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Abstract addresses the scaling problem within this framework. An
analysis of the frequency of subroutine calls shows an
In this papel we describe a genetic algorithm capable cexponential growth and decay of subroutine usage as
evolving large programs by exploiting two new genetithey are induced or expelled from the language, leading
operators which construct and deconstruct parameterizus to name this phenomenewolutionary inductionan
subroutines. These subroutines protect useful partamplification of our earlier principle of “induction by
solutions and help to solve the scaling problem for phase transition” (Pollack, 1991).
class of genetic problem solving methods. We demol
strate that our algorithm acquires useful subroutines |
evolving a modular program from “scratch” to play anc Genetic Algorithms Background
win at Tic-Tac-Toe against a flawed “expert”. This work
also serves to amplify our previous note (Pollack, 199:.The genetic algorithm (Holland, 1975; Goldberg 1989a)
that a phase transition is the principle behind “inductioris a form of problem solving search analogous to natural
in dynamical cognitive models. selection, and is a surprisingly adept search method in
even very large ill-formed problem spaces. A simple
genetic algorithm typically operates by reproducing and
Introduction altering a population of fixed-length binary stringgfitA
ness functionnterprets the strings as task solutions and
While complex processes of cognition require somscores their ability to solve the task. Novel strings are
form of modularity, learning this modularity has beeradded to the population by a process akin to biological
problematic. It is ignored by simple learning systemreproduction using a collection of genetiperators
(which thus cannot learn complex processes) or buOne such operator, therossoveroperator, takes two
into the architectural “bias” of more complex learnin¢‘parent” strings selected for their fithess and returns a
systems (thus begging the origin of such complexity“child” string which is a complementary collection of
Thus, the issue of inducing modularity from a complecomponents from both parents. Th@nt mutationoper-
task in order to perform that task has not been addressator alters the value of a single position of a single parent
although a few connectionists are beginning thistring to create offspring.
research (Saunders et al., 1992; Jacobs & Jordan, 19  The schema theorem (Holland, 1975), often called
Jacobs et al., 1991; Nowlan & Hinton, 1991). the Fundamental Theorem of Genetic Algorithms, illus-
In this paper we describe a genetic algorithm whictrates the power behind these search methods. Holland
is capable of evolving large programs by exploiting twidefines aschemato be a class of binary strings which
new genetic operators which construct and deconstrishare a collection of subsequences. We use the “#” nota-
parameterized subroutines. These subroutines prottion to indicate “don’t care” positions in the schema, i.e.
useful partial solutions and help to solve the scalinpositions where a 1 or 0 don’t matter. For instance, the
problem for a class of genetic problem solving methodstring ‘100101’ is a member of the schema ‘10##01’ as
After a brief background on genetic algorithms, we shois ‘100001’. The intuition behind schemata is that certain
that our system is able to learn how to play and win combinations of bits will have a larger contribution to
Tic-Tac-Toe from “scratch” against an imperfectthe fitness for a particular string than others. The schema
“expert” player. We discuss the formation and tuning cnotation allows us to talk about such desirable organiza-
the subroutines and the reasons why their acquisititions concisely. A schemadefining lengths the num-
ber of positions at which if we divided the schema into
two parts, some of the defined positions (i.e. ones not
‘#) would be separated. For instance, dividing the
schema ‘#1.0.0##" at any position marked with a *." will
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separate some of the defined components giving itlength of a desirable schema increases it becomes more
defining length of 2. Similarly, the defining length oflikely that we will consistently break it apart rather than
‘1.0.#.#.0.1" is 5. The schema theorem proves that aboimprove upon it. We call this thaefining length prob-
average schemata with small defining lengths will blem? As an empirical indication of this problem, we
copied an exponential number of times in the genernote that the largest evolved program Koza reports is
tions subsequent to their appearance (Holland, 197'only 48 nodes.
For a more detailed introduction to genetic algorithms  These scaling difficulties call to mind Simon'’s para-
the schema theorem and its implications see (Goldbeble of the two watchmakers Tempus and Hora (Simon,
1989a). 1969). In this parable, the two watchmakers build prod-

While simple genetic algorithms can be used tucts of similar complexity (1000 parts) using differing
evolve solutions to a wide range of tasks two problendesign philosophies. Tempus constructs the entire watch
prevent their scaling to more interesting tasks. The firdirectly from the primitive components, much like GPP
is an inherent limitation due to the fixed-length nature constructs programs. Consequently, if he is interrupted
the string representation. Because of the closed naturebefore completing a watch, say by a customer calling on
the representation, the maximum complexity needed the phone, the intermediate state is lost and he must
solve the task must be anticipated before the search tarebuild the entire watch from the individual components.
place. The second problem is that each bit of the striHora’s method of construction, on the other hand, uses
representation generally stands for the presence stable intermediate modules which are individually cre-
absence of a specific feature of the interpretation. Trated, assembled into larger and larger modules and even-
positional encoding of the binary representation requir¢ually into the completed product. When Hora is
that every possible interpretation also be anticipateinterrupted, only the work for the module currently
prior to the search. This amounts to nothing more thébeing constructed is lost. The lesson from Simon’s para-
using the string as a pointer to a table of pre-definele is clear, that in the development of complex systems
interpretations. it is prudent to build incrementally and modularly.

In order to increase the amount of available comple:
ity in simple genetic algorithms, some researchers ha
devised elaborate interpretation routines (See Bele  The Genetic Library Builder (GLiB)
Mclnerney & Schraudolph, 1992 and Dawkins, 1987 fc
example.) Essentially, this approach removes the coiThe Genetic Library Builder (GLiB) is a genetic algo-
plexity from the jurisdiction of the representation antithm environment based on the ideas forged by Koza in
places it into the interpretation. Unfortunately, ratheGPP but with provisions for the evolution and evaluation
than address the representation of complexity problemof program subroutines. As in GPP, GLiB uses an
simple genetic algorithms this approach merely shifts ttexpression tree of primitive functions as its representa-
problem to a new component. By placing an undution for potential solution programs. The essential differ-
amount of design into the interpretation of the represeence between GPP and GLiB is the addition of two new
tation these researchers beg the question of evolvigenetic operators. The first operator, calethpression
complexity since they have provided the complexity creates subroutines from subtrees of individuals in the
priori. current population and introduces the subroutines into

Recently, Koza has described an exciting advance the “genetic library”. This library is simply the collec-
genetic algorithms. In his Genetic Programming Parition of subroutines which appear in the programs of pop-
digm (GPP), Koza uses a hierarchy of primitive funculation and thus are available for constructing task
tions rather than a fixed-length string to represeisolutions. Once in the library, the usefulness of a newly
potential solutions (Koza, 1992, Koza, 1990). Thesconstructed subroutine is evaluated by the extent it is
hierarchies are interpreted as programs written in a laused in future generations. The second operator, called
guage defined by the primitive functions which whelexpansion replaces compressed subroutines with their
executed compute the solution to the task. Kozaoriginal definition. In the following sections we describe
genetic operators exchange subtrees of the hierarchthese operators and their implementations in detail.
rather than substrings.

Although Koza’s dynamic representation alleviate:
both the fixed-length and positional encoding limitationCreation of Subroutines in GLiB
of simple genetic algorithms, it also suffers from a mal
ady which prevents its scaling. Consider that a dynamThe compression operator in GLiB, the sole method of
representation will eventually grow large enough tsubroutine definition in the system, works as follows.
encompass the complexity necessary to solve the desiDuring the construction of each new generation of pro-
problem. At some point in the learning of a very com
plex task, the structure will be quite large and the chan
of breaking up desirable portions of the program with th
crossover operator will overwhelm the chance c
improving the program. In other words, as the definin

2. Because they exploit positional encodings, string-
based genetic algorithms do not suffer from this prob-
lem.
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Figure 1: Creation of a new subroutine from a randomly selected subtree of an
individual in the current population.

grams, the compression operator is applied to a percethe maximum depth are not removed but serve as the
age of the population selected by relative fitness. Tlvalues for the parameters in the subroutine call. This
compression operator is asexual, like the point mutatidinstance of modularization in GLIiB is depicted in Fig-
operator described above, so only a single “parent” prure. 2.Note that invariably when a compression takes
gram is selected and copied. The copy serves as place the semantics of the program are not altered, only
“child” of this parent in the coming generation. A nodethe manner in which the program is expressed.
in the interior of the child’s expression tree is then rar  Unfortunately, while the compression operator sup-
domly selected and designated the root of the subtrplies a method to create subroutines from the population
which will become the newly compressed subroutindduring GLiB's genetic search, it also serves to remove
Next, a maximum depth for the subtree is randomlunique subtrees from the population, lowering the diver-
selected from a user defined range. When none of tsity of the population. For a genetic search to work, there
branches of the subtree exceeds this maximum depth must be sufficient genetic material in the population so
have the instance of subroutine creation depicted in Fithat combinations of promising candidates from the cur-
urel. Here, the entire subtree is removed from the orent generation can be recombined into novel organiza-
spring and used as the body of a new LISP functictions. By lowering the diversity of the population and
definition with no parameters. Once the new subroutirconsequently the number of novel combinations, we
is defined, the expression tree of the offspring is alterdimit the distance from the current state that a genetic
replacing the extracted subtree by the equivalent LiSsearch can look.
function call. This compression of the subtree into th In order to balance the undesirable effects of the
name of the equivalent subroutine call introduces tfcompression operator, we have also added an expansion
new subroutine into the genetic library. operator which restores the genetic material from the
Occasionally, some branches of the selected subticompressed subtrees. This operator searches the off-
will have a depth greater than the allowed maximurspring’s expression tree for a call to an evolved subrou-
depth for the subroutine being created. In this event, tine. If one is found, it is expanded from its atomic
replace each branch of the subtree at the point wherereference back into the full subtree and thus replaces the
exceeds the maximum depth with a unique variablgenetic material previously removed.
When the LISP function is defined, the variables intrc  The complementary nature of the compression and
duced into the subtree are used as parameters to the iexpansion operators implements a form of iterative
subroutines. When we then compress the expression trefinement. The random selection of a subtree for com-
of the child, the portions of the subtree which exceede¢pression provides no guarantee that the selected subtree

/ or
) not newfunc
compression |
operator . d1i d1
(defunnewfunc (param)

(and (or (noparam) d2) (not d0))

Figure 2: Creation of a new subroutine with parameters replacing branches
which are beyond maximum allowed depth.



pos00| posOL pos02 Pos00 .. pos22board positions open- returns <arg> if unplayed else NIL

and - binary LISP “and” mine - returns <arg> if player’s else NIL

posl10 | posi1l] posl2 . )
or - binary LISP “or” yours - returns <arg> if opponent’s else NIL

pos20 | pos2 pos22  if - if <test> then <argl> else <arg2> play-at- places player's mark at <arg>

Figure 3: Primitives used in evolving modular programs to play Tic Tac Toe.

will be an above average schema. It is more likely thatvirtually no member of the population which relies upon
will be either a portion of a useful schema or simply cit. In other words, if a subroutine presents no advantage
no import at all. By periodically replacing a copy of theto the individuals which use it, it will in time go the way
compressed subtree back into the population, we proviof the human appendix. Once the subroutine is no longer
the chance to capture a better version of the schema iused by the population, it is no longer in the genetic
latter time. library. Thus the genetic search process at the level of

the overall task implicitly determines the fithess of

evolved subroutines and allows only those that are useful
Evaluation of Subroutine Performance to be propagated.

Now that we have a method of extracting potentiall
useful subroutines from the evolved programs, we nes Learning to Play Tic-Tac-Toe
a method for evaluating their contribution. We sugge:
that an appropriate measure of success for a particuln order to illustrate our form of subroutine acquisition at
evolved subroutine should be the number of times it work, we used GLiB to evolve programs to play Tic-
put into use by the population in the course of solvinTac-Toe (TTT). The primitive language used for this
the task. If many members of the population are usirexperiment is shown in Figure 3. The first collection of
the subroutine at some point in the genetic search, theiprimitives, pos00to pos22 are the data points to be used
is likely that the subroutine provided some consistelin the program which represent the nine positions on the
advantage in earlier generations. When this occurs, \TTT board. This set of data points serves as the leaves of
say that the subroutine ésolutionarily viable the expression tree. For the remaining primitives, the
Our task now is to insure that good subroutines wireturn value is either one of the positiona\dr, which
be copied generously into subsequent generations whrepresent§ALSE in LISP, the current language in which
inappropriate ones will be suppressed. The “enlighteiGLiB is implemented. For instance, the binand oper-
ing” guidelines provided for genetic algorithm design irator takes two arguments and when both are Nibn-
(Goldberg, 1989b) suggest one should never be treturns the second. If either argumenilis thenNIL is
clever when dealing with genetic algorithms as a “frontereturned. Theplay-at primitive takes a single argument.
assault” to the solution of a design problem usualllf the argument is a position and no player has placed a
defeats the inherent non-linear interactions. Thus, omark there, then the current player's mark is placed at
should practice prudence when possible. that position and their turn is halted. Otherwislkay-at
Appropriately enough, the genetic search whicreturns whatever it is passed. Finally, the operahing,
evolves programs to solve the task, automatically evalyours andopentake a position and return that position
ates the worth of the subroutines without any additionwhen the mark on the playing board in that position fits
intervention. The logic of this is straightforward. Ini-the test. Otherwise, they retuxiL. We have purposely
tially, when a new subroutine is created there is only oimade these functions as general as possible to cover any
member of the population which has a reference to it. number of games rather than just TNbte there is no
this program is comparatively fit, then, by the schemguarantee that a random program in this language will
theorem, the call to the subroutine will be copied intobserve the rules of TTT or even place a single mark on
several offspring in the next generation. If those individa TTT board.If the program does not make a valid
uals are also relatively fit then each of them will havmove, then its turn is forfeited. We consider legal moves
multiple offspring which contain the subroutine call ato be apart of the complexity of the task and conse-
well. Eventually, the subroutine will spread throughout quently should be induced by GLiB.
significant portion of the population. On the other hanc  An “expert” TTT algorithm constructed in LISP
if the program is comparatively unfit, possibly due tserved as the opponent for all of the evolved programs.
one of its subroutines being more of a hinderance tharThis expert was designed in such a way that it could not
help, it will have little or no chance to create offspringlose a game unless the opponent it was playing against
This results in a decrease in the number of calls to thad forked it, i.e. created a situation where the addition
subroutine from generation to generation until there of a single mark by the opponent resulted in more than
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Figure 4: A sample game from the described run. The evolved prograki el is playing first against the
expert. Opening moves in (a) lead to first fork setup in (b). Evolved program completes first fork in (c). Evolved
program sets up second fork in (d) and wins in (e). The program received a score of 20 points for this win.

one possible winning play on its next turn. In additionTwo of the subroutines had a total of 9 separate calls
the expert was slightly adaptive such that when no cleeach in the fully expanded tree. Note that this evolved
best move was available it would select a positioprogram is almost 10 times the size of the largest pro-
known to be frequented by the program it was currentgram reported by Koza.
_playing against. The intention_ of this feature was t  Figure 4 shows the first game played between the
increase the apparent complexity of the expert's actioleyolved program and the expert. There is an interesting
forcing the evolved programs to be more robust. Trpoint to be made about the apparent strategy of the
generality of the primitives combined with the level ofeyolved program. Notice that it was able to establish a
play of the expert make this quite a formidable envirorfork by its third move (Figure 4c) but did not win the
ment for learning TTT. game until 2 turns later (Figure 4e). While this seems an
In order to rate the performance of an evolved prcodd strategy, recall that the evolved program gets points
gram against the expert, a scoring function assignfor each move it makes and additional points if it blocks
points for various moves. First, because it is not a givehe expert. Its strategy, then, is to maximize its total
that a program will actually make a legal play, a poirpoint score by forking the expert not once twice in
was awarded for every legal move made. An additionthe same game! If the program had won the game on its
point was awarded if a move blocked the expert frorfourth move it would have received 3 less points. By
winning on its next turn. If the game ended in a draw orextending the game it actually increases its score without
win, the accumulated score of the evolved program withe possibility of losing.
increased by 4 or 12 points respectively. It is importar  The analysis of the created subroutines is equally
to note that the score for the program was a lump Slinteresting. Overall in the run there were 16,852 subrou-
and prOV|ded no indication of which actions were belntines created by the Compression operator with on|y 257
rewarded. The same results would be achieved if onin use during the final generation_ Figure 5 shows the
the final state of the board were scored rather than thumber of calls per generation for three of the evolved
individual moves. subroutines. Each of these has a distinct period during
We ran GLiB with a population size of 1000 usincthe run where its number of calls per generation rises
the described expert and scoring method as the fitneextremely quickly. In Figure 5a the sharp increase hap-
function. In this run we applied the compression operipens relatively soon after the subroutine is defined,
tor to 10 percent of the population each generation. Ashowing it posed an immediate advantage. Figure 5b
other parameters were as set in (Koza, 1990) for tishows an example of a subroutine which was extremely
“ant” experiment. The best evolved program after 20useful shortly after its creation but whose use fell off
generations had an average score of 16.5 points for thdramatically. Finally, Figure 5c shows a subroutine
games it played against the expert to determine its fwhich was present in the population for almost 100 gen-
ness. This score suggests that while the program werations before being recognized as being useful.
able to beat the flawed expert more than once, the bes
could do after the expert had adapted to its playing str:
egy was to get a draw.

The evolved program had 60 nodes, a maximul
depth of 13 nodes, and used 15 evolved subroutines atiThe dramatic shapes of the calls per generation curves
top-level. As expected, expanding the definition of thesfor the subroutines shown in Figure 5 are interesting for
subroutines back into their original subtrees revealetwo reasons. First, it is apparent that we have been able
additional subroutine calls in their bodies. In all a total cto capture useful schemata in our subroutines by the
43 distinct subroutines were used by this evolved prexponential-like rises in the subroutine call curves. Sec-
gram in 89 subroutine calls making the virtual size of thond this work amplifies our previous note (Pollack,
program 477 nodes with a virtual maximum depth of 3¢1991) that a phase transition is the principle behind

Discussion
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Figure 5: Graphs showing number of calls (y-axis) per generation (x-axis) for three evolved sub-
routines. See text for explanation. Note graphs are not equally scaled.
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