreter of the SIMD machine reads the current
post�x instruction for each virtual processor and sequentially multiplexes each in-
struction, i.e, all processors for which the current instruction is a PUSH become
active and the instruction is performed; other processors are inactive (idle state).
Then, the same operation is performed for each of the other instructions in the
instruction set in turn. Once a STOP instruction is executed for a processor, that
processor becomes idle, leaving the result of its evaluation on the top of the stack.
When all processors have reached their STOP instruction, the parallel evaluation of
the entire population is complete.
Perkis ([16]) has already shown that the stack-based approach for Genetic Program-
ming can be very e�cient. However, in his approach, recombination can generate
incorrect programs in the sense that it is unknown whether there are enough ele-
ments in the stack to satisfy the arity of a function at execution time. A constraint

4

S-expression:

(IF (< X 1) 1 (* X X))

Corresponding program:

PUSH ID_VAR_`X'

PUSH ID_CONST_`1'

<

IFGOTO Label_1

PUSH ID_CONST_`1'

GOTO Label_2

Label_1: PUSH ID_VAR_`X'

PUSH ID_VAR_`X'

*

Label_2: STOP

Figure 3: An S-expression and its post�x program. If the test returns FALSE, the
Instruction Pointer jumps to Label 1 and the Else statement is executed.

was implemented to protect the stack from underow.
In our implementation, since the post�x program is the precompilation of a S-
expression, it is always correct and one doesn't have to deal with stack under-
ow. Moreover, the stack is protected from overow by restricting the depth of
S-expressions resulting from recombination, as described in [11].

17.2.2 Parallel Precompiler and Interpreter

For many GP problems the �tness of an expression is computed by evaluating it
across a variety of inputs. For example, in curve-�tting, or decision tasks, or sort-
ing networks, the expression must be evaluted multiple times on di�erent data in
order to be judged as to its �tness. This leads to the idea of using a data-parallel
approach where the same expression is simply evaluated with di�erent data in par-
allel ([20]). Another approach to take advantage of this feature is to precompile
S-expressions from pre�x to post�x. This operation can be executed once, and then
the post�x program is evaluated multiple times, amortizing the small cost of the
precompilation.
The tree traversal algorithm which is the main component of precompilation can be
performed e�ciently in parallel by simulating on each processor a similar abstract
stack machine. In memory, a S-expression is represented by the list of its atoms,
without the parentheses. As long as we use a �xed arity (number of arguments)

5

for each primitive, and the S-expressions are syntactically valid, this string contains
enough information to fully represent the given tree. In the current implementation,
each atom is coded on 1 byte. The most signi�cant bit indicates whether the
atom is an operator or a terminal and the remaining 7 bits represent its ID. For
terminals (variables or constants), the ID is an index in the variables/constants
area of the memory mapping. The preorder tree traversal is performed simply by
reading sequentially the list where the S-expression is stored. Then, using a stack,
the post�x program is generated by the algorithm presented in �gure 4.
In order to be readable, this algorithm doesn't present the processing of the IF

operator. To process this operator, another stack is required to store the location
of labels whose address calculation is delayed. When the instruction at the top
of the stack is a IF, the end of the Then statement is tested in order to insert a
GOTO instruction and to jump after the Else statement. The label of the IFGOTO

instruction is calculated at the end of the Then statement and the label of the GOTO
instruction is calculated at the end of the Else statement. The result is a program
like the one presented in �gure 3.

17.2.3 Principal Sources of Overhead

There are three main sources of overhead in our parallel model for GP. The �rst one
is intrinsic to the SIMD architecture itself: di�erent instructions cannot be executed
at the same time on di�erent processors. In our model, this overhead is directly
related to the size of the instruction set interpreted by the virtual processor, which
is a few instructions more than the primitive function set for a given task. The
second source of overhead comes from the range of S-expression sizes across the
population. The third one comes from duplicated operation from one generation to
the next one (e.g., the re-evaluation of an unchanged individual with the same test
cases).
For the �rst source of overhead, due to the SIMD simulation, it is possible to use
simultaneous table lookup operations to reduce the actual size of the instruction
set. For example, if the domain of the primitives for the problem is �nite and small,
e.g. bits or bytes, all arithmetic and logical operations with the same arity can be
performed at the same time, without multiplexing. Figure 5 presents a program
that evaluates a boolean expression using several di�erent functions (And, Or, XOR,
: : :) but only 2 actual instructions: TBL_LK_1D and TBL_LK_2D, which pop 1 and
2 arguments from the stack, respectively, execute the table lookup in the table
whose ID is provided as a parameter, and push the result on the top of the stack.
Without the table lookup feature, many more problem speci�c instructions would
have been required. Besides simple boolean functions, we expect that simultaneous
table lookup will have applications in other symbolic problems.
For the second source, variance in program size, several techniques apply. The

6

program precompile (in: s expression,
out: postfix prog);

begin

do begin

(1) read next atom a of s expression;
(2) if a is an operator then begin

(3) stack item.op = a;
(4) stack item.counter = 0;
(5) push(stack item);

end

else begin

(6) output(post�x prog, \PUSH");
(7) output(post�x prog, a);

do begin

(8) pop(stack item);
(9) stack item.counter = stack item.counter + 1;
(10) if arity(stack item.op) = stack item.counter then begin

(11) output(post�x prog, stack item.op);
end

else begin

(12) push(stack item);
end;

(13) until (arity(stack item.op)<> stack item.counter) or stack is empty;
end;

(14) until stack is empty;
end;

Figure 4: Precompiler algorithm.

7

S-expression:

(AND (OR X Y) (NOT (XOR X Y)))

Corresponding program:

PUSH ID_VAR_`X'

PUSH ID_VAR_`Y'

TBL_LK_2D ID_TBL_OR

PUSH ID_VAR_`X'

PUSH ID_VAR_`Y'

TBL_LK_2D ID_TBL_XOR

TBL_LK_1D ID_TBL_NOT

TBL_LK_2D ID_TBL_AND

STOP

Figure 5: An S-expression and its post�x program, using the table lookup feature.

simplest method involves the management of a sub-population by each processor,
with some form of load-balancing. We could also implement a cuto� ([18]) where
the largest and slowest population members are simply expunged. Finally, we could
use a \generation gap" or generational mixing, where whenever, say, 50% of the
population were idle, we could apply reproduction to that subset of the population,
crossed with its parents. We would continue to evaluate the larger programs while
beginning to evaluate the new members.
The third source, duplication of e�ort, can be minimized by using an appropriate
strategy to manage the evolution of the population, using ideas from steady-state
GA's and caching �tness. Such a technique is proposed in section 17.3.3 where the
�tness is evaluated only for new individuals.

17.2.4 Population Evolution

The previous subsections presented the kernel of our parallel GP implementation.
The main part is the parallel evaluation of di�erent S-expressions. The evolution of
the population is then managed according to the classical GA framework sketched
by the algorithm in �gure 6.
In the current implementation, recombination operations are performed on in�x S-
expressions and not on the post�x. Obviously, crossover can be performed directly
on two post�x representations, but is not clear yet how to do this e�ectively in
SIMD style, especially with changing branch labels and distances.

8

begin in parallel

/* Generate initial population*/
random generate(s expression);

do

precompile(s expression, postfix prog);
evaluate fitness(postf ix prog);
selection();
recombination();

until stop condition is achieved;
end in parallel;

Figure 6: Population evolution.

17.3 Models for Fitness Evaluation, Selection and Recombi-

nation

The MasPar MP-2 is a 2-dimensional wrap-around mesh architecture. In our im-
plementation, the population has been modeled according to this architecture: an
individual or a sub-population is assigned to each node of the mesh and, therefore,
has 4 neighbors. This architecture allows us to implement di�erent models for �t-
ness evaluation, selection and recombination, using the kernel of the parallel GP
described in the previous subsections.
We have used 3 di�erent approaches. First, we discuss an approximation of the
canonical GP, then a tournament style of co-evolution, and �nally, a model of sub-
population evolution and migration.

17.3.1 Implementation of Canonical GP

Taking �tness de�nition from [11], the raw �tness, the standardized �tness and
the adjusted �tness can be computed independently by each processor. Then, the
computation of the normalized �tness requires a reduce step to sum over all the
individuals the adjusted �tness and a broadcast step to provide the result of this
global sum to each processor. These two parallel operations require O(log n) time,
where n is the number of processors.
Using normalized �tness, we implemented both an asexual and a sexual reproduc-
tion system, where each member reproduces on average according to its �tness.
Given an asexual reproduction rate, say 0:2, 20% of the individuals will replace
themselves with an individual selected using �tness-proportionate probability from
a speci�ed local neighborhood. We chose this local neighborhood, including self, of
size Nloc = 15�15 = 225 as a compromise between getting a correct approximation

9

of the roulette wheel method and the memory and communication cost of the SIMD
machine.
The sexual reproduction, or crossover operation for GP, described in detail in [11],
which involves cutting and splicing between two S-expressions, is performed in the
following way in our implementation:

� the 80% of individuals which have not been asexually replaced select two
individuals in their local neighborhood (including self), according to �tness-
proportionate probability (the same rule as for asexual reproduction).

� Crossover is performed for these two parents.

� One of the two o�springs is arbitrarily chosen to replace this individual.

This last operation is di�erent from the basic GP which keeps both o�springs.
However, our approach is more SIMD oriented, yet doesn't introduce any bias in
the search since the new o�springs are still produced accordingly to the distribution
of the �tness among individuals of the population. Moreover, this slight di�erence
can be eliminated if each processor is in charge of a sub-population of individuals.
The time complexity of the crossover and asexual reproduction system is O(Nloc)
and its space complexity is O(

p
Nloc) for each processor. The crossover operation is

performed on a string representation of the S-expressions in parallel using another
variant of our stack machine.

17.3.2 Tournament Fitness

Our second approach to �tness follows the co-evolution paradigm, e.g. Angeline
and Pollack ([4]). There is no absolute �tness measurement for an individual, �t-
ness is determined by competition in tournament with the other individuals in the
population at the current generation. As the individuals in the population improve,
survival gets more di�cult.
To evaluate the �tness of each individual in the population, a tournament has been
organized in the following way:

� First, we did not use single-elimination because it is not an e�ective use of
SIMD. In order to keep using all the processors to re�ne our relative �tness
estimate, winners at a round will meet in the same pool at the next round
and losers will compete in another pool.

� At the end of the tournament, each individual's �tness is calculated from its
total number of wins and draws across matches.

For each round of the tournament, all the processors are paired according to the
divide-and-conquer communication pattern (such a pattern is presented in �gure 7,
in the case of 8 processors) and perform the following operations:

10

7

1:

2:

3:

0 1 2 3 4 5 6

Figure 7: Divide-and-conquer communication pattern.

� the program of the other paired processor is copied into their own memory,

� a match is played for which the local program is the �rst to move. As a result,
each individual plays two matches: it is the �rst to move for one of them and
it is the second to move for the other match.

� the result of the two matches is analyzed by one processor from each pair.
The program that gets the larger score is assigned to the left processor and
the second one is assigned to the right one (randomly in case of draw). This
way, using divide and conquer, winners will meet each other in the next round,
and more information will be gathered for strategy evaluation, while the same
log n number of tournament steps are performed.

At the end of the tournament, it is straightforward to collect total score (or �tness)
for each individual.

17.3.3 Sub Populations with Migration

The idea of this implementation is to study a model of sub-populations that interact
locally one with each other, similar to the model presented by Ackley and Littman
in [1] and [2].
In our experiments, each processor manages a sub-population of 16 individuals. A
table in which is stored the result of the competition between all possible pairs of
individuals in the sub-population is maintained by each processor. At each genera-
tion, 2 successive operations are performed by each processor:

� a selection/reproduction round: 2 parents in the sub-population are selected
according to a �tness-proportionate probability and are crossed. The result-
ing o�spring replaces one of the less �t individuals (using an inverse �tness-
proportionate probability rule).

11

Table 1: Results and time performance.

Problems: Discovery of Trigonometric Symbolic Integration
Identities (section 10.5 from [11])

(section 10.1 from [11])
Objective function cos(2x) cosx+ 2x+ 1
Number of runs 10 10
Number of 5 to 29 gen. 4 to 7 gen.
Generations (average: 17.5) (average: 5.6)
Execution time 7.24 to 50.13 seconds 23.09 to 40.38 seconds
(for one run) (average: 30.48 sec.) (average: 32.31 sec.)
Average execution 1.75 sec. 5.75 sec.
time for 1 generation

� a migration round: an individual is selected uniformly randomly in each sub-
population and all those individuals migrate in the same direction to one of
the neighboring sub-population.

Therefore, only the results of matches against the 2 new individuals have to be
updated in the table.

17.4 Results and Performance

We have explored the use of MPGP on a few problems to date, Symbolic integration,
Tic-tac-toe, and the Intertwined Spirals problem.

17.4.1 Canonical GP

We performed our �rst canonical GP experiments with a population of 4096 in-
dividuals, one per processor. The two problems are from Chapter 10 of [11], and
involve repetitive testing of expression against a range of data. Table 1 presents
results and performance, using the same primitives and parameter speci�cations
(except for the population size) as Koza. We were able to achieve the evaluation of
about 2; 350 S-expressions in 1 second (on average) for the discovery of trigonomet-
ric identities and the evaluation of about 710 S-expressions in 1 second (on average)
for the symbolic integration problem.

12

17.4.2 Tic-Tac-Toe

We have replicated Angeline and Pollack's (1993) model of the co-evolution of Tic-
Tac-Toe players, although we have not yet implemented Modular subroutines. No
\expert" player was used to evaluate the �tness of the di�erent individuals, but
more and more e�ective strategies appeared as a result of this relative �tness co-
evolution, and the resultant player (after 200 generations) was stronger than players
evolved using absolute �tness optimal and heuristic strategies.
In their experiments, Angeline and Pollack used a population of 1000 individuals
and each run was about 200 generations in single-elimination. In ours, we used
4096 players in a tournament as described above, for 200 generations, in which each
player plays 12 pairs of games. In each game, 2 points are assigned for a win, 1
point for a draw and 0 for a defeat, and the sum over the 24 games is its �tness.
In our �rst experiments, we observed the similar results and dynamics as Angeline
and Pollack, and didn't achieve a "perfect" player. In these timings, the size of
S-expressions was limited either to 256, 512 or 1024 atoms, and a maximal depth of
50. Table 2 presents the execution time for one generation in the case of the \global
tournament" model, once the size of the largest S-expressions reached the upper
limit. We were able to achieve up to 8; 192 games in one second (with a maximum
of 256 atoms) on our 4K processors MasPar. This performance has been achieved
using the table look-up feature presented in section 17.2.3.
Ultimately, one should expect the emergence of a perfect player (a player that could
only win or draw). We fully tested the best of each generation o�-line, and have
not yet achieved a \perfect" GP TTT player. Such a result has been achieved in
3 million games by Rosin and Belew ([17]), where TTT strategies were represented
as a table lookup, and only legal moves were considered. In our more general GP
representation, individuals have to learn the game rules, i.e., they have to evolve
a strategy that prevent them from playing in a position which is already occupied
(for example), and how to play and block e�ectively. As a result, the size of the
search space is considerably larger.
In order to see if it is a matter of scale, we used our sub-population model with 16
individuals on each processor, for a population size of 64K. For the sub-population
model, time performance and results are similar to the ones we got with the tour-
nament model. Furthermore, for a very long run (more than 3; 000 generations), we
generated an individual player that cannot lose when playing �rst. This let us think
that the emergence of a perfect TTT player using the GP approach and coevolution
should be possible.

17.4.3 Intertwined Spirals

As another benchmark, we also performed some experiments comparing canoni-
cal GP evolution vs co-evolution for the intertwined spiral problem. This learning

13

Table 2: Time performance for one generation for the co-evolution of Tic-Tac-Toe
players.

Maximum number 256 512 1024
of atoms

Execution time
for one generation 6 sec. 10 sec. 18 sec.

(on average)
Total number of
games per second 8192 4915 2730
(on average)

problem, originated by Alexis Wieland, perhaps based on the cover of Perceptrons,
has been a challenge for pattern classi�cation algorithms, and has been the subject
of much work in the Neural Network �eld (e.g. [14, 7, 6]). It consists of classify-
ing points into two classes according to two intertwined spirals. The data set is
composed of two sets of of 97 points, on the plane between -7 and +7.
Koza ([11]) and Angeline's chapter ([5]) also investigate this problem using the
Genetic Programming paradigm. Basically, we used the same form as them to de�ne
the problem and to perform our experiments. That is, the function set is composed
of: f+;�; �;%; iflte; sin; cosg, and the terminal set is composed of: fx; y;<g, where
< is the ephemeral random constant. Because we are using byte-coded instructions,
our ephemeral constants are selected from a �nite set.
With a population of 4096 individuals, we tried two di�erent approaches to tackle
this problem. In the �rst experiment, following Koza and Angeline, the �tness
function was de�ned as the number of hits out of 194.
In the second experiment, the �tness was de�ned as the result of a tournament
competition among the individuals. We ignored the fact that we really know the
absolute �tness function, and set up a "game" in which only relative �tness was
used as the basis for reproduction. In a classi�cation game between two players,
the score was the number of unique hits (those which the other player didn't also
get). The �nal �tness of each individual is the sum of all its scores during the com-
petition. In order to make each individual meet a signi�cant number of opponent,
8 successive tournaments were performed at each generation. Thus, each individual
met 96 opponents (there are 12 rounds in a tournament with a population size of
4096). Each tournament was organized according to the divide-and-conquer com-
munication pattern described in section 17.3.2. Moreover, since one doesn't need
to determine a winner at each round of the tournament (only the individuals' score
is used), a winner was selected randomly, enabling a di�erent individual pairing for

14

120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Number
of Hits

Generation

Absolute �tness 3

3

3

3
3
3
3
3
33
3
3
33
333
333
3333
33333
3333333
33333333
33333333333333
333333333333
333333333333333
333333333333333333333333

3333333333333333333333333333333
33

33
33

Co-evolution +

+
+
++
+
++
++
++++
+++
+++
+++++
+++++
++++++
++++++++
+++++++
+++++++++
++++++++++++++++

+++++++++++++
++++++++++++++++

++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++

++
+++

++++++++++++

Figure 8: Absolute �tness versus co-evolution for the intertwined spiral problem.

the next tournaments.
For the two classes of experiments, we performed 25 runs and each run was stopped
after 300 generations. Because of the use of oating point, each generation took
about a minute.
Our hypothesis is that the co-evolution would work better because it would promote
more diversity in the population, and allow subpopulations which covered di�erent
subproblems to emerge. As copies of individuals which perform well on parts of
the spiral spread through the population, they will start to meet themselves in
competition, and get a score of 0. This allows other individuals who may have less
total hits, but cover other parts of the spiral to survive. Our preliminary results
concerning performance, shown in �gure 8, illustrate that co-evolution seems to
outperform the absolute �tness approach. However, the large number of parameters
that control the dynamics of the system doesn't allow us to conclude.
Only one run provided us with a perfect solution for the intertwined spiral problem.
This was one of the co-evolution runs. We harvested some of the perfect classi�ca-
tion solutions; One of the shortest of these S-expressions has 52 atoms and is shown
in �gure 9.
Because of the relatively small size of this result we were able to analyze it and
simplify it mathematically, by collapsing constant calculations, removing insigni�-

15

(sin (% (iflte (- (- (- (* _A _A)

(sin (% (iflte -0.52381

_B

(sin -0.33333)

-0.33333)

-0.33333)))

(* _B _B))

(% _A (% -0.33333 _A)))

-0.80952

_B

(sin (% (% _A

(- (cos (sin (* (cos (sin -0.52381))

(% _B

(% _A

(- (cos -0.33333)

0.04762))))))

0.04762))

(sin (sin -0.33333)))))

-0.33333))

Figure 9: A 52-atom S-expression scoring 194 for the intertwined spiral problem.

If (4 � x2 � y2) < 0:0 then
return (sin(�3:0 � y));

else

return

�
sin(0:3214�x

0:04762�cos(sin(y
x
�0:7874))

)

�
;

endif

Figure 10: Interpretation of the solution for the intertwined spiral problem.

16

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 11: 4x2 � y2 < 0, used to divide the plane into two domains.

cant digits, algebraic simpli�cation, and elimination of redundant "introns". This
analysis resulted in the conditional function presented in �gure 10.
Basically, this solution splits the geometric plane into two domains and a di�erent
function is used for each domain. Figure 11 displays the 4x2 � y2 function which
multiplexes the two other functions to create the spiral, shown in �gure 12.
The resulting function is shown in �gure 13, which plots the function (above/below
0) along with the training data on the range -10 to 10. Although it does not form a
perfect spiral, it does continue to simulate a spiral way outside the original training
range. Furthermore, we believe that compared to neural network solutions, which
are often the composition of hundreds of clusters or decision boundaries, and some
of the GP solutions shown by Koza, ours is the most perspicacious to date. The fact
that the spiral is composed of a synergy of two functions which cover separate parts
of the data supports the hypothesis that the relative �tness co-evolution strategy
may be more e�ective than an absolute �tness function.
Finally, a few remarks could be made about the di�culty of this problem and the
limitations of our massively parallel implementation in this case. In his experiments,
Koza used a population of 10,000 individuals and the over-selection mechanism. In
our case, the population size is 4096 and e�cient implementation of over-selection
is not really compatible with the geographical distribution of processors in the
mesh architecture. Indeed, we believe that to get an optimal solution, one needs a
\good" individual in the earliest generations that will be an interesting \seed" for
the following generations. According to our canonical GP experiments on the spiral
problem, the convergence takes about 100 generations and the best individual is then
very di�cult to improve. In fact, for some experiments that led to worst solutions,
the population even converged only after 50 generations. A large population and

17

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

Figure 12: sin(�3y) and the other function which are selectively added to make a
spiral.

194 hits

−10 −5 0 5 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

Figure 13: Perfect score generalizing classi�cation of the two intertwined spirals.

18

over-selection may have helped Koza to remedy this problem.

17.5 Conclusion

This chapter described an implementation of parallel Genetic Programming on a
SIMD computer and showed its e�ciency on a few representative problems. Despite
the fact that there is overhead in multiplexing basic operations, and in precompiling
pre�x expressions to post�x programs, we were able to achieve quite an e�cient
parallel GP engine.
The initial goal of this project was to exploit the huge peak performance of our SIMD
computer (17 Gips for a 4K processor MP-2) for evolutionary learning research
applications. With 4k processors, even utilitizing 1/10th of the capacity of this
machine would be more productive than running over a small group of workstations.
We were surprised that our �rst experimental results showed that this goal could
be easily achieved at the condition that the virtual processor's instruction set can
be kept small, the performance being directly (linearly) related to the size of this
set. We have also seen that while expression evaluation involves a lot of overhead,
reproduction and crossover have e�ective massively parallel models ([9, 10, 19]).
This technique has also a few drawbacks: In particular, implementation of high-level
features like modular subprograms or automatically de�ned functions ([3, 12]) are
not as easy to implement as on a exible MIMD architecture. We believe a simple
addition like a CALL instruction in conjunction with a return stack might work for
modular form.
We believe that this technique is very promising and even more impressive results
can be achieved for problems in which the function set can be speci�ed in the same
instruction set as our overall model. Indeed, in that case, it may be possible to
overlap execution of the primitive functions using table look-up techniques.
There is still a lot of work to do, but we have shown that our SIMD approach to
massively parallel Genetic Programming is both plausible and e�cient.

References

[1] David H. Ackley and Michael L. Littman. A Case for Lamarckian Evolution. In
Arti�cial Life III, Ed. Christopher G. Langton, Addison-Wesley, 1994.

[2] David H. Ackley and Michael L. Littman. Altruism in the Evolution of Com-
munication. In Arti�cial Life IV, Brooks and Maes, Eds. MIT Press, 1994, pp.
40-48.

19

[3] Peter J. Angeline and Jordan B. Pollack. The Evolutionary Induction of Sub-
routines. In The Fourteenth Annual Conference of the Cognitive Science Society,
Bloomington Indiana, 1992.

[4] Peter J. Angeline and Jordan B. Pollack. Competitive Environments Evolve
Better Solutions for Complex Tasks. In The Fifth International Conference on

Genetic Algorithms, Morgan Kaufmann Publishers, 1993, pp. 264-270.

[5] Peter J. Angeline. Two Self-Adaptive Crossover Operations for Genetic Pro-
gramming. In this book.

[6] Gail Carpenter, Stephen Grossberg, Natalya Markuzon, John Reynolds, and
David Rosen. Fuzzy ARTMAP: A Neural Network Architecture for Incremental
Supervised Learning of Analog Multidimensional Maps. In IEEE Transactions

on Neural Networks, Vol. 3, No. 5, 1992, pp. 698-713.

[7] Scott E. Fahlman and Christian Lebiere. The Cascade-Correlation Learning Ar-
chitecture. In Advances in Neural Information Processing Systems 2, Touretzky,
Ed. Morgan Kau�man, 1990.

[8] W. Daniel Hillis and Guy L. Steele Jr. Data Parallel Algorithms. In IEEE Com-

puters, 29, 1986, pp.1170-1183.

[9] W. Daniel Hillis. Co-Evolving Parasites Improve Simulated Evolution as an Op-
timization Procedure. In Arti�cial Life II, Langton, et al, Eds. Addison Wesley,
1992, pp. 313-324.

[10] David Je�erson, Robert Collins, Claus Cooper, Michael Dyer, Margot Flowers,
Richard Korf, Charles Taylor, and AlanWang. Evolution as a Theme in Arti�cial
Life: The Genesys/Tracker System. In Arti�cial Life II, Langton, et al, Eds.
Addison Wesley, 1992, pp. 549-578.

[11] John R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[12] John R. Koza. Genetic Programming II: Automatic Discovery of Reusable Pro-
grams. MIT Press, 1994.

[13] John R. Koza and David Andr�e. Parallel Genetic Programming on a Network
of Transputers. This Volume.

[14] Kevin J. Lang and Michael J. Witbrock. Learning to tell two spirals apart. In
Proceedings of the 1988 Connectionist Summer Schools, Morgan Kaufmann.

[15] Michael S. Littman and Christopher D. Metcalf. An Exploration of Asyn-
chronous Data-Parallelism. Personal communication. 1990.

20

[16] Timothy Perkis. Stack-Based Genetic Programming. In Proceedings of the 1994

IEEE World Congress on Computational Intelligence. IEEE Press.

[17] Christopher D. Rosin and Richard K. Belew. Methods for Competitive Co-
evolution: Finding Opponents Worth Beating. In Proceedings of the Sixth In-

ternational Conference on Genetic Algorithms, 1995, pp. 373-380.

[18] Karl Sims. Evolving 3DMorphology and Behavior by Competition. In Arti�cial
Life IV, Brooks and Maes, Eds. MIT Press, 1994, pp. 28-39.

[19] Reiko Tanese. Distributed Genetic Algorithms. In Proceedings of the Third

International Conference on Genetic Algorithms, 1989, pp. 434-439.

[20] Patrick Tufts. Parallel Case Evaluation for Genetic Programming. In 1993 Lec-

tures in Complex Systems, Eds. L. Nadel and D. Stein, SFI Studies in the Sci-
ences of Complexity, Lec. Vol. VI, Addison-Wesley, 1995, pp.591-596.

21

