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Abstract

One-point (or n-point) crossover has the
property that schemata exhibited by both
parents are ‘respected’  transferred to the
offspring without disruption. In addition, new
schemata may, potentiall y, be created by
combination of the genes on which the parents
differ. Some argue that the preservation of
similarity is the important aspect of crossover,
and that the combination of differences (key to
the building-block hypothesis) is unli kely to be
valuable. In this paper, we discuss the operation
of recombination on a hierarchical building-
block problem. Uniform crossover, which
preserves similarity, fail s on this problem.
Whereas, one-point crossover, that both
preserves similarity and combines differences,
succeeds. In fact, a somewhat perverse
recombination operator, that combines
differences but destroys schemata that are
common to both parents, also succeeds. Thus, in
this problem, combination of schemata from
dissimilar parents is required, and preserving
similarity is not required. The test problem
represents an extreme case, but it serves to
ill ustrate the different aspects of recombination
that are available in regular operators such as
one-point crossover.

1 INTRODUCTION
One feature common to one-point crossover [Holland
1975], n-point crossover, and uniform crossover
[Syswerda 1989] is that all these operators preserve the
similarity exhibited by the parents. That is, for any locus
where the parents’ genes have the same allele, the child
will also take that allele. The operators are distinguished
by how they handle the genes that disagree (Figure 1).
Radcli ffe [1991] call s the characteristic of preserving

similarity “ respect”  and argues that respect is a necessary
starting point for recombination operators. Syswerda
[1989] argues that this feature of recombination is
suff icient for successful crossover, and even suggests
that the other characteristics of one or n-point crossover
are undesirable. Chen [1999] ampli fies this point of view
that preserving similarity is more important than any
other feature of recombination. He hypothesizes that the
benefit of recombination comes from the fact that it
exploits the property that “schemata common to above
average solutions are above average” . Chen & Smith
[1996] suggest that “preservation of common schemata
is the central source of power in recombination
operators” .

a 00011|101011
b          10101|100110 
one-point a0aa1 10bb1b
uniform ?0??1 10??1?

Figure 1: One-point, and uniform crossover are
distinguished by how they handle alleles that disagree. In
one-point, disagreements in gene values that occur to the
left of the crossover point are resolved in favor of parent
a, and those to the right are resolved in favor of parent b.
In uniform crossover, loci with disagreements may take a
gene from either parent at random.

If we are to believe that the important aspect of
recombination is that it preserves the common parts of
the parents then it makes littl e sense to combine parents
that are too dissimilar. This concurs with the idea that
parents selected from two different fitness peaks are
li kely to produce an offspring that lands in the valley
between. This point of view is widely supported and
typified by the proposal of niching and speciation
methods such as [Deb & Goldberg 1989] where mating
is restricted to individuals that are genotypicall y similar.
It is also one of the motives behind spatiall y distributed
GAs [Starkweather et al 1991] and multi -deme GAs
[Goldberg et al 1996] that promote breeding within local
populations whilst ‘long-distance’ breeding is less likely.



So, it seems we should expect recombination to work
well when parents are similar, and an important feature
of any crossover operator is that it preserves similarity.
But, what about the building-block hypothesis [Holland
1975, Goldberg 1989]? Is it not also GA lore that
recombination works when it is able to take the good
parts (building-blocks) from two different parents and
put them together? The idea behind recombination as it
was originall y conceived [Holland 1975] is to take sub-
parts from individuals that supply different sub-solutions
and combine them. (This explains why ‘ long-distance’
mating, as we called it, is allowed at all i n the distributed
methods).

In this paper, we support the basic intuition behind the
building-block hypothesis: the GA performs well when it
is able to combine low-order schemata of above average
fitness to find higher-order schemata of higher-fitness.
More precisely, we should say that this kind of
‘combination’ can be valuable on some class of
problems. To investigate this, we will separate the
combination feature of crossover from the similarity
preserving feature of crossover.

a) Similarity and combination: one-point crossover

Ordinary one-point crossover both preserves similarity
and, potentiall y, combines differences1. A schema is
heritable if the parents agree on the gene values at each
loci of the schema, and/or if the schema does not span
across a crossover point. New schemata may be created
by combination.

b) Similarity without combination: respectful/uniform

Radcli ffe [1991] supplies a crossover operator that
explicitl y preserves similarity but does not permit
combination - ‘Random Respectful Recombination’ , R3.
This operator assigns a randomly selected allele to any
loci where the parents genes are not in agreement. R3 is
equivalent to Syswerda’s uniform crossover when using
binary encoding because selecting genes that disagree
from either parent with equal probabilit y is equivalent to
random assignment of bits at these loci. In uniform
crossover, or R3, a schema is not heritable unless the
parents agree on the gene values at each loci of the
schema. New schemata may be created only by the
‘macro-mutations’ [ Jones 1995] induced by the
conflicting genes.

c) Combination without similarity: disrespectful

An operator that supplies the converse is not to be found
in the literature. What kind of crossover does not
preserve similarity? Purely for the purposes of
ill ustrating our point, we introduce a new recombination
operator - “disrespectful crossover” . Figure 2 shows that
disrespectful crossover exhibits the quite perverse feature
of assigning a new random value to any loci where the
parents agree. The remaining genes are transmitted as
                                                       
1 Two-point crossover, or in general, n-point crossover for low n,
exhibits the same properties.

per one-point crossover. Disrespectful combination is the
complement of uniform crossover in that it respects
differences rather than similarities. New schemata may
be created by combination or by the macro-mutations
induced by the agreeing genes.2

a 00011|101011
        b        10101|100110 

one-point a0aa1 10bb1b
uniform ?0??1 10??1?

disrespectful a?aa? ??bb?b

Figure 2: Disrespectful crossover is contrasted with one-
point, and uniform crossover. In disrespectful crossover
gene values that occur to the left of the crossover point
are resolved in favor of parent a, and those to the right
are resolved in favor of parent b, except where the gene
values of the parents agree. Genes at loci where the
parents agree are replaced with random alleles.

With the aid of these three crossover operators we can
compare the operation of an operator that only preserves
similarity, with one that only allows combination, and
with regular one-point that supplies both. Our purpose is
to understand what the different components of a
successful recombination operator might be, and more
specificall y to ascertain whether the combination of
distinct building-blocks can play any part in the
operation of the GA.

For these purposes we will use a hierarchical building-
block problem, hierarchical-if-and-only-if (H-IFF), from
previous work [Watson et al 1998, Watson & Pollack
1999b]. This problem is designed to investigate the class
of problems for which genetic algorithms are well suited.
The work in this paper continues to delineate the
properties of this type of problem, and to explore the
essential characteristics of a GA that will solve it.

We will see that the GA, using deterministic crowding
[Mahfoud 1995] as a diversity maintenance technique,
and one-point crossover is able to solve H-IFF. Since
uniform crossover does not succeed, we conclude that
similarity preserving is not suff icient. Conversely,
disrespectful recombination does succeed. This indicates
that the criti cal aspect of recombination in this problem
is combining different schemata. The reader may find it
surprising that this operator succeeds - it means that the
massive disruption caused by this operator apparently
does not matter. We will discuss the particular properties
of the problem we are using that make this possible, and
note that disruptive recombination fail s completely when
applied to a variant of the problem that should be easy.3

In this variant of H-IFF the value of competing building-
blocks is depressed to zero, and those blocks that remain

                                                       
2 The point of the operator is to supply combination without preserving
similarity - but, we shall i nvestigate later whether the macro-mutation
aspect of the operator may be valuable.
3 Recall that the operator was for the purposes of ill ustrating a point - we
would never (almost never) propose disrespectful crossover as a serious
option for an applied GA.



are separable.4 The other side of the coin is that uniform
crossover works very well on this easy variant. One-
point crossover, which offers both similarity preservation
and combination, succeeds always. It is interesting to
note that nearly all building-block problems in the GA
literature are separable [Watson et al 1998]. Thus we
suggest that the reason the community has been unable
to pin-down an understanding of the combinative aspects
of the GA may be simply because the class of problems
discussed has been inappropriate. An alternative
explanation is that the combinative aspects of
recombination are only effective in a particular class of
problem - the extent of this class is yet to be determined.

The remaining sections of this paper are organized as
follows: The next section describes the hierarchical
building-block function that we will use in these
investigations. Section 3 describes the genetic algorithm
detail s and our experimental set-up. Section 4 presents
results and discusses the conditions where each operator
is successful. Section 5 concludes.

2 HIERARCHICAL-IF-AND-ONLY-IF
Previous work [Watson et al 1998, Watson & Pollack
1999b] introduced a test problem which is specificall y
designed to investigate the class of problems for which
GAs are well suited. Like the second version of the
Royal Roads problem defined in [Forrest & Mitchell
1993], it is a hierarchical building-block problem. But
unlike the Royal Roads, the building-blocks in H-IFF are
not separable. In H-IFF the building-blocks are strongly
and non-linearly dependent on one another, i.e. the
optimal schemata for one block is strongly dependent on
the setting of bits in other blocks.

In H-IFF the interdependency of blocks is implemented
via two sets of competing schemata. That is, although
blocks at one level in the hierarchy are confined to non-
overlapping partitions as in other building-block
problems, each partition has two optimal settings for the
bits therein. These competing schemata are maximally
distinct – specificall y, all -ones and all -zeros. Which of
these two schemata should be used depends on which has
been used in a neighboring block – if the neighboring
block is based on ones then so should the block in
question, if zeros then zeros. This compatibilit y of
blocks is rewarded by additional fitness contributions
from the next level up in a hierarchical structure. Each
correct pair of blocks creates a new single block for the
next level in the hierarchy. The desirable setting for this
meta-block is determined by its neighboring meta-block,
and so on, up the hierarchical levels.

The fitness of a string using H-IFF can be defined using
the recursive function given below. This function
interprets a string as a binary tree and recursively
decomposes the string into left and right halves. Each

                                                       
4 This variant of H-IFF is equivalent to a hierarchically consistent form
of the second Royal Roads function defined in [Forrest & Mitchell
1993].

resultant sub-string constitutes a building-block and
confers a fitness contribution equal to its size if all the
bits in the block have the same allele value - either all
ones or all zeros. The fitness of the whole string is the
sum of these fitness contributions for all blocks at all
levels.

f(B)=




î

1,
|B| + f(BL) + f(BR),
f(BL) + f(BR),

if |B|=1, else
if ( ∀ i{b i=0} or ∀ i{b i=1}),
otherwise. Eq. 1

where B is a block of bits, { b1,b2,...bn} , |B| is the size of
the block=n, bi is the ith element of B, and BL and BR are
the left and right halves of B (i.e. BL={ b1,...bn/2} ,
BR={ bn/2+1,...bn} ). The length of the string evaluated, n,
must equal 2p where p is an integer (the number of
hierarchical levels).

Some features of this apparently simple function should
be highlighted. Since both ones and zeros are rewarded
each partition contains two equal-fitness competing
schemata. Each block-solution, either ones or zeros,
represents a schema that contains one of the two global
optima at all -ones or all -zeros. Local optima in H-IFF
occur when incompatible building-blocks are brought
together. For example, consider  “11110000” ; viewed as
two blocks from the previous level (i.e. “1111”  and
“0000” ) both blocks are good -  but when these
incompatible blocks are put together they create a sub-
optimal string that is maximally distant from the next
best strings i.e. “11111111”  and “00000000” . (See solid
curve in Figure 3)
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Figure 3: Sections through the H-IFF landscape. The
solid curve shows the regular H-IFF problem (i.e. with
competing building-blocks), as per Equation 1. The
dashed curve shows H-IFF without competing building-
blocks (Equation 2). In both cases the curves show a
particular section through a 64-bit landscape starting
from all zeros on the left and ending with all ones.
Specificall y, they show the fitness of the strings
“000...0” , “100...0” , “110...0” , ...“111...1” . This reveals
the local optima in Eq. 1 and the ‘easy’ nature of Eq.2.



However, although local optima and global optima are
distant in Hamming space, they may be close in
recombination space [Jones 1995], for example, consider
a population containing both “11110000”  and
“00001111”  individuals. Thus H-IFF exempli fies a class
of problems for which recombinative algorithms are
well -suited. Our previous work [Watson et al, 1998]
showed that H-IFF is easy for a GA to solve given that
diversity in the population is maintained and genetic
linkage is tight:

- Diversity maintenance methods are addressed in
[Watson & Pollack 1999b], alternative methods are
analyzed in [Watson & Pollack 2000], and in this paper
we will use the diversity maintenance technique we have
found best so far, which is deterministic crowding
[Mahfoud 1995].

- This paper does not address problems of poor genetic
linkage - all of the following experiments use building-
blocks where the relevant genes are adjacent on the
genome (as defined in Eq.1). It is known that one of the
conditions for successful crossover is the tight-linkage of
genes [Altenburg 1995]; our experiments here concern
different aspects of crossover, as discussed above.
However, it is worth noting that although the
performance of one-point crossover is poor when applied
to a variant of H-IFF that has random linkage, the
performance of uniform crossover is approximately the
same as this poor level of performance regardless of
linkage, [Watson et al 1998]. Algorithms to address poor
linkage are addressed in [Watson & Pollack, 1999a].

Variations and more general forms of HIFF that allow
different alphabets, different numbers of sub-blocks per
block (instead of pairs), unequal fitness contributions of
competing blocks, and the construction of other
hierarchicall y-consistent building-block functions, are
defined in [Watson & Pollack 1999b]. For the purposes
of this paper, the canonical form given above and one
variation will be useful. Specificall y, a variation that
assigns unequal fitness contributions will enable us to
decrease the strength of competition between competing
schemata.5 (See dashed curve in Figure 3)

The fitness of a string, f(B), in H-IFF without competing
building blocks is given by:

f(B)=





î

1,
|B| + f(BL) + f(BR),
f(BL) + f(BR),

if |B|=1 else,
if  (∀ i{b i=1}),
otherwise. Eq. 2

where B, |B|, BL and BR are as per Equation 1.

                                                       
5 Two schemata compete to the extent that they are both desirable (have
high fitness contributions), and that the allele values they specify (at
shared loci) disagree.  In H-IFF competing blocks share all l oci and
disagree at all of them. Biased H-IFF [Watson & Pollack 1999b]
controls competition by controlli ng the relative desirabilit y of these
blocks. Figure 3 shows biased H-IFF where the value of blocks based on
zeros is depressed to zero.

3 EXPERIMENTAL METHODS

For the main comparison of crossover operators we will
use the same underlying GA throughout. H-IFF requires
that the GA does not converge - if this is allowed, the
GA will become trapped in local optima just as a hill -
climber would [Watson et al 1998]. To prevent this,
earlier work  used a resource-based diversity
maintenance technique that required knowledge of the
block structure. Here we are able to report that an off-
the-shelf technique, that has no knowledge of the
problem structure, also works very well on H-IFF. This
is deterministic crowding, DC, [Mahfoud 1995].

3.1 DETERMINISTIC CROWDING (DC)

Deterministic crowding operates on the premise of
restricted competition rather than restricted mating. Any
individual may be recombined with any other, but an
offspring is li kely to replace an individual that is
genotypicall y similar. In fact, competition is restricted to
parents and their own offspring. Restricted competition
assists in preventing convergence because sub-
populations that are occupying different niches need not
out perform one-another to propagate. However, it does
not prevent them from mating and producing an
offspring that might be superior. DC applies naturall y to
a steady state algorithm (as opposed to a generational
algorithm that produces an entire population of offspring
before any replacements are made). Two individuals are
selected at random to be parents. These produce two
offspring. Each offspring competes with one of the
parents. The competiti ve pairs of offspring and parents
are chosen so as to minimize the difference between the
offspring and the parents (Figure 4).

� Initialize population to random strings.
� Repeat until satisfied:

� Pick two parents, p1 & p2, at random
from the population.

� Produce a pair of offspring, c1 & c2.
� Pair-up each offspring with one parent

according to the pairing rule below.
� For each parent/offspring pair, if the

offspring is fitter than the parent then
replace the parent with the offspring.

Pairing rule: if H(p1,c1)+H(p2,c2) < H(p1,c2)+H(p2,c1)

then pair p1 with c1, and p2 with c2, else pair p1

with c2, and p2 with c1, where H gives the
genotypic Hamming distance between two
individuals.

Figure 4: A simple form of a GA using deterministic
crowding as used in our experiments.

3.2 A CROSSOVER RATE FOR DC

Usually, crossover in GAs is not applied at every
reproduction but applied with some probabilit y or
‘crossover rate’ . Without mutation, a reproduction



without recombination cannot create new schemata -
however, in the regular GA, it can duplicate whole
individuals. In deterministic crowding this is not so. A
‘reproduction’ without recombination has absolutely no
effect on the population - individuals cannot be
duplicated since offspring, at most, replace only one
parent. In order to re-introduce a crossover rate we
produce offspring by recombination with some
probabilit y, c (c=0.9 in the experiments that follow), and
produce two offspring that are both copies of one parent
with probabilit y 1-c. This gives us some control over the
restriction of competition that deterministic crowding
provides.

Note that this duplication of individuals does ‘respect’
the schemata provided by a parent and allows a method
for schemata to be propagated without disruption even
when using disrespectful recombination. But it should be
clear that this is a different issue from the nature of the
recombination operator. It is quite natural for a GA to
duplicate good individuals and the schemata they
contain. But, as Syswerda indicates, in regard to
recombination operators, we are not interested in “string
gains”  but rather the construction of new schemata
[Syswerda 1989] which this duplication does not allow.

3.3  DISRESPECTFUL HCT

After the main comparison experiments we will discuss
whether the successful operation of disrespectful
recombination is perhaps simply because of its disruptive
properties. That is, the more similar the parents are the
more random bits are injected into the offspring. To
investigate whether this kind of convergence controlled
variation [Eshelman et al 1996] may be responsible for
the success of the operator we contrast it with a different
operator. This operator borrows from the “headless
chicken test”  of Jones [1995]. Jones’ test is designed to
verify whether the genes supplied by crossover are
equivalent to ‘macro mutations’ and, accordingly,
whether the exploration enabled by crossover is akin to
making random jumps. The difference with our operator
is that the random bits are placed exactly where the
parents agree rather than between arbitrary crossover
points. The corresponding ‘disrespectful headless
chicken test’ (disrespectful HCT) uses the operator in
Figure 5.

a 00011|101011
          b            10101|100110 

disrespectful a?aa? ??bb?b
disrespectful HCT a?aa? ??aa?a

Figure 5: The ‘recombination’ operator used in the
‘disrespectful headless chicken test’ . Disrespectful HCT
ignores the crossover point and resolves all alleles that
disagree in favor of parent a. Parent b supplies no genes
but instead is used to ‘f ocus’ random mutations.
Specificall y, all l oci where the parents agree are assigned
random allele values.

4 RESULTS AND DISCUSSION

In the experiments that follow we use a GA with the
following parameters: population size 1000, mutation
rate 0, crossover rate 0.9 (see Section 3.2), maximum
evaluations 106. The selection and replacement method
of the deterministic crowding algorithm is detailed in
Figure 4. To measure performance we recorded simply
how many of 30 runs found a global optimum in a 64-bit
problem, using each crossover operator. The most
evaluations required by any run that succeeded was less
than 604,000 – indicating that our evaluation limit was
sufficient.
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Figure 6: Performance of GA using deterministic
crowding and various crossover operators. a)
Performance on the ‘easy’ problem where building-
blocks are separable. b) Performance on the standard
H-IFF where blocks compete strongly. A control
experiment using the ‘disrespectful HCT’ operator
(Figure 5), will be discussed in Section 4.2).

4.1 DISCUSSION

The results show that uniform crossover, which is
respectful of the parents’ similarities is successful on the
variant of H-IFF that has no competing schemata. They
also show that disrespectful crossover, that randomizes
the parents’ similarities and instead combines their
differences, is successful on the standard H-IFF that has
strongly competing building-blocks. One-point
crossover, that both respects similarities and combines
differences is successful at both of these extremes.

We should understand why it is that the operators
succeed and fail where they do. Firstly, uniform
crossover: In H-IFF without competing building-blocks



any block found at lower levels in the hierarchy will be
useful in finding blocks at higher levels. Thus the
problem has no local optima (see dashed curve in Figure
3) and provides a gradient towards the global optimum at
all points in the landscape. Uniform crossover is
certainly capable of solving a problem where the
mutation landscape is this easy.6 However, in H-IFF with
competing building-blocks, there are many local optima
(232 in fact, [Watson et al 1999b]). The distance between
local optima and the next-best optima increases
exponentiall y as hierarchical levels are ascended - the
second best optima in the whole problem are 32 bits
different from either global optimum. It is therefore
highly unli kely that the macro-mutations afforded by
uniform crossover will perform a jump of this size.
However, any given run may be fortunate enough to
avoid this worst-case scenario and one run was able to
find the optima after all.

Secondly, disrespectful crossover: We know that
crossover between two individuals such as “00001111”
and “11110000”  can produce the global optimum at
“11111111”  and “00000000” . This is the recombination
of low-order schemata to find higher-order schemata that
the building-block hypothesis describes. The
disrespectful feature of our operator is not problematic in
these cases since the parents have no alleles in
agreement. Given that the population is appropriately
diverse, which evidently it is, such recombination is able
to escape from the local optima that H-IFF creates. Such
recombination events exploit the ‘crossover landscape’
rather than the mutation landscape. But, disrespectful
crossover has severe disadvantages too. It is not able to
successfull y cross “00111111”  with “00001111” , for
example. This will create “??11????”  where the “?”s are
randomly assigned. So most crossovers will be disastrous
– creating massive disruption and useless offspring – just
the sort of case imagined by the “ two peaks make a
valley”  perception of crossover mentioned in our
introduction. But this disruptive crossover still succeeds.
Evidently, the selection of good offspring when they do
occur is strong enough to overcome the disruptive effects
of the operator.

This is a lesson we can take away: in some cases, what
matters about a crossover operator is not the li kelihood
of successful offspring on average but rather its creative
potential. The average offspring using uniform crossover
has a much higher fitness than the average offspring of
our disruptive operator. But disrespectful crossover still
has the occasional offspring that exploits the
combination of building-blocks. Chen [1999] concurs
that in some circumstances creative potential is more
important than ‘average expectation’ , though he makes
this point to defend the relatively high disruption of
uniform crossover compared to one-point crossover.

But why does disrespectful crossover not succeed on the
easy problem? As noted, in order for a schemata to be
propagated from a parent to an offspring under this
                                                       
6 It is also capable of solving harder problems where the macro
mutations are useful in escaping local optima.

operator the two parents must disagree at all l oci. This is
very unli kely in the easy H-IFF where there are no
competing building-blocks. So, recombination with this
operator, in this problem, is even more disruptive than in
H-IFF with competing blocks. (In a problem where each
block has more than one desirable solution, the condition
that parents disagree is not so improbable.) Moreover,
the macro-mutations applied by disrespectful crossover
are focused on exactly those parts of the individuals
where they are agreed. Since Chen’s hypothesis that
schemata common to above average individuals are
above average [Chen 1999] holds for this problem, this
disruption is not at all useful. In fact, on this problem,
there is no useful variation in the algorithm at all . Those
individuals subject to recombination have good schemata
destroyed (unless the second parent happens to have
complementary zeros, which is highly unli kely), and
those individuals that are not subject to recombination
(see Section 3.2) are duplicated unchanged.

Finall y, one-point crossover: This has the advantages of
both preserving similarity and combination. And one-
point crossover succeeds on both extremes of the
problem. By separating out the different aspects of
recombination in the other operators we now know that
combination is an essential part of the operation of one-
point crossover on H-IFF. We also know, by the same
reasoning, that preserving similarity is an essential part
of the operation of one-point crossover on the version of
H-IFF without competing building-blocks.

4.2 DISRESPECTFUL HCT RESULTS

Earlier we mentioned that, in addition to combination,
disrespectful crossover also offers a different kind of
‘macro-mutation’ [ Jones 1995] from that offered by
uniform crossover. Specificall y, whereas uniform
crossover may discover schemata by randomizing genes
that disagree between parents, disrespectful crossover
may discover new schemata by randomizing genes that
agree between parents (or by combination). Our control
experiment is designed to ascertain whether these macro-
mutations are the source of success for disrespectful
crossover. The disrespectful HCT operator, described in
Section 3.3, separates the macro-mutations from the
combination. Figure 6 includes the results of this
operator. We see that it is not successful on the easy
problem, and not successful on regular H-IFF except in a
few runs. Thus it is the combinative feature of
disrespectful crossover that is responsible for success in
the main experiments.

4.3 MACRO-MUTATION AND DIVERSITY

However, there is an alternative view to the macro-
mutations supplied by disrespectful crossover.
Specificall y, the more similar parents are on average, the
more mutation is applied - this makes the operator a
form of “convergence controlled variation”  [Eshelman et
al 1996]. Moreover, this mutation is directed specificall y
at those loci where convergence is strongest. We might
call it “convergence sensiti ve macro-mutation” . We



know from the previous section that this feature alone is
insuff icient to solve H-IFF (combination is also required)
but it does have potential as a diversity maintenance
technique.

In the above experiments we used deterministic
crowding to maintain diversity – previous work showed
that the regular GA (with one-point or uniform
crossover) cannot solve H-IFF without a diversity
maintenance method. But, here we tried a GA using
disrespectful crossover on a steady state GA without
deterministic crowding or any other form of diversity
maintenance. We needed to adjust a few parameters
(tournament size 4 (mating best two and replacing
worst), cross-over rate 0.95), but to our own surprise, it
worked. All 30 runs were successful.

This operator has the desirable property that any
schemata that become too common in the population are
penalized. But the effect is extreme; a schema can only
possibly survive if there is some other schema in the
population that disagrees with the first at all l oci. Thus
the operator does not work when applied to the easy
problem since there is only one type of schemata that is
desirable (no runs were successful). So, although it was
successful at maintaining diversity in the standard H-IFF,
it seems unlikely that disrespectful crossover could be
used as a serious diversity maintenance technique. In the
meantime, it makes an interesting side-effect.

4.4 CAVEATS

We should emphasize that although the results in
Figure 5 seem ‘clear cut’ , different choices in the
parameters of the experimental set-up produce different
results. For example, uniform crossover succeeds on
H-IFF with competing building-blocks if the values of
competing blocks are imbalanced – H-IFF bias, for
biases less than about 0.8 [Watson & Pollack 1999b], are
solvable. In this case uniform crossover does not need to
perform the combination that one-point (and
disrespectful) crossover affords since the distances
between local optima and next-best optima are reduced.
On the other hand, disrespectful crossover (with or
without deterministic crowding) can succeed on the easy
version of the problem if we reintroduce a littl e
additional mutation (which was excluded from the above
experiments for clarity). Thus, all algorithms can solve
the easy problem (when using additional mutation), but
only algorithms with combination (i.e. one-point and
disrespectful) can solve the standard H-IFF.

Also, thus far, we have only talked about whether an
algorithm succeeded or not, and not the time to
completion. Table 1 shows the average number of
evaluations required to find the global optima in those
algorithms that succeeded reliably. We see that
disrespectful crossover on H-IFF takes about 13 times
longer to succeed than uniform on the easy problem, and
still more than 9 times longer than one-point crossover
compared on equal problems.

Most importantly, the relevance of these results (as for
any) depends on the nature of the problem at hand. Here
we have only examined two variants of one problem.
Whether combination or macro-mutations are required in
a given problem is to be judged case by case. However,
it is notable that the above experiments indicate that the
utilit y of uniform crossover is best on the variant that is
separable, and that separabilit y is a limitation that is
common to problems in the GA literature [Whitley
1995]. In any case, it only requires one example to
disprove the notion that preserving common schemata is
the only ‘source of power’ in recombination.

‘easy’ H-IFF H-IFF

one-point 26k 40k

uniform 28k -

disrespectful - 366k

disrespectful HCT - -

Disrespectful w/o crowding - 127k

Table 1: Average number of evaluations to find
optimum on runs which were successful. The three
operators and the disrespectful HCT are shown (with
deterministic crowding), and disrespectful crossover is
also shown without deterministic crowding. Averages are
shown for those algorithms that were reliably successful.

5 CONCLUSIONS

The status of the building-block hypothesis is
controversial – some believe that the combination of
low-order building-blocks to find higher-order building-
blocks does not play a significant role in the operation of
the GA. This view is typified by ‘recombination’
operators that do not permit combination, such as
uniform crossover. Indeed, there is considerable
evidence that many of the problems used in the GA
literature, designed to test the operation of the GA, do
not require combination (for example, [Mitchell et al
1992, Syswerda 1989, Jones 1995]). It is also widely
believed that disruption caused by mating individuals
that are too dissimilar is best avoided. Thus, it may not
be wise to assume that combination is required, and it
may be wise to expect crossover operators that preserve
the similarity of parents to be preferable. Chen is
undoubtedly correct that the heuristic of ‘ common
schemata’ being ‘good schemata’ can be a valuable
method for focusing variation on inferior parts of the
genotype. And, Syswerda is correct that we might prefer
an operator li ke uniform crossover if we do not know
that genetic linkage is tight. However, we should not
allow such wisdom to become dogma. The value of an
operator, or any aspect of an algorithm, is conditioned on
the problems to which it is applied.

In this paper we have separated the similarity preserving
property of recombination from the combination
property. For this purpose (and for this purpose only), we
introduced a new crossover operator that destroys



schemata common to both parents. Using this and
uniform crossover we showed that preserving schemata
common to the parents is not suff icient to solve a
particular building-block problem. Whereas,
combination is suff icient, despite the considerable
disruption that this operator causes. However, each
operator has its own niche. In a problem that should be
easy – uniform succeeds but disrespectful fails.

We also showed that the macro-mutations afforded by
both uniform and disrespectful crossover have their
limitations (whether the mutations are ‘ inside’
(disrespectful HCT) or ‘outside’ (uniform) the
similarities of the parents). Neither is suff icient to solve
both variants of the problem.

One-point crossover, however, does succeed on both
problems, and from our explorations we have a clearer
picture of the different characteristics that are at work in
this operator.
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