
 Abstract

In this paper1 we describe a genetic algorithm capable of
evolving large programs by exploiting two new genetic
operators which construct and deconstruct parameterized
subroutines. These subroutines protect useful partial
solutions and help to solve the scaling problem for a
class of genetic problem solving methods. We demon-
strate that our algorithm acquires useful subroutines by
evolving a modular program from “scratch” to play and
win at Tic-Tac-Toe against a flawed “expert”. This work
also serves to amplify our previous note (Pollack, 1991)
that a phase transition is the principle behind “induction”
in dynamical cognitive models.

 Introduction

While complex processes of cognition require some
form of modularity, learning this modularity has been
problematic. It is ignored by simple learning systems
(which thus cannot learn complex processes) or built
into the architectural “bias” of more complex learning
systems (thus begging the origin of such complexity).
Thus, the issue of inducing modularity from a complex
task in order to perform that task has not been addressed,
although a few connectionists are beginning this
research (Saunders et al., 1992; Jacobs & Jordan, 1991;
Jacobs et al., 1991; Nowlan & Hinton, 1991).

In this paper we describe a genetic algorithm which
is capable of evolving large programs by exploiting two
new genetic operators which construct and deconstruct
parameterized subroutines. These subroutines protect
useful partial solutions and help to solve the scaling
problem for a class of genetic problem solving methods.
After a brief background on genetic algorithms, we show
that our system is able to learn how to play and win at
Tic-Tac-Toe from “scratch” against an imperfect
“expert” player. We discuss the formation and tuning of
the subroutines and the reasons why their acquisition
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addresses the scaling problem within this framework. An
analysis of the frequency of subroutine calls shows an
exponential growth and decay of subroutine usage as
they are induced or expelled from the language, leading
us to name this phenomenonevolutionary induction, an
amplification of our earlier principle of “induction by
phase transition” (Pollack, 1991).

 Genetic Algorithms Background

The genetic algorithm (Holland, 1975; Goldberg 1989a)
is a form of problem solving search analogous to natural
selection, and is a surprisingly adept search method in
even very large ill-formed problem spaces. A simple
genetic algorithm typically operates by reproducing and
altering a population of fixed-length binary strings. Afit-
ness function interprets the strings as task solutions and
scores their ability to solve the task. Novel strings are
added to the population by a process akin to biological
reproduction using a collection of geneticoperators.
One such operator, thecrossover operator, takes two
“parent” strings selected for their fitness and returns a
“child” string which is a complementary collection of
components from both parents. Thepoint mutation oper-
ator alters the value of a single position of a single parent
string to create offspring.

The schema theorem (Holland, 1975), often called
the Fundamental Theorem of Genetic Algorithms, illus-
trates the power behind these search methods. Holland
defines aschema to be a class of binary strings which
share a collection of subsequences. We use the “#” nota-
tion to indicate “don’t care” positions in the schema, i.e.
positions where a 1 or 0 don’t matter. For instance, the
string ‘100101’ is a member of the schema ‘10##01’ as
is ‘100001’. The intuition behind schemata is that certain
combinations of bits will have a larger contribution to
the fitness for a particular string than others. The schema
notation allows us to talk about such desirable organiza-
tions concisely. A schema’sdefining length is the num-
ber of positions at which if we divided the schema into
two parts, some of the defined positions (i.e. ones not
‘#’) would be separated. For instance, dividing the
schema ‘#1.0.0##’ at any position marked with a ‘.’ will



separate some of the defined components giving it a
defining length of 2. Similarly, the defining length of
‘1.0.#.#.0.1’ is 5. The schema theorem proves that above
average schemata with small defining lengths will be
copied an exponential number of times in the genera-
tions subsequent to their appearance (Holland, 1975).
For a more detailed introduction to genetic algorithms,
the schema theorem and its implications see (Goldberg,
1989a).

While simple genetic algorithms can be used to
evolve solutions to a wide range of tasks two problems
prevent their scaling to more interesting tasks. The first
is an inherent limitation due to the fixed-length nature of
the string representation. Because of the closed nature of
the representation, the maximum complexity needed to
solve the task must be anticipated before the search takes
place. The second problem is that each bit of the string
representation generally stands for the presence or
absence of a specific feature of the interpretation. This
positional encoding of the binary representation requires
that every possible interpretation also be anticipated
prior to the search. This amounts to nothing more than
using the string as a pointer to a table of pre-defined
interpretations.

In order to increase the amount of available complex-
ity in simple genetic algorithms, some researchers have
devised elaborate interpretation routines (See Belew,
McInerney & Schraudolph, 1992 and Dawkins, 1987 for
example.) Essentially, this approach removes the com-
plexity from the jurisdiction of the representation and
places it into the interpretation. Unfortunately, rather
than address the representation of complexity problem in
simple genetic algorithms this approach merely shifts the
problem to a new component. By placing an undue
amount of design into the interpretation of the represen-
tation these researchers beg the question of evolving
complexity since they have provided the complexity a
priori.

Recently, Koza has described an exciting advance in
genetic algorithms. In his Genetic Programming Para-
digm (GPP), Koza uses a hierarchy of primitive func-
tions rather than a fixed-length string to represent
potential solutions (Koza, 1992, Koza, 1990). These
hierarchies are interpreted as programs written in a lan-
guage defined by the primitive functions which when
executed compute the solution to the task. Koza’s
genetic operators exchange subtrees of the hierarchies
rather than substrings.

Although Koza’s dynamic representation alleviates
both the fixed-length and positional encoding limitations
of simple genetic algorithms, it also suffers from a mal-
ady which prevents its scaling. Consider that a dynamic
representation will eventually grow large enough to
encompass the complexity necessary to solve the desired
problem. At some point in the learning of a very com-
plex task, the structure will be quite large and the chance
of breaking up desirable portions of the program with the
crossover operator will overwhelm the chance of
improving the program. In other words, as the defining

length of a desirable schema increases it becomes more
likely that we will consistently break it apart rather than
improve upon it. We call this thedefining length prob-
lem.2 As an empirical indication of this problem, we
note that the largest evolved program Koza reports is
only 48 nodes.

These scaling difficulties call to mind Simon’s para-
ble of the two watchmakers Tempus and Hora (Simon,
1969). In this parable, the two watchmakers build prod-
ucts of similar complexity (1000 parts) using differing
design philosophies. Tempus constructs the entire watch
directly from the primitive components, much like GPP
constructs programs. Consequently, if he is interrupted
before completing a watch, say by a customer calling on
the phone, the intermediate state is lost and he must
rebuild the entire watch from the individual components.
Hora’s method of construction, on the other hand, uses
stable intermediate modules which are individually cre-
ated, assembled into larger and larger modules and even-
tually into the completed product. When Hora is
interrupted, only the work for the module currently
being constructed is lost. The lesson from Simon’s para-
ble is clear, that in the development of complex systems
it is prudent to build incrementally and modularly.

 The Genetic Library Builder (GLiB)

The Genetic Library Builder (GLiB) is a genetic algo-
rithm environment based on the ideas forged by Koza in
GPP but with provisions for the evolution and evaluation
of program subroutines. As in GPP, GLiB uses an
expression tree of primitive functions as its representa-
tion for potential solution programs. The essential differ-
ence between GPP and GLiB is the addition of two new
genetic operators. The first operator, calledcompression,
creates subroutines from subtrees of individuals in the
current population and introduces the subroutines into
the “genetic library”. This library is simply the collec-
tion of subroutines which appear in the programs of pop-
ulation and thus are available for constructing task
solutions. Once in the library, the usefulness of a newly
constructed subroutine is evaluated by the extent it is
used in future generations. The second operator, called
expansion, replaces compressed subroutines with their
original definition. In the following sections we describe
these operators and their implementations in detail.

Creation of Subroutines in GLiB

The compression operator in GLiB, the sole method of
subroutine definition in the system, works as follows.
During the construction of each new generation of pro-

2.  Because they exploit positional encodings, string-
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grams, the compression operator is applied to a percent-
age of the population selected by relative fitness. The
compression operator is asexual, like the point mutation
operator described above, so only a single “parent” pro-
gram is selected and copied. The copy serves as the
“child” of this parent in the coming generation. A node
in the interior of the child’s expression tree is then ran-
domly selected and designated the root of the subtree
which will become the newly compressed subroutine.
Next, a maximum depth for the subtree is randomly
selected from a user defined range. When none of the
branches of the subtree exceeds this maximum depth we
have the instance of subroutine creation depicted in Fig-
ure1. Here, the entire subtree is removed from the off-
spring and used as the body of a new LISP function
definition with no parameters. Once the new subroutine
is defined, the expression tree of the offspring is altered
replacing the extracted subtree by the equivalent LISP
function call. This compression of the subtree into the
name of the equivalent subroutine call introduces the
new subroutine into the genetic library.

Occasionally, some branches of the selected subtree
will have a depth greater than the allowed maximum
depth for the subroutine being created. In this event, we
replace each branch of the subtree at the point where it
exceeds the maximum depth with a unique variable.
When the LISP function is defined, the variables intro-
duced into the subtree are used as parameters to the new
subroutines. When we then compress the expression tree
of the child, the portions of the subtree which exceeded
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Figure 2: Creation of a new subroutine with parameters replacing branches
which are beyond maximum allowed depth.

the maximum depth are not removed but serve as the
values for the parameters in the subroutine call. This
instance of modularization in GLiB is depicted in Fig-
ure. 2. Note that invariably when a compression takes
place the semantics of the program are not altered, only
the manner in which the program is expressed.

Unfortunately, while the compression operator sup-
plies a method to create subroutines from the population
during GLiB’s genetic search, it also serves to remove
unique subtrees from the population, lowering the diver-
sity of the population. For a genetic search to work, there
must be sufficient genetic material in the population so
that combinations of promising candidates from the cur-
rent generation can be recombined into novel organiza-
tions. By lowering the diversity of the population and
consequently the number of novel combinations, we
limit the distance from the current state that a genetic
search can look.

 In order to balance the undesirable effects of the
compression operator, we have also added an expansion
operator which restores the genetic material from the
compressed subtrees. This operator searches the off-
spring’s expression tree for a call to an evolved subrou-
tine. If one is found, it is expanded from its atomic
reference back into the full subtree and thus replaces the
genetic material previously removed.

The complementary nature of the compression and
expansion operators implements a form of iterative
refinement. The random selection of a subtree for com-
pression provides no guarantee that the selected subtree
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Figure 1: Creation of a new subroutine from a randomly selected subtree of an
individual in the current population.



will be an above average schema. It is more likely that it
will be either a portion of a useful schema or simply of
no import at all. By periodically replacing a copy of the
compressed subtree back into the population, we provide
the chance to capture a better version of the schema at a
latter time.

Evaluation of Subroutine Performance

Now that we have a method of extracting potentially
useful subroutines from the evolved programs, we need
a method for evaluating their contribution. We suggest
that an appropriate measure of success for a particular
evolved subroutine should be the number of times it is
put into use by the population in the course of solving
the task. If many members of the population are using
the subroutine at some point in the genetic search, then it
is likely that the subroutine provided some consistent
advantage in earlier generations. When this occurs, we
say that the subroutine isevolutionarily viable.

Our task now is to insure that good subroutines will
be copied generously into subsequent generations while
inappropriate ones will be suppressed. The “enlighten-
ing” guidelines provided for genetic algorithm design in
(Goldberg, 1989b) suggest one should never be too
clever when dealing with genetic algorithms as a “frontal
assault” to the solution of a design problem usually
defeats the inherent non-linear interactions. Thus, one
should practice prudence when possible.

Appropriately enough, the genetic search which
evolves programs to solve the task, automatically evalu-
ates the worth of the subroutines without any additional
intervention. The logic of this is straightforward. Ini-
tially, when a new subroutine is created there is only one
member of the population which has a reference to it. If
this program is comparatively fit, then, by the schema
theorem, the call to the subroutine will be copied into
several offspring in the next generation. If those individ-
uals are also relatively fit then each of them will have
multiple offspring which contain the subroutine call as
well. Eventually, the subroutine will spread throughout a
significant portion of the population. On the other hand,
if the program is comparatively unfit, possibly due to
one of its subroutines being more of a hinderance than a
help, it will have little or no chance to create offspring.
This results in a decrease in the number of calls to the
subroutine from generation to generation until there is
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Figure 3: Primitives used in evolving modular programs to play Tic Tac Toe.

pos00 .. pos22 - board positions

and - binary LISP “and”

or - binary LISP “or”

if  - if <test> then <arg1> else <arg2>

open - returns <arg> if unplayed else NIL

mine - returns <arg> if player’s else NIL

yours - returns <arg> if opponent’s else NIL

play-at - places player’s mark at <arg>

virtually no member of the population which relies upon
it. In other words, if a subroutine presents no advantage
to the individuals which use it, it will in time go the way
of the human appendix. Once the subroutine is no longer
used by the population, it is no longer in the genetic
library. Thus the genetic search process at the level of
the overall task implicitly determines the fitness of
evolved subroutines and allows only those that are useful
to be propagated.

 Learning to Play Tic-Tac-Toe

In order to illustrate our form of subroutine acquisition at
work, we used GLiB to evolve programs to play Tic-
Tac-Toe (TTT). The primitive language used for this
experiment is shown in Figure 3. The first collection of
primitives,pos00to pos22, are the data points to be used
in the program which represent the nine positions on the
TTT board. This set of data points serves as the leaves of
the expression tree. For the remaining primitives, the
return value is either one of the positions orNIL, which
representsFALSE in LISP, the current language in which
GLiB is implemented. For instance, the binaryand oper-
ator takes two arguments and when both are non-NIL
returns the second. If either argument isNIL thenNIL is
returned. Theplay-atprimitive takes a single argument.
If the argument is a position and no player has placed a
mark there, then the current player’s mark is placed at
that position and their turn is halted. Otherwise,play-at
returns whatever it is passed. Finally, the operatorsmine,
yours andopen take a position and return that position
when the mark on the playing board in that position fits
the test. Otherwise, they returnNIL. We have purposely
made these functions as general as possible to cover any
number of games rather than just TTT.Note there is no
guarantee that a random program in this language will
observe the rules of TTT or even place a single mark on
a TTT board.If the program does not make a valid
move, then its turn is forfeited. We consider legal moves
to be apart of the complexity of the task and conse-
quently should be induced by GLiB.

An “expert” TTT algorithm constructed in LISP
served as the opponent for all of the evolved programs.
This expert was designed in such a way that it could not
lose a game unless the opponent it was playing against
had forked it, i.e. created a situation where the addition
of a single mark by the opponent resulted in more than



one possible winning play on its next turn. In addition,
the expert was slightly adaptive such that when no clear
best move was available it would select a position
known to be frequented by the program it was currently
playing against. The intention of this feature was to
increase the apparent complexity of the expert’s actions
forcing the evolved programs to be more robust. The
generality of the primitives combined with the level of
play of the expert make this quite a formidable environ-
ment for learning TTT.

In order to rate the performance of an evolved pro-
gram against the expert, a scoring function assigned
points for various moves. First, because it is not a given
that a program will actually make a legal play, a point
was awarded for every legal move made. An additional
point was awarded if a move blocked the expert from
winning on its next turn. If the game ended in a draw or a
win, the accumulated score of the evolved program was
increased by 4 or 12 points respectively. It is important
to note that the score for the program was a lump sum
and provided no indication of which actions were being
rewarded. The same results would be achieved if only
the final state of the board were scored rather than the
individual moves.

We ran GLiB with a population size of 1000 using
the described expert and scoring method as the fitness
function. In this run we applied the compression opera-
tor to 10 percent of the population each generation. All
other parameters were as set in (Koza, 1990) for the
“ant” experiment. The best evolved program after 200
generations had an average score of 16.5 points for the 4
games it played against the expert to determine its fit-
ness. This score suggests that while the program was
able to beat the flawed expert more than once, the best it
could do after the expert had adapted to its playing strat-
egy was to get a draw.

 The evolved program had 60 nodes, a maximum
depth of 13 nodes, and used 15 evolved subroutines at its
top-level. As expected, expanding the definition of these
subroutines back into their original subtrees revealed
additional subroutine calls in their bodies. In all a total of
43 distinct subroutines were used by this evolved pro-
gram in 89 subroutine calls making the virtual size of the
program 477 nodes with a virtual maximum depth of 39.
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Figure 4: A sample game from the described run. The evolved program is “X” and is playing first against the
expert. Opening moves in (a) lead to first fork setup in (b). Evolved program completes first fork in (c). Evolved

program sets up second fork in (d) and wins in (e). The program received a score of 20 points for this win.
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Two of the subroutines had a total of 9 separate calls
each in the fully expanded tree. Note that this evolved
program is almost 10 times the size of the largest pro-
gram reported by Koza.

Figure 4 shows the first game played between the
evolved program and the expert. There is an interesting
point to be made about the apparent strategy of the
evolved program. Notice that it was able to establish a
fork by its third move (Figure 4c) but did not win the
game until 2 turns later (Figure 4e). While this seems an
odd strategy, recall that the evolved program gets points
for each move it makes and additional points if it blocks
the expert. Its strategy, then, is to maximize its total
point score by forking the expert not once but twice in
the same game! If the program had won the game on its
fourth move it would have received 3 less points. By
extending the game it actually increases its score without
the possibility of losing.

The analysis of the created subroutines is equally
interesting. Overall in the run there were 16,852 subrou-
tines created by the compression operator with only 257
in use during the final generation. Figure 5 shows the
number of calls per generation for three of the evolved
subroutines. Each of these has a distinct period during
the run where its number of calls per generation rises
extremely quickly. In Figure 5a the sharp increase hap-
pens relatively soon after the subroutine is defined,
showing it posed an immediate advantage. Figure 5b
shows an example of a subroutine which was extremely
useful shortly after its creation but whose use fell off
dramatically. Finally, Figure 5c shows a subroutine
which was present in the population for almost 100 gen-
erations before being recognized as being useful.

 Discussion

The dramatic shapes of the calls per generation curves
for the subroutines shown in Figure 5 are interesting for
two reasons. First, it is apparent that we have been able
to capture useful schemata in our subroutines by the
exponential-like rises in the subroutine call curves. Sec-
ond this work amplifies our previous note (Pollack,
1991) that a phase transition is the principle behind



“induction” in dynamical cognitive models. We call this
method of random selection and evolutionary evaluation
of subroutinesevolutionary induction.

But there is more to the story than a simple attach-
ment to Holland’s powerful theorem. We also claim that
evolutionary induction impacts the defining length prob-
lem for dynamic genetic algorithms, although we have
no formal verification of this claim. Our reasons are as
follows: By compressing random subtrees from the pro-
gram into representational atoms, we literally reduce the
defining length of that subtree to zero. Because we know
by the schema theorem that above average schemata will
be copied more readily than below average schemata,
our chances of compressing a useful schema increases
each generation. Once we compress a useful schema
reducing its defining length to zero, it can be used to cre-
ate more complex structures which are still small enough
to be propagated intact to future generations. The end
result is a complex modular program with nested subrou-
tine calls and an overall structure similar to Hora’s
watches.
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