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ABSTRACT

Solution Concepts in Coevolutionary Algorithms

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Sevan Gregory Ficici

Inspired by the principle of natural selection, coevolutionary algorithms are search

methods in which processes of mutual adaptation occur amongst agents that inter-

act strategically. The outcomes of interaction reveal a reward structure that guides

evolution towards the discovery of increasingly adaptive behaviors. Thus, coevolu-

tionary algorithms are often used to search for optimal agent behaviors in domains

of strategic interaction.

Coevolutionary algorithms require little a priori knowledge about the domain. We

assume the learning task necessitates the algorithm to 1) discover agent behaviors,

2) learn the domain’s reward structure, and 3) approximate an optimal solution.

Despite the many successes of coevolutionary optimization, the practitioner frequently

observes a gap between the properties that actually confer agent adaptivity and those

expected (or desired) to yield adaptivity, or optimality. This gap is manifested by a

variety of well-known pathologies, such as cyclic dynamics, loss of fitness gradient,

and evolutionary forgetting.

This dissertation examines the divergence between expectation and actuality in co-

evolutionary algorithms—why selection pressures fail to conform to our beliefs about

adaptiveness, or why our beliefs are evidently erroneous. When we confront the

pathologies of coevolutionary algorithms as a collection, we find that they are essen-



tially epiphenomena of a single fundamental problem, namely a lack of rigor in our

solution concepts.

A solution concept is a formalism with which to describe and understand the in-

centive structures of agents that interact strategically. All coevolutionary algorithms

implement some solution concept, whether by design or by accident, and optimize ac-

cording to it. Failures to obtain the desiderata of “complexity” or “optimality” often

indicate a dissonance between the implemented solution concept and that required

by our envisaged goal.

We make the following contributions: 1) We show that solution concepts are the

critical link between our expectations of coevolution and the outcomes actually deliv-

ered by algorithm operation, and are therefore crucial to explicating the divergence

between the two, 2) We provide analytic results that show how solution concepts

bring our expectations in line with algorithmic reality, and 3) We show how solution

concepts empower us to construct algorithms that operate more in line with our goals.
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Chapter 1

Solution Concepts in Coevolution

Name the greatest of all the inventors: Accident. Mark Twain 1

1.1 Introduction

Evolutionary computation (EC) has by now amply established its ability to discover

novel and effective solutions to many difficult static optimization problems. Given this

success, we may expect Darwin’s principle of natural selection—the basis of all EC—

to hold particular promise for co-evolutionary computation. Coevolution is a process

of mutual adaptation that occurs amongst a set of agents that interact strategically

in some domain. The outcomes of agent interaction reveal a reward structure that

guides evolution towards the discovery of increasingly adaptive agent behaviors. This

process of adaptation, however, is self-referential: When agents evolve to exploit

reward opportunities provided by other agents, they create yet newer opportunities

for others to exploit. In this way coevolution provides a dynamic ecology, continually

generating new possibilities for evolutionary learning. In particular, the ferment of

1Mark Twain’s Notebook, Chapter 33 “Back in America.”
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coevolution is believed to induce a (potentially open-ended) arms race towards greater

and greater agent complexity.

Indeed, the seminal works of Hillis [91] and Sims [185] give credence to the ex-

pectation that coevolutionary systems are naturally poised to yield complexity from

simple initial conditions. Nevertheless, the gap between the hypothesized potential

of coevolutionary algorithms and realized practice remains substantial—the successes

of coevolution (of which there are now many) are balanced by frequently encountered

and irksome pathologies (of which there are also many). These pathologies do not

merely deprive us of a satisfying result (as might a local optimum), but more impor-

tantly they appear to violate our intuitions of how selection pressure in coevolution is

supposed to operate. That is, the problem is not that the coevolving agents are failing

to adapt; indeed, we often find that the coevolving agents adapt to selection pressures

very effectively—local optima are not the problem. The problem is, rather, that the

behaviors that we expect (or wish) to be adaptive are not; further, the behaviors that

are adaptive for the agents are, for us, undesirable—they are either uninteresting or

do not conform to some a priori goal we seek. Thus, the arms-race narrative is left

somewhere between fact and fiction.

This dissertation examines the divergence between expectation and actuality in co-

evolutionary algorithms—why selection pressures fail to conform to our beliefs about

adaptiveness, or (more properly) why our beliefs are evidently erroneous. To grap-

ple with this incongruity between expectation and actuality, coevolution researchers

have appropriated or invented a myriad of terms, such as cyclic dynamic, mediocre

stable-state, collusion, forgetting, disengagement, and focusing. These terms and the

pathologies they denote have been discussed at length in the research literature; many

notable contributions have been made to better understand them. Nevertheless, this

dissertation shows that, when we confront the pathologies of coevolutionary algo-
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rithms as a collection, we find that they are essentially epiphenomena of a single

fundamental problem, namely a general lack of rigor in our solution concepts.

A solution concept is a formalism with which to describe and understand the

incentive structures of agents that interact strategically; we import the notion of so-

lution concept from game theory [83]—the mathematical field that concerns strategic

interaction. As evolutionary game theory [134] points out, evolving agents need not

be cognizant of their incentives to act on them—Darwinian selection will steer the

agents according to the reward structures extant in the ecology. All coevolutionary

algorithms implement some solution concept, whether by design or by accident, and

optimize according to it; failures to obtain the desiderata of “complexity” or “opti-

mality” often indicate a dissonance between the implemented solution concept and

that required by our envisaged goal.

This dissertation makes three distinct types of contribution. The first is thematic:

We emphasize the use of solution concepts to discipline our thinking about coevolu-

tion. We show that solution concepts are the critical link between our expectations

of coevolution and the outcomes actually delivered by algorithm operation, and are

therefore crucial to explicating the divergence between the two. The second type of

contribution is analytic: We show how solution concepts bring our expectations in

line with algorithmic reality—we cannot expect to obtain complexity when agents are

not incited to become complex. Specifically, we use game theory to show that certain

commonly used algorithmic constructs are incapable of delivering particular types of

results that we may expect or desire. Further, we mathematically prove that certain

solution concepts do not engender monotonic coevolutionary progress, regardless of

implementation details; other solution concepts are shown to be conducive to mono-

tonic progress, some with specific implementation requirements. Finally, the third

type of contribution concerns algorithmic invention: We show how solution concepts
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empower us to construct algorithms that operate more in line with our goals. Specif-

ically, we introduce and test algorithms designed around solution concepts such as

Pareto optimality and Nash equilibrium that take a principled and innovative ap-

proach to the pathologies associated with coevolution.

1.2 Solution Concepts in Search

Fundamental to all search problems is the notion of a solution concept. Whatever

properties our problem domain may possess, and however we embed that domain

into a search space, we require a solution concept to indicate which locations in the

search space—if any—constitute solutions to our problem. A solution concept thus

partitions a search space into two classes: Solutions and non-solutions. Typically, the

two classes are distinguished in a systematic way—by some number of measurable

properties that are present or absent in class members; in general, however, any

arbitrary binary partition constitutes a valid solution concept. (Real-world search

problems are usually difficult enough that we must be content with satisficing rather

than optimization; nevertheless, any satisficing problem can be formally stated as an

optimization problem, where a solution is any result that we deem “good enough.”)

Thus, a search space can have an exponential number of solution concepts applied

to it. When we apply a particular solution concept to a search space, we obtain a

particular search problem.

While solution concepts are intrinsic to search problems, they must nevertheless

be implemented by search algorithms. We can choose from any number of algorithms

to solve a given search problem. Some algorithms may be more or less efficient than

others with respect to our search problem, yet all of the algorithms must implement

the same solution concept to be consistent with our search problem; algorithms that
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implement different solution concepts solve different search problems, by definition

(even when used on the same search space). Solution concepts thus form the nexus

of problems and processes to solve them, and are therefore of very great importance.

Many search problems, like the optimization of the function f : R → R, require

such a plain expression of optimality that the notion of “solution concept” appears

unworthy of special attention. Once we broaden our scope, however, we encounter

other kinds of search problems, like those found in multi-objective optimization or

optimization in dynamic environments, that require much more sophisticated notions

of optimality to convincingly solve. The class of search problem that arguably requires

the most sophisticated notion of optimality, however, contains those problems with

interactive domains. Perhaps the most familiar examples of interactive domains are

board games such as chess, backgammon, and the like. Yet, interactive domains

abound in the study of biology, sociology, economics, and other distributed systems

of agents; indeed, interactive domains motivate an entire branch of mathematics,

known as game theory.

1.3 Recognizing Solutions: The Secondary Search

Problem

To solve a search problem in practice, we need a way to recognize solutions; thus, we

require a solution concept built upon detectable attributes that differentiate solutions

from non-solutions. And, to improve the efficiency of our search, we hope that the

solution concept affords a way (often a heuristic) to assess locations in the search space

with an even finer grain—a metric of goodness that can provide a reliable gradient

for search to follow.
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In most search problems, the properties that identify a solution (or suggest that

one non-solution is preferable to another) are immediately observable. For example,

a sequence of moves is a solution to Rubik’s cube if it takes the cube from some initial

configuration to a configuration where each of the cube’s six sides are of a single color;

here, the elements of the search space are behaviors (sequences of moves) that act upon

(or interact with) an external object, namely the cube. There exists a contrasting class

of search problem, however, where the elements of the search space do not act upon an

external object or environment, but rather interact with each other ; this is the class

of search problems with interactive domains. In such a domain, the properties we

need to observe to identify solutions are revealed only through such interaction. More

important, we may not know a priori which interactions are necessary or sufficient

to determine that an element of the search space is or is not a solution, or whether

one element is preferable to another—our solution concept is silent on this issue. For

this reason, the primary (intended) search problem entails a secondary co-problem ;

the objective of this collateral search effort is to discover which interactions promote

effective search in the primary problem. Of course, this secondary search problem

must have a solution concept, as well.

Many difficulties encountered in conventional coevolutionary systems can be at-

tributed to a lack of appreciation for the secondary search effort; in particular, con-

ventional systems use the same solution concept for both search problems. That is,

the implicit assumption is that if search space element A is better than B at solving

our primary problem, then A is better at solving our secondary problem, as well.

To be more concrete, a conventional coevolutionary algorithm believes that a perfect

strategy for a game (say chess) is also the perfect metric for an opponent’s ability; yet,

we know that Kasparov will beat both a beginner as well as an intermediate player,

thus providing no indication that the intermediate player is better than the beginner.
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(We may choose to examine the entire unfolding of the game, rather than just the

outcome, to detect some distinguishing characteristics, but then we are effectively

changing the game. Even if we do examine the entirety of game play, performance

against an expert may still not reveal differences in skill between two sufficiently

poor players.) That experts can make poor sources of gradient is demonstrated by

Angeline and Pollack [9] in Tic-Tac-Toe.

1.4 Foundations

1.4.1 The Conventional Coevolutionary Algorithm

All evolutionary algorithms, whether co-evolutionary or not, are population-based

search methods inspired by the concept of natural selection. Before we can use an

evolutionary algorithm (EA), we must first choose a representation, or evolutionary

substrate, that is appropriate for the search problem at hand; one canonical substrate

is the bit-string. Next, we require appropriate “genetic” variation operators, for

example crossover and mutation. Each possible configuration of our evolutionary

substrate maps to some location in our search space. The variation operators connect

locations in the search space to form a neighborhood structure. Our search effort is

made more efficient when this neighborhood structure combines with our solution

concept to yield a smooth fitness gradient, or landscape.

A generic evolutionary algorithm operates roughly as follows:

1. Initialize population

2. Evaluate each member of the population and assign a rating

3. If halting criterion is met, then stop; otherwise. . .
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4. Select population members for breeding according to their ratings

5. Generate “offspring” from selected “parents” with variation operators

6. Insert offspring into population, and go to Step 2

Typically, each member of our initial population is some random substrate con-

figuration, for example a random bit-string. The evaluation process examines each

individual in the population and rates it according to some objective function that

subsumes our solution concept; these ratings are often called “fitness values,” but this

is an abuse of the term, which we will define precisely. Next, our selection method

picks members of the population for the reproduction of “offspring.” Individuals with

better ratings are more likely to become “parents” than individuals with worse rat-

ings. The fitness of an individual is the number of offspring it procreates. If the

generation of offspring is sexual, then recombinative operators randomly blend facets

of a parent pair to produce an offspring; recombination is possibly followed by addi-

tional random mutations to the offspring. If offspring are generated asexually, then

a single parent is involved in the production of an offspring and mutation is the only

variation operator used. Evolutionary algorithms typically use fixed population sizes.

Thus, once offspring are generated, space must be made for them in the population.

On the one extreme, the entire population is replaced en masse by offspring; this is a

generational algorithm. On the other extreme, only a few offspring are generated at a

time, leaving most of the population intact; this approach is a steady-state algorithm.

We then iterate the algorithm another cycle, with the hope that some of the offspring

are improvements over their parents. Each step of this process is the subject of intense

research and many variations of the basic formulation exist; for general references to

evolutionary algorithms see Goldberg [85], Mitchell [141], Banzhaf, et al, [21], and

Bäck, et al, [18, 19].
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Co-evolutionary algorithms are primarily distinguished from “ordinary” evolution

by the evaluation process. In coevolution, as we point out above, an individual can

only be evaluated by having it interact with other evolving individuals; these interac-

tion partners are members of the same population or different populations, depending

upon the search problem. (That coevolution may involve more than one evolving

population is often claimed to be a secondary distinction from ordinary evolution.

Nevertheless, multiple populations can be used in ordinary evolution, as well; these

are so-called island models. Occasionally the claim is made that coevolution intrinsi-

cally requires more than one population; one need look no further than the seminal

works of Axelrod [14] and Sims [185] for examples single-population coevolution.)

Regardless of the number of populations, the most conventional pattern of inter-

action is to have each member of each population interact with all other individuals

that can serve as partners. For example, if we have a symmetric two-player game and

a single population of n individuals, then we will have n(n − 1)/2 distinct interac-

tions; if we have an asymmetric two-player game and two populations of size m and n

respectively, then we will have mn distinct interactions. This pattern of interaction is

termed complete mixing by the evolutionary game theory literature [134]. Also similar

to evolutionary game theory, an individual’s rating (or score) is the average outcome

over all its interactions (sometimes plus a constant c to keep all scores non-negative—

fitness cannot be less than zero, after all). Other patterns of interaction are discussed

by Angeline and Pollack [9], Sims [185], Panait and Luke [157], Hillis [91], and Pagie

and Hogeweg [156], with the latter two using spatial patterns of interaction.

As it stands, the conventional coevolutionary algorithm lacks consideration of the

secondary search effort. Those individuals that are most successful in the primary

search effort will obtain the most offspring; thus, these successful individuals also
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have the most influence on testing, since the very same offspring are used as interac-

tion partners.

1.4.2 Competitive vs. Cooperative Coevolution

The work of Potter [165] (see also, Potter and De Jong [167]) introduces a coevolution-

ary methodology called cooperative coevolution (not to be confused with cooperative

game theory). Many real-world problems are too difficult to optimize when treated

monolithically; often, however, such problems can be decomposed into a collection of

easier sub-problems, the solutions to which work together to solve the original, larger

problem. Cooperative coevolution aims to solve a difficult problem X by coevolv-

ing an effective set of solutions to a decomposition of X; if X is decomposed into n

sub-problems, then n reproductively isolated populations are coevolved to “cooper-

atively” solve the problem X. The less the sub-problems interact with each other,

the more effective cooperative coevolution will be. Thus, results pertaining to Kauff-

man’s NK landscapes [108] and Watson and Pollack’s hierarchical if-and-only-if [200]

function apply. From a game-theoretic perspective, if the sub-problems interact (such

that the solution to one sub-problem is globally effective only in combination with

certain solutions to another sub-problem) then our original problem X has features of

a coordination game [82] (we discuss symmetric coordination games in Section 3.7.1);

more generally, the domains with which cooperative coevolution is concerned can be

cast as variable-sum games for n players.

The algorithmic facet of cooperative coevolution that most distinguishes it from

more “conventional” coevolution is its ability to dynamically adjust the problem’s

decomposition. An example given by Potter [165] concerns the number and connec-

tivity of hidden nodes in a neural network; the number of populations corresponds
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to the number of hidden nodes, and population members determine connectivity to

fixed input and output layers. If coevolutionary progress becomes unsatisfactory,

then new populations can be added; populations found to contribute little towards

the over-all solution can be eliminated. In this way, the system does not require an

a priori decomposition of the problem. Note, however, that this method of dynamic

decomposition does require all populations to adhere to a pre-specified interface (or

meta-interface) that governs interaction between components (even if the components

play different functional roles).

Cooperative coevolution is almost always contrasted with so-called competitive

coevolution, which is typically defined as coevolution applied to a zero-sum game.

Nevertheless, the algorithmic framework of “competitive coevolution” is not specific

to zero-sum games; indeed, the framework is often applied to variable-sum games,

most famously the Iterated Prisoner’s Dilemma (e.g., Axelrod [14] and Lindgren

[128]). Further, both “styles” of coevolution (i.e., competitive and cooperative) can

use multiple, reproductively isolated populations; both can use similar patterns of

inter-population interaction, similar diversity maintenance schemes, and so on. Aside

from the novel problem-decomposition scheme of cooperative coevolution, the most

salient difference between cooperative and competitive coevolution resides primarily

in the game-theoretic properties of the domains to which these algorithms are applied.

Consequently, game theory is profitably related to coevolutionary algorithms of either

description (see, for example, Ficici, Melnik, and Pollack [58], and Ficici and Pollack

[62] and the subsequent work—on cooperative coevolution—of Wiegand, Liles, and

De Jong [206, 207]). Thus, the oft-made cooperative-competitive dichotomy is less

sharp than conventionally portrayed.
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1.4.3 Assumptions

When we perform coevolutionary optimization, we make very weak assumptions about

the information we begin with and expect to obtain. Specifically, we assume the fol-

lowing: 1) We are initially ignorant of the gamut of behaviors available to an evolving

agent—indeed, discovery of the behavior space is a central task of coevolutionary

optimization; 2) We are initially ignorant of the outcomes obtained by the possible

behaviors—we incrementally discover the outcomes as we discover behaviors and have

them interact; 3) We can treat the evolving individual as a “black box”—we need

not assume the ability to observe its behavior; we merely require knowledge of the

outcome of its behavior; 4) We cannot definitively establish the identity of a behavior

exhibited by an evolving agent without exhaustive testing—thus, we cannot easily

establish that two agents will behave identically in all situations unless they have

identical genotypes and the genotype-phenotype mapping is deterministic; 5) There

is a many-to-one mapping from genotype space to phenotype space; thus, we can-

not assume that individuals with different genotypes must behave differently. These

assumptions are radically different from those made by the related fields of research

that we discuss below in Section 1.5.

1.4.4 Dynamics vs. Goals

To comprehend the operation of a coevolutionary algorithm, we can either attempt

to understand it purely as a dynamical system, or we can attempt to understand

its dynamics with respect to some desired result or behavior. The approach we

choose depends upon the purpose for which the algorithm is constructed. The former

approach is appropriate if, for example, the algorithm is meant to model specific

mechanisms or processes that we hypothesize to operate in nature. In this case,
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the behavior of the algorithm is viewed as a consequence of algorithm design. In

contrast, the latter approach is appropriate if we begin with a particular outcome

in mind and seek to build a mechanism capable of achieving or approximating that

outcome. In this case, the design of the algorithm is viewed as a consequence of

the desired behavior. In this dissertation, we use this second approach to consider

coevolutionary algorithm dynamics; we presume that the coevolutionary algorithm

performs optimization, and the notion of optimality is specified by a solution concept.

Our emphasis on equilibria is not to say that we are uninterested in coevolution-

ary dynamics. Indeed, the notion of equilibrium can scarcely be discussed without

reference to dynamics. Nevertheless, since the result we seek from a coevolutionary

algorithm is an equilibrium state, our consideration of dynamics must be calibrated

accordingly. Certainly, in a real coevolutionary algorithm, factors such as mutation

and finite population size perpetually keep the evolving population from true equilib-

rium; further, if we care to use a coevolutionary algorithm in an open-ended domain,

then by definition we cannot achieve a permanent equilibrium. Thus, one can argue

that we are left only with dynamics, and that is where our interest must lie, after

all. Nevertheless, even under these circumstances, we care that our dynamics are

informed by our intended solution concept and seek to satisfy it; if our dynamics

do not deliver the desired outcome in the absence of confounding factors (such as

open-endedness, mutational noise, and finite populations), then their justification for

our purposes appears dubious.

1.4.5 Adaptation vs. Optimization

De Jong [47, 48] points out that the design intent behind the canonical genetic al-

gorithm (GA), as defined by Holland [94], is to investigate natural evolution—not
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perform fitness-function optimization. Indeed, the canonical GA does not optimize

the fitness function per se, but rather optimizes expected cumulative reward. (This

associated, but different, task is similar to the k-armed bandit problem : We have k

slot machines and N coins; each of these slot machines has a different expected rate

of reward that is unknown to us. Our task is to apportion our N coins amongst

the k machines to optimize our expected cumulative return. Thus, we have finite

resources with which to explore the rates of return of the k machines and exploit the

machine with the highest observed return. Further details about the bandit problem

and its relevance to GA operation are found in Holland [94], De Jong [46], and Gold-

berg [85].) De Jong further points out that, when we refashion the GA to emphasize

fitness-function optimization (e.g., by adding elitism), analyses of the canonical GA

may no longer apply; instead, new analyses are required to understand the behavior

of the altered GA. While De Jong does not explicitly invoke the notion of solution

concept in his remarks, his concerns about GA praxis are echoed in spirit by our ap-

proach to coevolutionary algorithms; most particularly, in Chapters 4 and 5 we show

that certain alternative selection methods and fitness sharing change the behavior of

an otherwise standard coevolutionary algorithm such that conventional expectations

of algorithm behavior are no longer met.

De Jong also remarks that natural evolution is a process of adaptation within a

dynamic environment. Harvey [89] expresses a similar point regarding evolutionary

learning algorithms for adaptive autonomous agents. In particular, Harvey observes

that an agent’s environment may be dynamic, and may contain other adaptive agents.

Broadly speaking, both De Jong and Harvey are reflecting upon what is essentially a

coevolutionary framework. Further, they agree that such a framework does not offer

a global optimization objective.

For example, Harvey states that if an agent’s environment changes only incremen-
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tally over a period of time, then an adaptation of the agent’s current behavior is likely

a more appropriate response than beginning an entirely new optimization effort tab-

ula rasa ; thus, evolutionary learning algorithms appear well-suited for such an agent.

But, Harvey further comments that a series of such local adaptations may be the only

sense in which the agent “optimizes,” and therefore we cannot easily imagine a notion

of global or long-term optimization for our agent. Nevertheless, as we will see below

and later in this dissertation, there do exist on-line learning algorithms that can be

understood to optimize in the limit; these algorithms do not necessarily require the

environment to be stationary (see Section 1.5), and we will show in Chapter 9 that

there exists a sense in which a coevolutionary system can monotonically improve,

according to a global metric, even in open-ended domains where future innovations

cannot be anticipated (which implies a non-stationary environment). Thus, while we

are not interested to debate whether natural evolution performs adaptation or op-

timization, we do argue that an appropriately constructed coevolutionary algorithm

can optimize. There exists a common belief that objective metrics of goodness are an

ill-conceived proposition in coevolution (see, for example, Freund and Wolter [78] who

equate frequency-dependent fitness—which obtains in coevolution—with the lack of

an “absolute goal”); we show that this belief does not transfer to algorithms designed

around appropriate solution concepts.

1.4.6 Expression of a Solution

When we apply evolution to a static single-objective problem, the most fit individual

of the final population is considered the “solution”; if more than one individual in the

final population achieves this maximal fitness, then we are indifferent as to which is

selected (even if these individuals are genetically or phenotypically distinct). When we
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apply evolution to a static multi -objective problem, then the solution that is delivered

is typically the Pareto front, which is a set of non-dominated feasible members of a

trade-off surface [76]; these individuals are either in the evolving population or in an

archive of some sort (we discuss multi-objective optimization more in Chapters 2 and

7). The practice of coevolution follows, for the most part, the convention that the

solution to a coevolutionary problem will be a single “best” individual (or possibly

a set of individuals where multiple populations that coevolve with each other each

contribute their best individual, e.g., Potter and De Jong [167]). Indeed, the efficacy

of some coevolutionary algorithms and the correctness of some analyses are predicated

on the existence of a single, globally perfect individual behavior (e.g., Rosin and Belew

[174] and Schmitt [183, 182]).

In their experiments with robotic pursuit-and-evasion, Nolfi and Floreano [148]

observe that the notion of a single global winner may be inadequate. Other researchers

explicitly embrace the belief that a solution may need to be expressed as a collection of

evolved agents (all from the same population), where no single agent in the collection

can be considered a proper solution on its own. (In the case of multi-population

coevolution, each population may need to contribute such a collection.) For example,

Darwen [41] (also Darwen and Yao [42]) uses a speciating evolutionary algorithm

to evolve a collection of strategies for the Iterated Prisoner’s Dilemma (IPD). A

novel gating mechanism is used (once evolution is complete) to determine which

strategy in the collection likely offers the most effective response against a particular

opponent at every point during a 100-iteration game; this procedure is shown to

improve robustness. We note that the “output” of this framework is not entirely a

black-box: The gating mechanism is hand-built and agent behaviors are observable.

Nevertheless, the solution obtained is clearly not in the form of a single best individual.

Finally, evolutionary game theory [134] regards the state of the entire population

16



as a solution (provided the state is at a stable fixed-point). For example, in the Hawk-

Dove game, the Nash equilibrium solution is obtained when the population reaches

a particular ratio of Hawks and Doves; this is known as a polymorphism. Thus, the

solution here is not a single individual (e.g., a Hawk), nor is it a collection of unique

individuals (e.g., a Hawk and a Dove); rather, the solution is a specific distribution

over the two strategy types. We will discuss evolutionary game theory and the Hawk-

Dove game in detail in Chapters 4, 5, and 6. In the formalism we introduce in Chapter

2, we use a construct called a behavior complex to represent various types of strategy

collections (including singletons).

1.5 Related Fields

There exist a number of fields of research that are highly relevant to our work in

this dissertation; we review them here and discuss where the body of research in

coevolutionary optimization fits in this constellation.

1.5.1 Game Theory

Game theory is the mathematics of strategic interaction [83]. Given a group of in-

teracting entities, we use game theory to predict the outcome of their interaction; if

we are one of the interacting entities, then we additionally use game theory to decide

how we should behave.

In this dissertation, we take from game theory its emphasis on the notion of solu-

tion concept (particularly Nash equilibrium [145]) and use it as our organizing theme.

Further, we use game theory to obtain several of our results (e.g., Chapters 4 and 5)

and inform algorithm design (Chapter 8). Nevertheless, the active research questions

in game theory remain quite distinct from those we consider in this dissertation.
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We make no attempt to summarize all of the research directions pursued in game

theory; rather, we highlight some important distinctions between game theory and

coevolutionary optimization.

Despite the primacy and power of Nash’s equilibrium concept, it often leaves

the game theory practitioner wanting. Games frequently have more than one Nash

equilibrium—sometimes a great many; given that we are interested to obtain a Nash

equilibrium, the question arises of how one is to rationalize the choice of one equilib-

rium over another. The choice of equilibrium is especially important in games where

the players must coordinate to attain equilibrium.

As Samuelson [180] points out, much of game theory is concerned with the prob-

lem of equilibrium selection. Research on this problem examines, among other things,

various refinements of the Nash concept, such as Pareto-optimal and risk-dominant

equilibria. Other refinements originate from dynamical-systems considerations, such

as local stability, which we discuss below. Finally, conventional game theory makes

several strong assumptions, such as agent rationality, complete information, and com-

mon knowledge, that simply cannot apply to coevolving agents; hence, the importance

of evolutionary game theory, discussed below.

1.5.2 Numerical Methods for Computing Nash in Normal-

Form Games

If we are interested to locate a Nash equilibrium in a normal-form game (i.e., a

game expressed as a payoff matrix), then we can apply numerical methods to do so,

provided we already have the complete payoff matrix for the game. If the game is

zero-sum, then we convert it into a linear program (LP) and solve it using the simplex

method (simple to code, works well in practice, though is known to have a worst-case
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cost that is exponential in the size of the game) or more recent interior-point methods

(more difficult to code, but are generally faster in practice and have a complexity

polynomial in the size of the game). Readers interested in these methods and LP are

referred to Thie [192] and Vanderbei [198].

In the most general case, where we wish to solve a general-sum asymmetric (or

bi-matrix) game, the conventional method is to convert the game into a linear com-

plementarity problem (LCP). Current algorithms to solve LCPs are based upon the

Lemke-Howson method [124]; recent treatments of the topic are found in Pang, Stone,

and Cottle [158] and Facchinei and Pang [57]. LCP algorithms work well in practice,

but are known to be exponential in the size of the game.

The above methods locate only a single Nash equilibrium; in games with many

equilibria, these methods do not guarantee convergence to any particular type of Nash.

For an overview of methods to find Nash equilibria in games, including methods for

locating multiple Nash, see McKelvey and McLennan [136]. In summary, all of the

methods discussed here require a priori knowledge of the complete payoff matrix;

thus, they do not address the problem of locating Nash equilibria when the space of

strategies must first be discovered. (Nevertheless, these methods can be incorporated

into larger algorithms, as we show in Chapter 8.)

1.5.3 Computing Nash from Extensive-Form and Graphical

Models

More recently, attention has turned to the computation of Nash equilibria in games

expressed in extensive form (i.e., game trees). While any extensive-form game can

be converted into normal form, the size of the normal form game is exponential in

the size of the game tree; the work of Koller [115] takes advantage of this fact to ob-
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tain exponential speed-up over more conventional normal-form methods. Still newer

innovations by Kearns, Littman, and Singh [109], Koller and Milch [116], and Ortiz

and Kearns [154] use graphical models of n-player games to obtain even more effi-

cient representations and algorithms for solving games. These graphical models gain

efficiency over conventional representations when the structure of players’ interaction

is constrained. While these methods represent the game differently, they encode no

less knowledge of the game than the normal form; thus, they require knowledge that

we initially lack when using coevolution.

1.5.4 Evolutionary Game Theory

In conventional game theory, three key assumptions buttress the Nash equilibrium

solution concept and make it compelling: 1) An agent is rational, 2) an agent has

complete knowledge of the game (i.e., the strategies and payoffs for all players), and

3) there exists common knowledge amongst the agents of the first two assumptions.

The historical criticisms against Nash equilibrium concern the strength of these as-

sumptions, for without their support the substance of the Nash concept appears to

collapse. Indeed, we can easily imagine situations where any or all of these three

assumptions cannot realistically hold.

In particular, one cannot attribute properties such as rationality to most (if not all)

biological agents. In their seminal paper, Maynard-Smith and Price [135] provide an

entirely new motivation for the Nash equilibrium concept that enables its application

to biology: Our strong assumptions—requirements of agent rationality, knowledge

of the game, and common knowledge—are replaced by the principle of Darwinian

selection. Their framework is known as evolutionary game theory (EGT) [134] and

has profoundly changed the tenor of game-theoretic research.
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Because of their shared interest in evolutionary principles, we can expect evo-

lutionary game theory to have some kinship to, and relevance for, coevolutionary

algorithms; indeed, we will use EGT to obtain some of our key results (see Chapters

4 and 5). Nevertheless, there exist important distinctions between the goals of evo-

lutionary game theory and coevolutionary optimization. The focus of evolutionary

game theory remains the problem of equilibrium selection—EGT is not concerned

with search or discovery. More particularly, EGT studies equilibrium selection under

replicator dynamics that nominally model processes in biologic [93] or economic [81]

systems. In contrast, coevolutionary algorithm research is very concerned with search

and discovery, in addition to equilibrium selection. Also, coevolutionary optimization

cares to obtain particular outcomes (as specified by solution concepts), and so we

build methods to achieve these outcomes rather than model natural processes.

While evolutionary game theory removes the strong assumptions of conventional

game theory, it makes several new ones: 1) We assume an infinite population, 2)

We assume complete mixing, that is, every agent interacts with every other agent, 3)

The outcomes of each interaction are expected payoff values, 4) An agent’s fitness is

proportional to its cumulative payoff over all interactions with the members of the

current population (this requires cumulative payoffs to be non-negative—see Chapter

4 for details).

As in conventional game-theoretic analyses of normal-form games, evolutionary

game theory assumes knowledge of the entire payoff matrix. This knowledge, however,

does not reside in any individual agent—individuals are presumed to lack cognizance

of their behaviors and the gamut of possible strategies. Knowledge of the strategy

space is, instead, a burden placed on the population as a whole: The initial state of the

ecology is required to encompass the universe of strategies that we wish to consider;

strategies not extant in the initial state will not appear later in evolutionary time.
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The EGT framework considers a population of agents that interact with each

other. Agents that obtain higher fitness reproduce more offspring than agents who

receive lower fitness; further, because agents’ fitness values are contingent upon the

distribution of agent strategies (known as frequency-dependent fitness), the distribu-

tion of strategies in the population can change over time—this is the sense in which

the population “evolves.” The precise nature of the system’s dynamics is governed

by the game’s payoffs and the replicator equations that are used. In-depth discus-

sions of replicator properties are found in Weibull [203], Hofbauer and Sigmund [93],

Samuelson [180], Fudenberg and Levine [82], and Gintis [84].

With evolutionary game theory, Maynard-Smith [134] introduces a new solution

concept called an evolutionary stable strategy (ESS). The ESS is a refinement of

Nash equilibrium that adds a criterion of non-invadability. Despite its name, the

ESS is actually a static solution concept (as is Nash equilibrium), and has been

criticized for this reason (for example, by Nowak [150]). More recently, many other

solution concepts have been proposed for the EGT framework (e.g., Lessard [126]),

including those that are more properly rooted in dynamical systems theory (e.g.,

Rowe, et al [176]).

1.5.5 On-Line Learning of Best-Responses

In many learning frameworks, the environment in which learning takes place is dis-

tinct from the environment in which the learner is intended to operate. Frequently,

the activity of learning stops once the learner is deployed—the period of learning

is circumscribed. A very active and diverse area of research concerns on-line learn-

ing algorithms, which do not distinguish between learning and deployment. With

on-line learning, the learner concurrently learns from and operates in the intended
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deployment environment. Here we discuss on-line algorithms for domains of strategic

interaction, where the learner’s environment consists of (other) players that are exter-

nal to the learning system; through interaction with these players, the learner induces

best-response strategies over a period of time. All of the algorithms we discuss here

have the additional property of converging to Nash equilibrium when used in self-play

(some under more general circumstances than others). The main appeal of on-line

methods is their ability to continually adapt to the behaviors they observe in others.

The earliest example of such algorithms dates from 1951 in the work of Brown

[28] and Robinson [171] and is known as fictitious play. This algorithm continually

updates a history of strategies played by others and plays the pure strategy that is

the best response to the current state of this historical distribution. Importantly,

when all players use the fictitious play algorithm (i.e., “real” players are replaced

with this algorithm, hence “fictitious” play), the historical distributions converge to

Nash equilibrium for certain classes of games; one such class is the zero-sum game.

Fictitious play does not converge for all games, however. Clearly, fictitious play

requires the ability to identify the behaviors of the other players and knowledge of

the entire payoff matrix. Further discussions on fictitious play, its variations, as well

as a variety of other best-response dynamics, are found in Fudenberg and Levine [82].

A much more recent on-line algorithm, due to Freund and Schapire [79, 80], learns

a best response for any two-player game. Their multiplicative weights (MW) algorithm

makes more modest knowledge demands than fictitious play; given the (potentially

mixed) strategy Q used by the other player for a particular round, MW needs to know

what payoff each of its available pure strategies would have obtained against Q. Thus,

MW is given column-wise “snapshots” of the payoff matrix. These payoffs are used

to update weights, one for each pure strategy, that determine the mixed strategy that

MW will use in the next round. This algorithm does not maintain an explicit history of

23



prior strategies played by the other player, and therefore cannot explicitly calculate a

best-response action. Rather, the less direct feedback of payoffs is used to manipulate

the weights. The authors relate the operation of MW to boosting algorithms, which

are methods that combine the opinions of many poor classifiers through weighting

to obtain a very good classifier. The MW algorithm is shown to converge to a best

response, which will be a Nash strategy if the other player is optimal, or will be a

different strategy that takes advantage of sub-optimal opponent play. In particular,

the MW algorithm achieves Nash equilibrium in self-play. The MW algorithm (and

a further refinement by Auer, et al [12]) nominally requires knowledge of its available

strategies. We may argue that MW learns the payoff structure of the game as it goes,

and so it bears some resemblance to the reinforcement learning models we discuss

below.

The very recent work of Conitzer and Sandholm [38] is shown to learn a best

response in any n-player game. This work assumes complete knowledge of the game’s

strategies and their payoffs, however. Further, the algorithm begins with an off-line

computation of equilibrium strategies for each player; when other players’ behaviors

appear non-stationary, then this equilibrium strategy is used by the algorithm, oth-

erwise the algorithm computes a best-response to the stationary distribution. This

algorithm also achieves equilibrium in self-play.

1.5.6 Multi-Agent Learning of the Game and Equilibria

Next, we wish to discuss methods that seek to learn the payoff structure of the game

concurrently with their effort to learn an equilibrium or best-response strategy. The

methods we include here use reinforcement learning (RL) and are designed for deploy-

ment in multi-agent Markov games. An agent must learn the reward structure of the
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game (i.e., the payoffs obtained by different actions in different states) in addition

to learning the optimal behavior. Nevertheless, the agent has complete knowledge

of its action set. This is in contrast to all of the above methods (with the possible

exception of MW), which assume a priori knowledge of the game (i.e., the payoffs

in addition to the strategies). The RL methods also have the property that they

converge to equilibrium when used by all agents. Littman [130] examines two-player

zero-sum games; Wang and Sandholm [199] consider n-player coordination games (or

team games); Finally, Bowling and Veloso [24] address 2x2 bi-matrix general-sum

games. All of these methods include some form of best-response behavior.

As a last example of multi-agent learning using RL, we mention Wolpert and

Tumer’s Collective Intelligence (COIN) framework [208, 195]. Not unlike some of the

graphical models we discuss above, COIN is interested in arbitrarily constrained agent

interaction structures, primarily with high localization. These agents interact and

seek to maximize their rewards. In addition to agents’ local reward functions, there

exists a world utility function over the possible histories of agent behavior. COIN

considers how one is to engineer agents’ local utility functions such that their selfish

behavior optimizes not only their private utility functions, but also the world utility.

Thus, COIN has some kinship with the field of mechanism design (see [133, C. 23]

and [146]).

1.5.7 Computational Learning Theory

Rosin and Belew [174] (also Rosin [172]) relate coevolutionary optimization to Valiant’s

computational learning theory (COLT) [196] (see also Kearns and Vazirani [111]). The

subject of COLT is efficient inductive concept learning. Broadly speaking, a concept

is a binary partition of a set X of elements; all members of one partition are consid-
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ered instances of the concept, and all members of the other partition are not. The

learning task is to induce approximately the structure of a partition (the target con-

cept) through exposure to positive and negative examples drawn randomly from the

set X with an arbitrary (though fixed) distribution; the learning algorithm is required

to approximate the target concept to within some error ε with some probability 1−δ,

while meeting efficiency constraints.

The analogy that Rosin and Belew draw between coevolution and COLT begins

with an asymmetric two-player zero-sum game G. They assume that Player 1 has

some perfect pure strategy that beats all Player-2 strategies. This perfect Player-1

strategy embodies the target concept, which we may portray as “the set of Player-2

strategies that can be defeated”; this set contains all Player-2 strategies, as we assert

above. An inferior Player-1 strategy embodies a learner hypothesis (i.e., an approxi-

mation to the target concept) that requires refinement; this process of refinement is

achieved through exposure to Player-2 strategies that the inferior Player-1 strategy

cannot beat. In terms of the COLT framework, when an imperfect Player-1 strategy

fails to beat some Player-2 strategy, then we say that the learner hypothesis has mis-

classified an instance of the target concept; that is, we have found a Player-2 strategy

that the learner hypothesis claims not to belong to the set of defeatable Player-2

strategies.

Rosin and Belew assume an asymmetric situation between the roles of Player 1

and Player 2: There exists a perfect strategy for Player 1 that defeats all Player-2

strategies; for any imperfect Player-1 strategy, there exists some Player-2 strategy

that defeats it. Rosin and Belew define a teaching set X to be a set of Player-2

strategies such that any imperfect Player-1 strategy can be defeated by some Player-

2 strategy in X . The specification number is the size of the minimal teaching set (for

the domain under consideration). Rosin and Belew relate the notion of specification
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number to the work of Goldman and Kearns [177], which defines a minimal teaching

sequence (MTS). The MTS is the minimal set of examples required to unambiguously

identify a particular concept (out of a space of possible concepts).

Rosin and Belew frame the coevolution between Player 1 and Player 2 as a se-

quence of concept learning problems. The main loop of this process is termed a

competitive algorithm, which determines what target concepts to use for an embed-

ded strategy learning algorithm (SLA); the SLA is assumed to always succeed in

learning the given target concept. One particular competitive algorithm that Rosin

and Belew discuss is the covering competitive algorithm (CCA), which is shown to

provide polynomial-time learnability of a perfect Player-1 strategy (with a key as-

sumption that we discuss below). In each iteration of the CCA, the Player-1 strategy

learning algorithm is to discover a strategy that can defeat all previously discovered

Player-2 strategies; the Player-2 strategy learning algorithm is to discover a teaching

set with respect to all previously discovered Player-1 strategies. This process guar-

antees that the concepts being learned over time incrementally approach the target

concept manifested by the perfect Player-1 strategy.

Rosin and Belew assume that the strategy learning algorithms for both players will

always succeed and run in polynomial time; they also recognize that this assumption

is a strong one. For example, even if the addition of some example clarifies the

identity of the target concept (i.e., eliminates certain hypotheses), we may still be

unable to efficiently access any improved hypotheses due to the constraints imposed

on genetic search by neighborhood structures. Thus, any real-world application of

the covering competitive algorithm will certainly handle intransitive structures (which

are limited in scope and extent by the assumption of a perfect Player-1 strategy) and

eliminate evolutionary forgetting, but it will remain vulnerable to loss of gradient

and disengagement (see Chapter 3 for a detailed look at these pathologies). More
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fundamentally, Kearns and Valiant [110] show that not all concepts can be learned

efficiently.

Nevertheless, the relevance of computational learning theory to coevolutionary

optimization is clear. Indeed, the use of examples to unambiguously identify a target

concept is echoed by our notion of a secondary search effort which seeks interactions

needed to identify solutions to our primary search problem. The issue of teaching will

be revisited in Chapter 3, where we review methods to create gradient for search, and

is the topic of Chapter 7, where we introduce a new method for gradient creation; this

approach, called Pareto coevolution [64], is essentially a heuristic for picking concept

examples that suggest reachable improvements to learner hypotheses.

In the conventional coevolutionary algorithm, the inductive processes of the vari-

ous player roles operate concurrently; this is in contrast to the discrete, synchronized

nature of Rosin and Belew’s competitive algorithm (though some coevolutionary al-

gorithms do occasionally stop such concurrent operation—see Chapter 3). Thus, if

we want to draw a parallel between COLT and more conventional coevolutionary ap-

proaches, we must consider the learners’ inductive procedure to be the entire “main

loop,” rather than some subroutine as in the competitive algorithm. In this case, we

find that the distribution of test cases to which learners are exposed is generally not

stationary, but rather changes as learning proceeds (successfully or not).

1.5.8 Coevolution as Simulator

In Section 1.4.4 we state that a coevolutionary algorithm can be used to perform

optimization or to model processes in nature. While this dissertation concerns co-

evolutionary optimization, we wish to point out some ways in which coevolutionary

methods, in their broadest sense, are used to simulate interactive systems and model
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phenomena. From the field of Artificial Life we have several complex simulators

that are used to investigate a number of evolutionary phenomena; chief amongst the

goals of such simulators is to investigate the prospect of attaining true open-ended

(co)evolution with resultant complex structures (we discuss open-endedness more in

Chapter 9). Examples of these systems include Holland’s ECHO [95] (see also Hraber,

et al, [97]), Ray’s Tierra [168, 169], Adami and Brown’s Avida [3, 1], and Taylor’s

Cosmos [190, 189].

Coevolutionary systems are also used to examine aspects of adaptive behavior.

For example, Miller and Todd [138, 139] (also Todd and Miller [194]) use coevolution

to investigate the role of sexual selection in evolution. Of particular interest, their

simulations illustrate Fisher’s [66] process of “runaway sexual selection” in which male

traits (and female preferences for those traits) become highly exaggerated. Indeed,

some traits are accentuated to the extent that they become liabilities with respect to

other aspects of the male’s environment, such as predators. If we equate fitness with

reproductive success, as opposed to simple survival, then the requirements of female

partners are easily understood as important. That female requirements can exact

some tradeoff with respect to other components of fitness may appear unintuitive;

nevertheless, as Miller and Todd discuss, a male’s survival in spite of an otherwise

deleterious trait serves as a reliable signal of his viability. Indeed, Miller and Todd

also discuss how sexual selection may help in the process of optimization; here, they

point out that sexual selection can be an effective mechanism for the creation of

diversity, since female preferences are not anchored to static aspects of a broader

learning environment and are free to vary. In connection with diversity creation,

earlier work of Todd and Miller [193] shows how sexual selection can enable sympatric

speciation, that is a process of speciation that does not rely on geographic separation

to implement reproductive isolation. Other simulations of sympatric speciation are
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found in Kondrashov and Shpak [117] and Dieckmann and Doebeli [52], for example.

The evolution of communication is also frequently studied in the framework of co-

adaptation. An early example is that of Werner and Dyer [205] in which “female” and

“male” agents learn to coordinate behaviors to improve reproductive success. The

agents are spatially distributed on a lattice; the females are stationary and sighted

while the males are mobile and blind. When a male encounters a female, they pro-

create offspring which replace randomly selected agents in the lattice. The females

generate signals that the males receive; in the most adaptive pairs, these signals serve

to direct the movement of the male such that it more quickly finds the female. Since

coordination leads to more efficient reproduction of offspring, a communicative con-

vention naturally emerges from the system. Other investigations on the evolution of

communication include Saunders and Pollack [181], Oliphant and Batali [151], and

Di Paolo [50, 51]. Our own early work concerns the use of coevolution and commu-

nication [60] and is described further in Chapter 3.

Coevolutionary simulations are also used to study economic and social systems.

For example, LeBaron [121, 122] and LeBaron, Arthur, and Palmer [123] investi-

gate properties of financial markets with agent-based simulations. Arthur [10, 11]

and Axtell [15, 16] consider tasks of social coordination where agents have bounded

rationality.

The examples of coevolution that we discuss above present a variety of applica-

tions in which the objective is to develop a better understanding of some system or

process, rather than obtain an optimal solution. This is not to say that the notion

of optimization is entirely foreign to these studies, however. On the contrary, several

of our results (primarily from Chapters 4 through 6) are relevant to coevolutionary

models where polymorphic Nash equilibria may be natural outcomes of the system.
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1.6 Contributions and Dissertation Structure

This dissertation explores the pathologies characteristic of coevolution and frames

them in a novel way. We illustrate that these pathologies can be understood to result

when solution concepts are improperly implemented or poorly chosen. We review the

coevolutionary algorithm literature from this perspective and use solution concepts to

guide the development of novel methods to address these pathologies. The following

overviews the dissertation and its contributions chapter by chapter.

Chapter 2: Framework This chapter develops a formal framework to show how

single-player games against Nature can be reformulated to become multi-player games;

it further shows how multi-player games can be reformulated to become multi-objective

optimization problems. The utility of this framework is that it invites us to think

more sharply about the decisions we make when we build a coevolutionary system.

As important, this framework will be used in Chapter 9 to present our results on

monotonicity.

Chapter 3: Taxonomy and Review This chapter begins by asking When is

a coevolutionary algorithm a useful tool? We review the successes of coevolution

and then taxonomize the pathologies that are commonly encountered; the taxonomy

operates on the novel view that these pathologies result when solution concepts are

improperly implemented or poorly chosen. Finally, we review relevant coevolutionary

algorithm literature that addresses various pathologies and consider it in the light of

our taxonomy and our emphasis on solution concepts.

Chapter 4: A Game-Theoretic Analysis of Selection Methods Here we

present our first central result, which shows that several commonly used selection
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methods are inappropriate for use in coevolutionary algorithms when the domain in

question is a variable-sum game. Specifically, the examined selection methods do not

properly implement the Nash equilibrium solution concept and prevent the algorithm

from converging onto polymorphic Nash equilibria; instead, these selection methods

induce cycling, distorted point attractors, or chaos. A simple evolutionary game-

theoretic framework is used to establish these results. This work is first published in

Ficici, Melnik, and Pollack [58].

Chapter 5: A Game-Theoretic Analysis of Fitness Sharing Methods Using

the methods of Chapter 4, we turn our attention to fitness-sharing methods. We show

that the fitness sharing methods we investigate distort polymorphic Nash equilibria.

The results of Chapters 4 and 5 challenge the tacit assumption that an evolving

population can simultaneously perform search and properly represent the solution of

coevolutionary search. The work in this chapter is also found in Ficici and Pollack [63].

Chapter 6: Effects of Finite Populations A strong assumption made in evolu-

tionary game theory [134] is that the evolving population is infinitely large. Recent

simulations by Fogel, et al, [73, 74, 75] show that finite populations produce behavior

that, at best, deviates with statistical significance from the evolutionary stable strat-

egy (ESS) predicted by EGT. They conclude that evolutionary game theory loses its

predictive power with finite populations.

In this chapter, we revisit the question of how finite populations affect EGT dy-

namics. Some of the experiments of Fogel, et al, use truncation selection, which

we show in Chapter 4 to distort polymorphic equilibria even with infinite popula-

tions. Other of their experiments use fitness-proportional selection, implemented

with the standard “roulette wheel” mechanism. By paying close attention to how
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the multinomial distribution produced by roulette wheel interacts with the dynami-

cal map of an infinite-population system, we are able to account for the divergence

between ESS predictions (based on infinite populations) and results observed in our

own finite-population simulations. We build a predictive Markov-chain model of

a finite-population system; we then show that Baker’s SUS [20] selection method

largely corrects the observed divergence. This work is first published in Ficici and

Pollack [61].

Chapter 7: Pareto Coevolution In this chapter, we present our first core algo-

rithmic innovation. The algorithm presented here is based upon the observation that

the challenge faced by a coevolving individual can be described as a multi-objective

optimization problem. Specifically, each individual with whom an agent interacts can

be considered a dimension of optimization for that agent. This suggests that notions

used in multi-objective optimization (MOO), in particular the solution concept of

Pareto optimality, can be applied to coevolution. Pareto optimality takes us away

from the conventional notion that the solution we seek is an individual ; instead, we

are now open to the possibility that the solution to a coevolution problem may be a

set of individuals, known as the Pareto front.

In particular, the Pareto solution concept provides a principled way of handling

tradeoff surfaces, where improvement with respect to one objective entails degrada-

tion with respect to another—a fresh perspective on coevolution and the problem of

intransitivity. In addition to recognizing the relevance of Pareto optimality to coevo-

lution, this chapter introduces the orthogonal concept of distinctions, which is used to

address directly the pathology of disengagement. In so doing, we seek a matched pair

of solution concepts for the primary and secondary search problems we discuss above.

We apply our methodology to the density classification task for cellular automata and
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obtain a rule with an 84% classification rate; this rule is better than all previously

published results except for those of Juillé and Pollack [104, 105, 106]. The work in

this chapter is first published in Ficici and Pollack [64].

Chapter 8: A Game-Theoretic Memory Mechanism Another pathology that

can arise if the wrong solution concept is used for the secondary search problem is

that of forgetting, where previously learnt traits are lost, only to be needed later,

and so must be re-learnt. As our second algorithmic innovation, we introduce a

new memory mechanism based upon Nash equilibrium, demonstrate its ability to

accumulate desirable traits, and contrast its behavior and performance against other

memory methods found in the literature. This work is first published in Ficici and

Pollack [65].

Chapter 9: Solution Concepts and Monotonicity Our final analytic results

show that certain solution concepts have a special property we call monotonicity,

which determines whether a search algorithm can return answers of non-decreasing

quality when queried over time during its operation. We show that Nash equilibrium

is a monotonic solution concept; Pareto optimality is monotonic only if implemented

a certain way. The solution concept implemented in the conventional coevolutionary

algorithm uses frequency-dependent fitness and selects the single individual that ob-

tains the highest average score from interaction with others; both this solution concept

and a modified version that uses frequency-independent fitness are not monotonic.

More importantly and contrary to common belief, monotonicity implies that ob-

jective (i.e., global) metrics of goodness can be applied to coevolutionary domains.

The non-monotonicity of conventional coevolutionary algorithms may help explain

the common sentiments that 1) objectivity is intrinsically foreign to coevolutionary
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systems and 2) that coevolutionary algorithms do not optimize. Further, our mono-

tonicity results obtain in “open-ended” domains—where there exists an infinity of

behavioral strategies—even when the properties of strategies cannot be anticipated

in advance of their actual discovery.
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Chapter 2

Foundational Concepts and

Framework

2.1 Introduction

The purpose of this chapter is manifold. First, we wish to build a framework within

which we can precisely articulate different kinds of search problems; we want to ex-

press games against nature and multi-player games, single-objective optimization and

multi-objective optimization, static domains and dynamic domains. Second, we want

the framework to be expressive enough to allow us to frame a search problem in many

ways; we will show, for example, how some games against nature can be re-cast as

multi-player games and how multi-player games can be re-cast as multi-objective op-

timization problems. Most importantly, we present this framework to help discipline

our thinking about coevolutionary algorithms, and expose the various decisions that

we make when we construct and use coevolutionary algorithms. Finally, we will use

portions of this framework in Chapter 9 to discuss the concept of monotonicity. To

help the reader, Table 2.1 provides a quick reference to the notation used.
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Category Notation Meaning
Domains D Problem domain

R Set of domain roles; there are two role types
P Player role-type
N Nature role-type

Behaviors Bi Set of behaviors available to role i
E = 〈b1, . . . , bn〉 Behavioral event; the interaction of an n-tuple

of behaviors
v Metric or dimension of behavior; also known

as a view of behavior
Vi Set of metrics used to assess behavior of

player-role i
M(i, E, v)→ R Measurement function; returns goodness of

player-role i’s behavior in event E according
to given metric v

T Table of measurements
Configurations X Strategy complex

K Configuration of complexes
Solutions K∗ Solution

S∗ Set of solutions
O Solution Concept
Pref(Kα,Kβ) Preference relation between two configurations

Search P Set of phenotypic behaviors
W State of knowledge

Table 2.1: Guide to notation used in our framework.
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2.2 Domains and Roles

A problem domain D specifies a universe of relevant behaviors we wish to study; this

universe may be finite or infinite, countable or uncountable. Further, every problem

domain D defines at least two roles that interact; at least one of these roles is a player

and no more than one is nature. The two role types—player and nature—are denoted

P and N , respectively. Thus, the set of roles R defined by a domain must follow

one of three templates: R = 〈P,N〉 | 〈P1, . . . , Pn〉 | 〈P1, . . . , Pn,N〉. The universe of

domain behaviors is divided into sets, such that domain role i has an associated set

of available behaviors Bi. A search problem, then, concerns finding optimal behaviors

for those roles of a domain that are players. The vast majority of search problems

can be described as either games against nature or multi-player games.

2.2.1 Games Against Nature

In the Travelling Salesperson Problem (TSP), we seek a sequence of visits to different

cities that minimizes the over-all round-trip distance travelled. (Formally, we treat

each city as a vertex of an undirected, complete graph; a legal tour of the cities is a

graph cycle that includes all of the cities.) Given n different cities, the salesperson

has n! possible sequences from which to choose. The TSP domain thus has two roles:

One player (the salesperson), who has n! available behaviors, and nature, which

determines the geographic distribution of cities the salesperson must visit. Another

example is Rubik’s cube, where we seek a sequence of moves that takes the cube from

some initial configuration to a configuration where each of the cube’s six sides are of

a single color. Again, we have two roles: One player (the manipulator of the cube)

and nature (which determines the properties of the cube and its initial configuration).

As a final example, consider the domain where we seek a real value x to maximize
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the function f : R → R. The player role chooses the value x and nature determines

the properties of the function f . All of these domains are examples of games against

nature.

2.2.2 Multi-Player Games

Tic-Tac-Toe is a domain that specifies two player roles, ‘X’ and ‘O’, and each role has

a finite set of available (deterministic) behaviors. The game of chess is similar, in this

sense. The game of backgammon can be said to include three roles: Two players (black

and white) and nature (as manifested by the dice). All of these domains are examples

of multi-player games. The domains we examine in this dissertation—interactive

domains—are also multi-player games. Indeed, we will see that some games against

nature can also be cast as multi-player games; examples include the majority function

in cellular automata research [142, 119, 104, 152] and sorting networks [92, 100].

2.2.3 Domain Symmetry

A domain exhibits symmetry if any two or more player roles are indistinguishable,

otherwise it is asymmetric. That is, in a symmetric domain, there exist at least

two player roles i and j for whom the the sets of available behaviors are identical

(∃i, j : Bi = Bj); further, the measured outcomes obtained by a behavior b ∈ Bi,j

is independent of which player role (i or j) is using that behavior, though it is still

generally dependent upon the behaviors of the other players k �= i, j and nature. An

asymmetric domain, in contrast, gives no two player roles the same set of behaviors,

or, if it does, then the measured outcomes obtained by a “common” behavior b de-

pends upon which player role uses it. We can reasonably argue, therefore, that in

this latter case the behaviors sets are not truly identical.
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2.3 Contexts for Behavior: Events

Behaviors obtain meaning only when they operate within some context. For example,

in the TSP domain we have n! distinct behaviors that the salesperson may exhibit, yet

none of these behaviors are meaningful unless we apply them to a specific context—in

this case, a particular geographic distribution of the n cities. As another example, a

chess strategy cannot unfold without the interaction of an opposing strategy.

The contexts within which we consider behaviors are events. An event occurs

when each domain role is instantiated by a particular behavior and these behaviors

interact. The event E is the n-tuple E = 〈b1, . . . , bn〉, where bi ∈ Bi is the behavior

exhibited by role i of the domain.

2.4 Dimensions of Behavior

A behavior b ∈ Bi participating in an event E can be assessed according to any number

of objective metrics, or dimensions, of behavior. Each “view” on behavior v ∈ Vi can

be applied to any behavior used by player role i. We do not apply metrics to the

behavior of nature.

Typically, a problem domain comes with associated metrics of goodness to be

applied to behaviors; such is the case for any conventional board game, for example,

where the game’s rules not only circumscribe the space of allowable behaviors, but

also provide criteria to judge the game’s outcome. Nevertheless, as we will discuss

below, not all domains have clearly associated metrics of goodness. Therefore, in this

formalism, we do not insist upon a tight linkage between a problem domain D and

the sets of applied objective metrics V1...n.
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2.4.1 Single and Multi-Objective Optimization

According to the cardinality of Vi, we categorize the problem for Player i as either

single-objective optimization or multi-objective optimization (MOO). For example,

the TSP domain has a single metric that measures round-trip distance; Rubik’s cube

also has a single metric that indicates whether the cube is in the target state or not

(or, the metric may instead indicate a “distance”—e.g., in move space—from the

target state). Maximization of the function f : R → R requires a single metric that

measures the magnitude of f given some argument (behavior) x.

In contrast, we may have a domain where we seek a real value x that maximizes

a function g : R → R and simultaneously minimizes another function h : R →

R. Behaviors (i.e., values of x) in this domain have two distinct dimensions to be

measured, one with respect to g and the other with respect to h. Another multi-

objective domain may concern searching the design space for a bridge, where we

wish to minimize mass yet maximize strength. This latter example shows that one

objective can conflict with another, which implies the existence of a trade-off surface;

further, different objectives may be measured with fundamentally different units.

2.4.2 Selection of Metrics

The relevant metrics of behavior are self-evident for many domains. Yet, there exist

domains for which one cannot easily surmise what the correct set of metrics is. For

example, a domain like robot locomotion presents a challenge to the measurement

of behavior because one can imagine many different beliefs about what precisely

constitutes effective locomotion. Indeed, one may be entirely unable to formulate a

precise description and rely instead on heuristic metrics. The seminal work of Sims

[186], for example, uses a heuristic approach that excludes those robot behaviors that
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locomote by falling over.

Thus, many problem domains we care about do not have such precise and trans-

parent ways to characterize behavior. When we apply heuristic metrics, the intended

problem domain and the measured problem domain diverge. The extent of divergence

is generally unknowable. (Thus, we are not infrequently surprised to find an obviously

poor candidate that the objective function opines “good.”)

To continue with our example robot-locomotion domain, we wish to discover an

effective combination of robot morphology and control. We may choose to measure

the average rate of movement, distance travelled from the starting point, and the

surface area of the robot that comes in contact with the ground; we prefer robots

that travel fast, but not in circles, and do not drag themselves on the ground (to

encourage the discovery of limbs, perhaps). Thus, we have three different units of

measurement in this domain: Rate, distance, and area. While we have three metrics

of behavior, they are all applied to the same observed event: The robot’s interaction

with its environment (i.e., player and nature).

2.5 Measurement of Events

We are interested to learn the success with which various behaviors operate in the

domain. We define the function M(i, E, v)→ R to measure the success of the behavior

used by role i in event E according to a particular objective metric v ∈ Vi. The

scalar returned by M is a measurement of success ; higher values indicate greater

success according to the applied metric (we do not assume any particular type of

scale—indeed, a nominal scale may conceivably be used). Given a problem domain

D, the function M is defined over all possible events (i.e., all n-tuples of behavior

choices by the n domain roles), over all defined metrics v ∈ Vi, and for all values
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of i that correspond to player roles (i.e., we do not measure the “success” of nature’s

behavior.) Figure 2.1 illustrates the measurement of a behavioral event in our robot

locomotion domain.

E

Multi-Dim.
Measurement

Metric vα
max speed

Metric vβ
max distance

Metric vγ
min surface area

Behavioral
Event, E

Success w.r.t.
vα

Outcomes

Success w.r.t.
vβ

Success w.r.t.
vγ

Figure 2.1: Multiple metrics applied to the same behavioral event E.

2.5.1 Fidelity of Measurement

Once we know what metrics of behavior we wish to apply, we may face the additional

issue of measurement fidelity. For example, our measurement device will have finite

precision; if we cannot measure with sufficient precision, then we will not be able to

distinguish between all domain behaviors. In effect, poor measurement reduces the

gamut of our domain. Another challenge to the accurate measurement of behavior

arises when a domain role (a player or nature) can exhibit stochastic behaviors. For

example, in backgammon, our measurement of a player’s behavior (against some

opponent) will be poor unless the period of observation spans a great many games.
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2.5.2 Measurement Tables and Sub-Tables

Our measurement function M is defined over all events E ∈ B1 × . . .× Bn, over all

metric sets Vi, and for all player roles. We can imagine placing all the measurements

returned by M into a table, which we denote T. We will say that one table Tα is

a sub-table of another table Tβ, denoted Tα ⊆ Tβ , if and only if ∀i : Bα
i ⊆ B

β
i and

Vα
i ⊆ V

β
i . Figure 2.2 illustrates two examples of sub-tables for a two-player domain.

Our measurement table is similar to a normal-form game matrix in that it records

the outcomes of interactions between different behaviors; nevertheless, T is distinct

from a game matrix because the measurements it contains are not payoffs, as we

discuss below.
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Figure 2.2: Two examples of sub-tables. Each sub-table, indicated by the shaded
region, contains a subset of the available behaviors; the sets of metrics (not shown)
remain the same in this example.

2.5.3 Measurements and Utilities

The measurements we obtain with different metrics of behavior, while all scalars,

result from conceptually distinct perspectives of an event E; therefore, measurements

across different metrics are not comparable (even if they use the same unit of measure-
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ment) and must not be interpreted as payoffs or utilities as conventionally understood

in game theory. In our framework, to interpret measurements as utilities is essentially

to impose a common currency of goodness over all metrics of behavior. To return to

our robot-locomotion domain, a robot’s behavior yields some triple of payoffs that

represents the goodness of the behavior with respect to speed, distance, and surface

area. By treating these payoffs as utilities, we are free to exchange units of goodness

in one dimension of behavior for units of goodness in another; a robot that receives

the triple 〈25, 25, 25〉 is equally good as another robot that receives 〈75, 0, 0〉. While

we may be satisfied with such a tradeoff, we do not wish to impose a common cur-

rency of goodness in our measurement function M ; rather, we wish to maintain the

independence of the different dimensions of behavior, such that each measurement

reflects the goodness of a behavior with respect to a single dimension of behavior. To

provide a way to combine these dimensions into a holistic assessment of behavioral

goodness, we use a higher-level construct called a solution concept.

2.6 Solution Concepts

As we discuss above, each measurement M(i, E, v) represents the success of a par-

ticular behavior, acting in a particular context, with respect to a single metric (or

dimension) of behavior. Here we introduce the solution concept, which provides a

way to integrate across multiple events and dimensions of success to obtain a single

holistic assessment of quality, or behavioral success. The precise way in which the

integration occurs depends upon the solution concept being applied. Thus, the so-

lution concept does not operate directly upon the problem domain, but rather upon

the intermediary measurement function M , which additionally specifies metrics of be-
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havior. Therefore, we will say that solution concepts “solve” measurement functions,

rather than domains.

2.6.1 Behavior Complexes

A domain role’s contribution to a solution need not be a single behavior, but may

instead be a collection of some sort. To allow for this possibility, we introduce the

behavior complex. A behavior complex Xi is a subset of the corresponding set of be-

haviors Bi that are made available to domain role i. Additionally, a behavior complex

may possess other attributes, according to the solution conceptO under consideration.

For example, if our solution concept is Nash equilibrium, then a behavior complex

specifies a mixed strategy. The complex X corresponding to the mixed strategy m

contains the set of pure strategies played by m with non-zero probability, that is,

X = {b ∈ B : Pr(b|m) > 0}; as an additional attribute, the complex must specify the

probability distribution used by the mixture. Alternatively, if our solution concept

is Pareto optimality, then a behavior complex specifies the non-dominated front. We

will discuss these possibilities in detail over the course of this dissertation; our point

here is merely to illustrate that the behavior complex may take different forms.

2.6.2 Configurations and Solutions

A configuration K is an n-tuple of behavior complexes, one for each role of the domain.

(Note that a configuration is not the same thing as an event. An event is an n-tuple

of behaviors; a configuration is an n-tuple of behavior complexes. See Section 2.3.)

A solution (with respect to the measurement table T) is a configuration K∗ that

exhibits some set of properties defined by the solution concept O. A solution set is

the set of all possible solutions with respect to the given measurement table T and
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solution concept O, which we denote S∗(T,O); the solution set may be empty.

2.6.3 Defining Solution Concepts

A solution concept (a.k.a. optimality concept) O is defined either extensionally or

intensionally. A solution concept can simply specify which configurations belong

to the solution set and which do not, without stating any underlying properties by

virtue of which a configuration is considered a solution; a solution concept so defined

is extensional. Alternatively, a solution concept can state a number of properties

that a configuration must possess to be a member of the solution set; such a solution

concept is intensional.

2.6.4 Preference Relation

Given the solution set, we can define the following preference relation (or predicate).

We strongly prefer a solution K∗ to a non-solution K; that is, Pref(K∗,K) = 1 and

Pref(K,K∗) = 0. Further, we weakly prefer Kα to Kβ if and only if for every mea-

surement sub-table Tβ in which Kβ is a solution there exists a sub-table Tα in which

Kα is a solution and where Tα ⊃ Tβ . Finally, if we neither strongly nor weakly

prefer one configuration over another, then we have no preference at all between the

two. Particularly, given two solutions, we do not prefer one over the other; that is,

Pref(K∗
α,K∗

β) = 0 and Pref(K∗
β,K∗

α) = 0.

Definition 1 (Preference Relation) Pref(Kα,Kβ) = 1 iff for all Tβ, where Tβ ⊆

T and Kβ ∈ S∗(Tβ ,O), there exists Tα, where Tα ⊆ T and Kα ∈ S∗(Tα,O), such

that Tα ⊃ Tβ.

47



2.6.5 Solution Concept Refinements

When our solution set contains more than one solution, we may have an informal

preference for one solution over another. To formally incorporate our preference

into the solution concept, we need a solution concept refinement. For example, let

us consider the central solution concept of game theory, Nash equilibrium. Many

games have multiple Nash equilibria, and much research effort has been invested

to rationalize the choice of one Nash over another [180]; some Nash equilibria have

additional properties that others do not, and so may be preferred. Examples of these

properties include Pareto dominance and risk dominance [83], and choices based upon

these properties are examples of solution concept refinements.

We define the concept of refinement for our framework as follows.

Definition 2 (Refinement) For any two solution concepts O1 and O2, concept O1

is a refinement of concept O2 iff ∀T : S∗(T,O1) ⊆ S∗(T,O2) and ∃T : S∗(T,O1) ⊂

S∗(T,O2).

2.7 Genotypes and Phenotypes

A substrate is an arbitrary representation that one may subject to variation for search.

Each instantiation of a substrate is interpreted in some way to yield a behavior. Ex-

amples of substrates include grammars (e.g., [127]), neural network architectures (e.g.,

[7]), genetic programs (e.g., [39, 118]), and bit-strings (e.g., [85]). In evolutionary al-

gorithm parlance, a substrate is a genome and its instantiation is a genotype; the

interpretation of a genotype results in a phenotype, which in-turn yields a behavior.

Note that the genotype-to-phenotype mapping is often many-to-one; that is, two or

more distinct genotypes may result in phenotypic behavior that is indistinguishable,
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at least as far as our measurements are concerned. (If the translation from genotype

to phenotype is stochastic, then many-to-many mappings are possible, as well.)

The universe of phenotypic behaviors P enabled by a substrate (via its interpreta-

tion) may overlap in any number of ways with the universe of behaviors specified by a

domain D. We can imagine five general cases, given a single substrate, as illustrated

in Figure 2.3. First, the two sets P and D may be identical; thus, every behavior

possible in the domain is generated by the substrate and no behavior generated by

the substrate is external to the domain. Second, the set P may be a proper subset of

D. In this case, all behaviors generated by the substrate belong to the domain, but

not all domain behaviors are covered; in particular, the domain behaviors we care

about most—those that belong to solutions—may be excluded. Third, the set P may

be a proper superset of D; in this case, all the behaviors of the domain are covered,

but the substrate also generates behaviors that fall outside of the domain. (An exam-

ple of this situation can be found in [9] where genetic programs are evolved to play

Tic-Tac-Toe; in addition to generating all the possible (deterministic) strategies for

the domain, their substrate also generates behaviors that make illegal moves. Such

behaviors are not disallowed, but rather cause the player making an illegal move to

forfeit a turn.) Fourth, neither set may contain the other, but a non-empty inter-

section may exist; this case combines the features of Cases 2 and 3. Fifth, the two

sets may have an empty intersection; such a situation is akin to expecting locomoting

robots to play Tic-Tac-Toe strategies.

More generally, we may use a different substrate for each role defined by the do-

main. Examples of this include the majority function in cellular automata research

[142, 119, 104, 152] and sorting networks [92, 99]. In the majority function, rules are

bit-strings of length 128 and initial conditions are bit-strings of length 149; sorting

networks are represented as sequences of comparison-exchange operations, while in-
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puts are bit-strings. Thus, the overlap of substrate-generated and domain behaviors

may change from role to role.

P

D
P = D

P

D
P D

P D

Case 1:   Perfect correspondence. Case 2:   All phenotype behaviors are 
domain behaviors, but not all domain 
behaviors are realized.

Case 3:   All domain behaviors are realized, 
but so are additional behaviors that do not 
belong to the domain.

Case 4:   Combination of Cases 2 and 3.

Case 5:   No correspondence between phenotype 
behaviors and domain behaviors.

Figure 2.3: Five cases of overlap between phenotypic and domain behaviors.
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2.8 Distributions over Behaviors

Let us denote the behaviors made available to role i by the domain and substrate B�i
and BP

i , respectively. Depending upon the nature of the substrate, we may encounter

a phenotypic behavior b ∈ BP
i that does not map to any single domain behavior but

rather corresponds to a probability distribution over some subset of domain behaviors;

such a phenotypic behavior is akin to a mixed strategy in game theory.

To illustrate this point, let us consider the children’s game Rock-Paper-Scissors.

The conventional presentation of this domain defines three pure strategies : Rock, Pa-

per, and Scissors. Our substrate may code for this domain with an integer ranging

from one to three. In this case, each of the domain’s pure strategies corresponds

to exactly one pure strategy (phenotypic behavior) generated by the substrate. Al-

ternatively, our substrate may use a triple of floating-point numbers, 〈r, p, s〉, where

0 ≤ r, p, s ≤ 1.0 and r + p + s = 1.0. This substrate allows us to code mixed strate-

gies for Rock-Paper-Scissors. In this case, exactly three phenotypic behaviors map

exactly to individual domain behaviors: 〈1.0, 0, 0〉 → Rock, 〈0, 1.0, 0〉 → Paper, and

〈0, 0, 1.0〉 → Scissors. Every other phenotypic behavior b ∈ BP lacks a corresponding

behavior in B�.

Thus, the universe of substrate-generated behaviors is properly viewed as dis-

tinct from the universe of domain-defined behaviors. In game-theoretic parlance, we

view each phenotypic behavior b ∈ BP as a pure strategy, regardless of how it may

correspond to the domain; mixed strategies (i.e., distributions over phenotypes) are

introduced by behavior complexes and appropriate solution concepts (See Section 2.6,

above). Alternatively, in cases where P and D are not identical, we may choose to

view P as perfectly representing the de facto domain, since we are measuring P and

not D.
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2.9 From Domain to Measurement

With the introduction of the substrate, we can now trace the transformation of a

domain into a table of measurements, as Figure 2.4 illustrates. The problem domain

D specifies a universe of behaviors that we are interested to explore. The substrate

(along with an interpretive process) provides a way to express behaviors (phenotypes

P) and thereby realize our exploration of the domain—the substrate provides the be-

haviors we can actually observe. The sets of metrics Vi that we apply to a behavioral

event yield our measurements of success. These measurements are then integrated

by the solution concept O to indicate which configurations K of behavior complexes

constitute solutions to our search problem. We are interested to investigate how so-

lutions obtained through these levels of indirection compare to the idealized solutions

that exist in the domain. Further, we are particularly interested to investigate the

complications that arise when we implement solution concepts in search algorithms.

domain phenotype

P

what we
care about

what we
observe

outcomes of
observations

M(i, E, v) → ℜ

measurement
tableD

Figure 2.4: Transformation of domain of interest into a measurement table via sub-
strate.

2.10 Examples: Measurement Tables

Now that we have reviewed our formalism, we will illustrate how a problem domain

can be viewed in a number of ways. Using the density classification task for cellular
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automata as our example, we show how a number of different measurement tables

can be obtained. The objective of the density classification task (also known as the

majority function) is to find an automaton rule that will cause the automaton to

converge to a state of all-ones if the density (i.e., proportion of one-bits) of the initial

condition is beyond some pre-specified threshold; otherwise, the automaton rule is

to cause the automaton to converge to a state of all-zeros. The typical statement of

this problem specifies the threshold to be 0.5. Further, the automaton rule typically

has a radius of three, which gives a space of 2128 rules; the automaton typically has

a lattice of 149 bits, which gives a space of 2149 possible initial conditions (ICs) to

classify. Finally, the rule is given 300-320 time-steps to operate. Chapter 7 discusses

the majority function in detail.

2.10.1 Single-Player Game Against Nature

A conventional, albeit impractical, approach to the density classification task is to

treat it as a game against nature. Our domain D has one player role, the behaviors

of which are the 2128 automaton rules; the role of nature represents a monolithic

evaluator that tests a rule on each of the 2149 possible initial conditions. An event

consists of a rule interacting with nature: E = 〈rule i,N〉. We apply a single metric

of goodness v that returns the percentage of initial conditions that the tested rule

correctly classifies. Thus, our measurement table appears as illustrated in Figure 2.5.

2.10.2 Two-Player Constant-Sum Game

We can view the majority function as a constant-sum game for two players; Player

1 represents automaton rules, while Player 2 represents automaton initial conditions.

An event consists of a rule interacting with an initial condition: E = 〈rulei, icj〉. The
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M(Player, < rulei, Nature >, percent_correct)

a

a

Figure 2.5: Measurement table obtained when viewing majority function as a game
against nature.

metric of goodness for Player 1 returns a value of one if the rule correctly classifies

the IC, otherwise it returns zero; the metric for Player 2 is the logical complement—it

returns a value of one if the rule incorrectly classifies the IC, otherwise it returns zero.

Now our measurement table appears as illustrated in Figure 2.6.

2.10.3 Single-Player Multi-Objective Game Against Nature

We can view the majority function as a multi-objective single-player game against

nature. Like our first example, each event consists of an interaction between a rule

and nature: E = 〈rule i,N〉. Unlike our first example, however, we do not have a

single metric of goodness; rather, we have a multiplicity of metrics. Each metric

concerns the performance of the tested rule with respect to a particular aspect of

its interaction with nature. Indeed, we may have 2149 metrics—one for each possible
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rule 0

rule n

rule i

M(Player 1, < rulei, ICj >, correct_classification?)

IC 0 IC mIC j

a
b

a

M(Player 2, < rulei, ICj >, incorrect_classification?)b

Figure 2.6: Measurement table obtained when viewing majority function as a two-
player constant-sum game between rules and initial conditions.

initial condition. (Alternatively, we may have 150 metrics—one for each possible

density class (0–149). Another possibility is to have just two metrics, one to measure

the rule’s performance on ICs of density ≤ 0.5 and the other for ICs of density > 0.5.)

Our measurement table now appears as illustrated in Figure 2.7.

2.10.4 Two-Player Variable-Sum Game

We can view the majority function as a variable-sum game for two players. This time,

both player roles represent automaton rules. An event consists of one rule interacting

with another: E = 〈rulei, rule j〉. The metric of goodness for Player 1 v1 indicates

the number of initial conditions that rulei correctly classifies that rule j does not;

similarly, the metric for Player 2 v2 indicates the number of ICs that rulej correctly

classifies that rule i does not. (Thus, table entries on the main diagonal are zeros.)
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rule 0

rule n

rule i

M(Player, < rulei, Nature >, vj)

v0 vmvj

a

a

Figure 2.7: Measurement table obtained when viewing majority function as a multi-
objective single-player game against nature.

This approach is essentially that used by Juillé and Pollack [102] for the intertwined

spirals problem. Our measurement table now appears as illustrated in Figure 2.8.

2.10.5 Another Single-Player Multi-Objective Game Against

Nature

Just as we transform the constant-sum game in Section 2.10.2 into a multi-objective

optimization problem in Section 2.10.3, so too can we transform the variable-sum

game in Section 2.10.4. An event consists of a rule interacting with nature: E =

〈rule i,N〉. In contrast to Sections 2.10.1 and 2.10.3, the role of nature is now to

compare the performance of the tested rule against those of all other rules with

respect to all possible initial conditions. As in Section 2.10.3, a rule’s interaction with

nature is observed from multiple perspectives. For example, we may have 2128 metrics
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rule 0

rule n
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M(Player 1, < rulei, rulej >, v1)

a
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rule 0 rule nrule j

M(Player 2, < rulei, rulej >, v2)

a

b

Figure 2.8: Measurement table obtained when viewing majority function as a two-
player variable-sum game between two rules.

of goodness, where metric vj indicates how many initial conditions rule i correctly

classifies that rulej does not. Rule comparison is achieved not through direct “rule-

to-rule interaction,” but rather through the indirection of nature acting as a proxy for

all rules. Our measurement table now appears as illustrated in Figure 2.9 (note that

the main diagonal again contains zeros). While this example may appear contrived, it

does display the critical conceptual shift that invites the application of multi-objective

optimization methods.

2.10.6 Robustness over Multiple States of Nature

Rather than seek a value x that maximizes f(x), we may instead care to find a value

of x that is most robust when a noise term µ is added to x; that is, we wish to find

a value of x that maximizes the expected value of f(x + µ), given the distribution
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Figure 2.9: Measurement table obtained when viewing majority function as a different
multi-objective optimization problem.

of the noise term µ. The addition of our noise term transforms what is otherwise

a single-objective game against nature into a multi -objective game against nature

where nature has multiple states. Each possible value of µ maps to a distinct state of

nature, and we measure the performance of our behavior x in each of them. Note that

the solution to this problem may be a probability distribution over our behaviors.

Research in dynamic landscapes (e.g., Branke [26]) can be understood as a single-

player game against multiple states of nature. As another example, we may consider

the robot-locomotion domain, where the surface on which the robot moves can change.

2.10.7 Measurement Tables and the Secondary Search Effort

Our measurement table represents complete knowledge of our de facto domain: We

know what behaviors are available, we know the outcomes of all interactions, and given
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a solution concept for our primary search problem we know the set of solutions (to

our primary problem). But, as we explain in Chapter 1, coevolutionary optimization

requires two distinct search efforts: To recognize solutions in our primary search

effort, we need to discover appropriate interactions. Thus, given a measurement table

T, we require the solution concept for our secondary search effort to yield a set of

interaction partners that is sufficient for our primary search effort to succeed. Thus,

solutions to our secondary search effort are not unlike Rosin and Belew’s teaching sets

[174] and Goldman and Kearns’ teaching sequences [177]. Many of the pathologies

encountered in coevolutionary optimization occur because the solution concept for the

secondary search effort does not yield such a set of interaction partners. We discuss

these pathologies in detail in Chapter 3 and provide heuristics to yield “helpful”

interaction partners in Chapter 7.
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Chapter 3

A Taxonomy of Issues and

Research

3.1 Introduction

This chapter presents a taxonomy of the pathologies associated with coevolutionary

algorithms. In so doing, a critical review of the coevolution literature is made, as well.

(Two accounts of coevolution research through 1997 are found in Paredis [160] and

Angeline [8].) To begin, let us briefly review our approach outlined in Chapters 1 and

2. We have a problem domain of interest and a solution concept that defines certain

locations of our search space to be solutions. Because the elements of our search space

must interact with each other to reveal their properties, we are required to pursue

a secondary search effort to obtain relevant interactions; without the appropriate

set of interactions, we cannot identify the solution to our primary search problem.

The pathologies encountered with coevolutionary algorithms arise when we select a

poor solution concept for either the primary or secondary search effort, or when we

improperly implement solution concepts. We will thus taxonomize the pathologies

according to which search effort is flawed.
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This chapter is organized as follows. Section 3.2 reviews the potential benefits

of coevolutionary optimization; Section 3.3 reviews methods that have been used to

monitor progress in coevolution; Sections 3.4, 3.5, and 3.6 review the pathologies

of gradient loss, cycling, and forgetting, respectively; Section 3.7 discusses a little-

known effect in fitness measurement that can obscure the identity of solutions in

certain situations; Section 3.8 concludes the chapter with a discussion of diversity

maintenance and its connection to the secondary search effort.

3.2 Why Use Coevolution?

Before we review the pathologies associated with coevolution, let us first discuss the

potential advantages of coevolutionary optimization. There are four principal reasons

to use a coevolutionary algorithm for machine learning:

1. There exist domains that do not require coevolution, but coevolutionary algo-

rithms make more efficient use of finite computational power by focusing evalu-

ation effort on the most relevant tests—for example, those that best distinguish

the quality of potential solutions.

2. There exist domains that intrinsically require coevolution; these are domains

that are interactive in nature, such as games.

3. There exist domains that require less (human-supplied) inductive bias when

using coevolution than when using other search methods.

4. There exist domains that are “open-ended”; that is, there exists an infinity of

possible behaviors.

We now elaborate on these points and discuss examples.
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3.2.1 Efficiency

Our discussion of how coevolution can improve search efficiency focuses on two well-

studied problem domains: Minimal sorting networks and cellular automaton rules for

density classification. In both domains, the universe of possible test cases is express-

ible with n-digit binary strings, and therefore is clearly circumscribed. Nevertheless,

while tests are easily enumerated, the number of possible tests grows exponentially

in n. For small enough values of n, we can afford exhaustive testing; otherwise, an

alternative approach is required.

As we note above, the recognition of a solution requires appropriate testing. Ex-

haustive testing is certainly sufficient to recognize a solution, but is also unnecessary

for the sorting network and density classification domains, as we will discuss. More

generally, if traits are heritable, then we can assume—to varying degrees—that tests

passed by parents will likely be passed by offspring, and so these tests can be omit-

ted. Much of the difficulty in constructing a coevolutionary algorithm concerns un-

derstanding when this assumption is safe to make. A properly constructed algorithm

extracts efficiency gains when assumptions of heritability are founded.

Minimal Sorting Networks

The seminal work of Hillis [91, 92] is our first illustration of how coevolution can

improve search efficiency. Hillis seeks to discover minimal 16-input sorting networks.

One certainly does not require a coevolutionary algorithm to find such networks,

since the quality of a sorting network is straight-forwardly (albeit tediously) found by

evaluating its performance on all possible binary inputs; for a 16-input network, we

have 216 such tests. Of course, as the size of the sorting network increases, the number

of tests required to establish correctness grows exponentially. Thus, if computational
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resources prohibit exhaustive testing, some form of test-case sampling must be used

instead.

Hillis first tries to evolve sorting networks using random samples of inputs for

evaluation. He reports, however, that much of the testing effort is wasted; most of

the tests obtained through random sampling are soon solved by all of the evolving

networks, thereby providing no gradient for selection to operate. (Indeed, as Juillé

reports [99], all but 151 tests are solved by the initial 32 comparators that Hillis uses

to seed the initial population.) Thus, Hillis next tries to competitively coevolve the

test-case samples such that they remain appropriate to the abilities of the evolving

networks as they improve. Not only does Hillis obtain better results through the

use of coevolution, but he also finds a sorting network with 61 comparison-exchange

operations—only one more than the currently known minimal network by Green [113].

Though Juillé [99] later obtains a 60-comparator network with a non-coevolutionary

algorithm, he does so by building on the first 32 comparators of Green’s solution and

taking advantage of the small number of remaining test cases (151) needed to establish

a network’s correctness; thus, Juillé uses exhaustive testing. Hillis, in contrast uses

sample sizes of 10–20 test cases in evaluation. The improvement by Juillé notwith-

standing, Hillis compellingly demonstrates the potential of coevolution to dynamically

adjust the focus of evaluation effort and successfully optimize.

Automata Rules for Density Classification

One of the more impressive testaments to coevolution’s ability to optimize is found

in Juillé and Pollack’s [104, 105, 106] work on the majority function. This problem

comes from the study of binary 1-D cellular automata and concerns the ability of

an automaton to determine a global property of an initial condition (IC) from local

information. In particular, we wish to discover an automaton rule that will cause the
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automaton to converge to a state of all ones if the IC has more ones than zeros, and

converge to a state of all zeros otherwise. The canonical form of this problem uses

an IC of 149 bits, a rule of radius 3, and allows 320 time steps for the automaton to

converge. Land and Belew [119] have shown that no perfect rule for this classification

task exists, but the maximal possible classification rate is yet unknown. (We discuss

the majority function in detail in Chapter 7.)

Very much like the sorting network problem, the set of test cases is clearly delim-

ited; we can easily generate a test, but the number of possible tests (2149) makes ex-

haustive evaluation impossible. The accuracy of rule classification is consistently seen

to diminish, on average, as the initial condition’s density approaches 0.5 [143, 106];

rules that correctly classify difficult densities, on average, also correctly classify eas-

ier densities. Thus, the space of rules approximately forms a total ordering when

rule performance is regarded with respect to IC densities; similarly, the space of IC

densities also approximates a total ordering. Note that these orderings lack the anti-

symmetric property, since two rules (or IC densities) may have identical performance,

yet be different rules (or IC densities). In contrast, when rule performance is regarded

with respect to individual initial conditions (i.e., not densities), Land and Belew’s re-

sult suggests that the space of rules (and the space of IC instances) is follows a partial

ordering. For this reason, most learning methods applied to this problem use IC den-

sity classes as the basis for testing, rather than specific initial conditions; doing so

produces smoother orderings that help better organize test results.

Most of the evolutionary approaches to solve the majority problem use a fixed

distribution of IC densities for evaluating rules. For example, Mitchell, et al [143, 142]

and Das, et al [43] uniformly sample IC densities between 0 and 1; this produces an

even distribution of IC difficulty. These studies use modest population sizes: 100 rules

and 300 [143] or 100 [142, 43] test cases (ICs). In contrast, Andre, et al [6, 5], uniformly
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sample the space of initial conditions themselves (not IC densities); the resulting

distribution of IC densities is binomial, meaning that the most difficult densities are

strongly emphasized. Das, et al, point out that sampling densities binomially tends

to prevent progress from the very beginning of an evolutionary run—since ICs of

appropriate difficulty (i.e., very low or very high density) are so sparsely sampled,

little gradient exists to distinguish the rules and allow evolution to progress (much

like random sampling in the sorting-network domain reveals little gradient, except

there random tests are too easy); at the same time, they acknowledge that uniform-

density sampling becomes less effective as rules improve, since the more difficult tests

become increasingly under-sampled, again leading to a lack of gradient. Andre, et

al, increase the amount of gradient they obtain from their binomial sampling simply

by taking more (specifically, 1000) samples of the IC space; they also use a larger

(by two orders of magnitude) rule population size of 51200. Their approach yields a

rule that is significantly better than that of Das, et al: 82.3% vs. 76.9% when tested

against a uniform sampling of ICs.

The first attempt to use coevolution with the majority problem is by Paredis

[161]. His approach coevolves rules with actual initial conditions rather than density

classes. The two populations are placed in a competitive framework. Despite the

use of lifetime fitness evaluation (LTFE) to integrate individuals’ scores over mul-

tiple fitness evaluations, an oscillatory dynamic is observed (we discuss LTFE more

below, in connection with evolutionary forgetting). This behavior is caused by an

intransitive cycle similar to that seen in the matching pennies game [82]: If the IC

population contains more initial conditions with density < 0.5 than > 0.5, then a

simple “always converge to zeros” rule will likely out-perform any slightly more so-

phisticated rule, for example one that accurately differentiates between very low and

very high densities but not otherwise. Once such converge-to-zero rules gain a ma-
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jority, then a pressure arises for ICs to increase their density beyond 0.5. In turn,

this creates an environment for a simple “always converge to ones” rule, an so on. To

dampen the oscillations, Paredis essentially reverts to a non-coevolutionary approach

whereby the IC population retains a uniform distribution of densities, as in Mitchell,

et al [143, 142] and Das, et al [43]; ICs are continually replaced, but not according to

fitness and without heritability. Nevertheless, the LTFE mechanism still modulates

which ICs are chosen as tests, though no indication is given regarding how LTFE

affects over time the distribution of densities used for testing. Paredis reports results

similar to those of Mitchell, et al [142].

Thus, according to the framework we present in this dissertation, the purely com-

petitive coevolutionary framework implements the wrong solution concept for what

we call the secondary search effort (which is responsible for discovering the relevant

tests for the primary search effort). Juillé and Pollack [106] also obtain cyclic be-

havior in a purely competitive framework, even when rules are coevolved against IC

density classes, rather than the initial conditions themselves. They also show that

a cooperative structure, where IC densities are rewarded for being solvable, quickly

leads to a fixed point of simple rules. They next revert to a competitive structure

but add Rosin’s [172] competitive fitness sharing method for diversity maintenance

of both rules and densities; this arrangement causes the population of IC densities

to quickly converge onto 0.5—the hardest class—well before the rules are capable of

solving them. Thus, Juillé and Pollack demonstrate many of the pathologies one can

encounter using coevolution. In all cases, the IC densities fail to evolve such that

they provide gradient for substantial improvement of the rules; the solution concept

used for the IC densities is wrong in each case. Finally, Juillé and Pollack propose

a modification based on entropy to arrive at a novel calculation of selective pres-

sure for IC densities; their new solution concept—built on top of competitive fitness
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sharing—rewards IC densities for revealing rule performance that is distinct from ran-

dom guessing. With this approach, Juillé and Pollack discover a rule that correctly

classifies 86.3% of randomly sampled automaton initial-conditions; their rule is the

best currently known.

The recent paper of Werfel, et al [204], asserts that the success achieved by Juillé

and Pollack is attributable more to their use of competitive fitness sharing than to

their additional modification, which computes entropies of rule performance. To

support this assertion, Werfel, et al, construct a competitive framework where IC

densities are selected according to the entropy calculation alone—without competi-

tive fitness sharing; this arrangement produces very poor results: Only four percent

of the trials yield rules with classification accuracy ≥ 0.7 and none ≥ 0.8. Further,

they construct a non-coevolutionary algorithm where rule scores are nevertheless dis-

counted according to competitive fitness sharing; this algorithm produces noticeably

better results: 43 percent of the trials yield rules with accuracy ≥ 0.7 and 10 percent

≥ 0.8. The two methods combined provide the best results: 47 percent of the trials

give rules with accuracy ≥ 0.7 and 27 percent ≥ 0.8. Given these results, Werfel, et

al, claim that fitness sharing used with ordinary evolution provides more genetic di-

versity than coevolution using the entropy calculation; they conclude that coevolution

merely heightens the benefit of fitness sharing when the two are used together.

Nevertheless, Werfel, et al, neglect the fact that coevolution with fitness sharing—

but without the entropy calculation—also performs very poorly (as demonstrated by

Juillé and Pollack [106]); in this configuration, competitive fitness sharing does not

provide diversity at all, but rather causes IC densities to converge to 0.5. Further, by

categorizing rule performance over four broad intervals of accuracy (the best category

requires ≥ 0.8 accuracy), Werfel, et al, de-emphasize the magnitude of improvement

over other methods that Juillé and Pollack’s rule represents. Werfel, et al, frame their
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investigation as a comparison between resource sharing and coevolution; yet, doing

so largely operates on arbitrary beliefs of which techniques fall under the purview of

“coevolution” and which do not. Indeed, the issue of gradient creation transcends

such boundaries: All of the methods examined (purely competitive coevolution, fit-

ness sharing, and the entropy calculation) are implicated in both success and failure.

In Section 3.4, we explain why competitive fitness sharing alone might not provide

sufficient gradient for coevolutionary search.

To be sure, one can produce dismal or excellent results with coevolution—what

we care to better understand in this dissertation are the factors that make the dif-

ference. Therefore, we cannot treat coevolution as a monolithic procedure; we must

instead view it as a plurality of techniques, each of which implement different solution

concepts.

3.2.2 Intrinsically Interactive Domains

Above, we consider domains that can be searched without coevolution. More specifi-

cally, these are domains in which test problems are easily enumerated and constructed,

making the process of rating and recognizing solutions simple, in principle; for such do-

mains, coevolution offers real benefits when exhaustive testing is prohibitively costly

(and sometimes even when exhaustive testing is feasible, as we discuss in Section

3.2.2, below). In contrast, the domains we consider here are those in which test prob-

lems are neither easily enumerated nor constructed—this in addition to the fact that

the number of test cases may be astronomical. Such domains are typically intrin-

sically interactive. By this we mean that the source of the tests used to recognize

solutions and direct search is the domain itself; interactive domains characteristically

lack concomitant, self-evident metrics of goodness for use in search.
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Board games are canonical examples of intrinsically interactive domains. Let us

say that we wish to discover the perfect strategy for the game of checkers. How do we

construct a metric of quality for a checkers player? We can imagine a number of static

(or at least stationary) testing environments: 1) Use all possible strategies for testing,

2) Use only perfect strategies for testing, 3) Use a sample (random or otherwise) of

strategies for testing, 4) Use a hand-built metric of goodness that measures aspects

of a strategy’s play for testing. Alternatively, we can use adaptive testing, such

as in coevolution. Of course, regardless of our approach, we must have a solution

concept in mind—most particularly to integrate outcomes over multiple tests. We

now examine each of these options in turn; Table 3.1 summarizes their advantages

and disadvantages.

Exhaustive Testing

We can rate a strategy by having it play against all other possible strategies, but of

course the potential difficulties here are several. First, as we have seen above, the

number of strategies to play against may be prohibitive; indeed, if our interactive

domain is open-ended, then the number of strategies is infinite. Second, we may be

unable to systematically enumerate the space of possible strategies. Third, even if we

can enumerate the strategies, the enumeration might require prohibitively expensive

representations of a strategy (e.g., an astronomically large game tree).

Perfect Strategies as Tests

Much cheaper than using all possible tests, we can use instead only the most difficult

tests, or “perfect” strategies (according to our solution concept). There exists, of

course, a logical flaw in this approach: If we require a perfect strategy at the outset,

then there is no need to perform search to discover it in the first place. Nevertheless,
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All test cases

Pro Provides all available gradient.

Con Expensive (likely intractable); we may be unable to enumerate test-case
set.

Hardest test case

Pro Minimizes number of evaluations.

Con May be unknown or costly to obtain; does not generally provide suffi-
cient gradient for evolutionary learning; unresponsive to learners’ per-
formance.

Random samples from test-case set

Pro Allows tractable number of evaluations.

Con Unresponsive to learners’ performance; does not generally provide suf-
ficient gradient for evolutionary learning.

Pre-determined fixed sample from test-case set

Pro Allows tractable number of evaluations.

Con May allow over-fitting; unresponsive to learners’ performance; test-case
set that is both small and provides sufficient gradient likely difficult
to obtain or non-existent; thus, does not generally provide sufficient
gradient for evolutionary learning.

Hand-built evaluator of performance

Pro Highly targeted evaluation.

Con Requires intimate domain knowledge and precise articulation of that
knowledge; requires considerable effort to construct.

Coadapted test cases

Pro Responsive to learners’ performance; improved provision of gradient
for evolutionary learning; tractable number of evaluations; likely to
require less effort than hand-building an evaluator or hardest test case;
has yielded superior results in several domains.

Con Many diverse pathologies that are known to stunt learning.

Table 3.1: Types of evaluation functions.
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Angeline and Pollack [9] show that standard evolution against a perfect Tic-Tac-

Toe strategy produces weaker players than does coevolution. These results agree

with those of Juillé and Pollack [106] discussed above, where testing against only the

hardest cases provides too little gradient for search to progress. (Using only weak

tests gives essentially the same problem.)

Note that the categorical nature of Tic-Tac-Toe outcomes (i.e., win, lose, draw)

means that testing against the perfect player gives a very coarse-grained gradient; as

a result, the fitness landscape has vast fitness-neutral plateaus. In contrast, testing

against the most difficult test case in the majority function (density class 0.5) yields

a much finer granularity—rules are known to solve between 50 and approximately 86

percent of these test cases (of which there are astronomically many). Nevertheless, the

peaks of the rules’ fitness landscape remain surrounded by sufficiently large plateaus

that evolution cannot locate a peak simply by testing against the 0.5 density class.

Random Sampling of Tests

As we describe above, Hillis [91, 92] experiments with random samples of test cases. In

the sorting network domain, this approach fails to provide sufficient challenge to the

evolving networks; the result is a fitness landscape that fails to distinguish between

networks once they achieve nominal performance. In the domain to Tic-Tac-Toe,

Angeline and Pollack [9] conduct an experiment (in addition to the one described

above) where they evolve against a player that behaves randomly; each test against

the “random” player consists of four games. Thus, their approach is similar to testing

against a random sample of deterministic opponents. The best strategy they obtain

in this way beats the random player 56.25% of the time, yet it consistently loses

to more competent hand-built opponents. In contrast, when players are coevolved,

Angeline and Pollack report far more robust strategies.

71



Fixed Subset of Tests

While not an intrinsically interactive domain, Pagie and Hogeweg’s [155] function ap-

proximation problem nicely illustrates how coevolved tests can provide more effective

and efficient learning than a fixed set of test cases. With genetic programs as their

evolutionary substrate, they seek to induce a continuous, two-dimensional function.

Because the function is continuous, there exists an infinity of test cases; thus, one

cannot attempt exhaustive testing.

In one experiment, Pagie and Hogeweg evolve their genetic programs using a fixed

set of 676 test cases that densely and uniformly covers the domain of the function

(which is limited with a bounding box). A spatial evolutionary algorithm is used,

with a square lattice of 50 units per side. In a contrasting experiment, small subsets

of the 676 test cases are coevolved for evaluating the genetic programs. Like the work

of Hillis [91], the test cases are also spatially distributed on the lattice; each evolving

genetic program is evaluated by the nine test cases in its immediate neighborhood.

Thus, each genetic program can have a different set of nine coevolved tests.

Over twenty trials of each experiment, none of the trials that use the fixed test-set

result in a genetic program that accurately fits all 676 data points. In contrast, 45

percent of the coevolution trials are reported to yield genetic programs that fit all 676

data points. Further, the genetic programs obtained through coevolution are shown

to generalize better when tested on data points outside of the original set of 676 tests.

If we consider the set of 676 test points to be the entirety of the function’s domain,

then Pagie and Hogeweg’s results are evidence against the use of exhaustive testing,

as well.

Thus, we have the surprising result that the larger, fixed test-set produces genetic

programs that over-fit the test cases whereas the smaller, coevolved test-set produces
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better generalization even though the coevolved tests are selected from the fixed test-

set. The sequence in which test-cases are presented and mastered therefore impacts

the course of search. Pagie and Hogeweg remark that the highly focused testing

done by coevolution allows the genetic programs to more easily cross fitness “valleys”

and subsequently discover higher peaks. (This increased latitude to make errors can,

however, lead to a phenomenon known as evolutionary forgetting, which we discuss

in detail in Section 3.6 and Chapter 8.)

Hand-Built Evaluator of Play

Angeline and Pollack [9] hand-build three different Tic-Tac-Toe strategies for use

as evaluators of play: A perfect player, a near-perfect player (that loses only when

“forked”), and a player that behaves randomly. These fixed strategies are used as

touch-stones of opponent quality. Another approach to hand-building a metric of

goodness is to characterize aspects of expert play and rate players according to the

number of such characteristics they display when interacting with others. Such a met-

ric is difficult to construct because it requires both intimate knowledge of the domain

and its precise articulation. Further, one might be uncertain that all relevant char-

acteristics are captured; indeed, in open-ended domains, one cannot in principle use

such an approach at all. Nevertheless, the early work of Samuel [178] closely follows

this idea of a hand-built evaluator; Samuel makes extensive use of domain-specific

knowledge to search for a good checkers player. Hand-built evaluators represent con-

siderable investments of human effort, and we discuss them in more detail when we

consider the supply of inductive bias.
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Adaptive Testing: Coevolution

There exists an evaluation method that is more convenient than hand-crafting metrics

of goodness, more tractable than exhaustive testing, and more responsive to the

learners’ performance than sampling test cases: We simply play strategies against each

other (as they are discovered) and use the outcomes as indicators of over-all quality.

Broadly speaking, this is the approach used in coevolutionary optimization. Thus,

we can regard coevolution as a heuristic to obtain a metric of merit for interactive

domains.

There exist some very impressive results from the use of co-adaptive and coevo-

lutionary methods for intrinsically interactive domains. To begin, we can consider

the work of Tesauro [191], who uses temporal difference (TD) learning and self-play

(i.e., co-adaptation) to obtain a world-class backgammon strategy. While Tesauro

attributes the success largely to TD-learning, the follow-up work of Pollack and Blair

[164] shows that self-play can achieve surprisingly good results when coupled with

even a very weak learning algorithm, essentially a variation of hill climbing. We

may expect such a combination to be susceptible to a number of problems, such

as over-specialization, forgetting, and cycling. But, these common pathologies ap-

pear remarkably absent. Instead, Pollack and Blair discover monotonic improvement

against a fixed reference strategy (which is not used for directing search). The lack

of brittleness appears to result from properties inherent in the game of backgam-

mon; skills learned at any level of proficiency remain relevant against more advanced

players and so are constantly cultivated; this causes skill accumulation, rather than

over-specialization and forgetting.

More recently, Chellapilla and Fogel [34, 35] revisit the checkers domain. Rather

than use hand-built metrics such as Samuel does, they coevolve a neural network
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to evaluate board positions for game-tree search. Using a rather conventional co-

evolutionary algorithm, they are able to obtain an expert-level checkers player. We

contrast this work with that of Samuel in more detail when we come to the topic of

inductive bias.

3.2.3 Open-Ended Domains

Perhaps the most dramatic illustration of coevolution’s potential is Sims’ [185] co-

evolution of virtual creatures that compete to obtain control of a cube. The domain

in this work is essentially open-ended—though a contest between two agents is finite

in length (eight simulated seconds), no constraints on agent behaviors are stipu-

lated. The substrate used to express agent morphology is generative, and therefore

potentially capable of an infinity of behaviors; nevertheless, limits on the depth of

the generativity are placed, making the de facto strategy space finite. We discuss

open-endedness further in Section 9.7.

3.2.4 Inductive Bias

In the domain of checkers, Samuel [178] constructs a polynomial equation where

individual terms correspond to particular aspects of a strategy’s play; term coeffi-

cients weight the relative importance of these aspects. This polynomial is used to

evaluate board positions generated in game-tree search. Using a type of coadaptive

hill-climbing, which entails self-play by the machine, Samuel adjusts which terms are

used by the polynomial and their coefficients. The polynomial is restricted to use 16

out of a possible 38 terms that are defined; Samuel’s hope is to supply the system

with more terms than necessary and have the adjustment procedure locate those rel-

atively few that are most salient. In later work, Samuel [179] introduces a number
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of improvements; among them, he more deeply considers interaction effects between

polynomial terms. His methods ultimately produce a player that can beat him, but

is otherwise far from expert level.

The recent work of Chellapilla and Fogel [34, 35] revisits the checkers domain. In

this work, the use of game tree search is retained (though not to the same extent), but

the board evaluation function is now implemented by a neural network that receives

as input multiple overlapping subsections of the board; in particular, unlike the 38

terms available to Samuel’s polynomial evaluation function, each of which represented

a different hand-crafted metric of play quality, Chellapilla and Fogel’s neural network

is not given any such domain knowledge as a foundation—it is treated as a “black

box.” Coevolution is used to adapt the weights of the neural network. In contrast

to Samuel’s results, Chellapilla and Fogel discover a strategy that plays expert-level

checkers; through coevolution, the neural network is able to learn a far more effec-

tive board evaluation function than Samuel’s hand-designed metrics achieve. Thus,

when given an appropriately pliable substrate, coevolution can discover the salient

characteristics of a good strategy that are otherwise difficult to articulate by hand.

The domain of robot locomotion provides another example of how coevolution

can reduce the need for inductive bias. Lipson and Pollack [129] coevolve robot mor-

phology and control (so-called “body-brain” coevolution). Complex morphologies

are much easier to build than to control; indeed, there exists a ubiquity of complex

morphologies that can only be controlled remotely by humans (and often with diffi-

culty), for the learning tasks posed by these morphologies is beyond the capabilities

of available learning systems. To learn to control a complex morphology, one cannot

start tabula rasa; instead, the learning task will be greatly simplified if the controller

is already pre-adapted for a similar, thought somehow less complex morphology. In

this manner, body-brain coevolution provides a way to gradually achieve both com-
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plex morphology and competent control of that morphology, without the considerable

inductive bias that is otherwise required.

Finally, we return once again to the work of Angeline and Pollack [9], who use

coevolution to obtain Tic-Tac-Toe strategies. A particularly interesting aspect of this

work is that the evolving players are not informed of the game’s rules—learning to

play legal Tic-Tac-Toe is part of their task. If a player makes an illegal move, then its

turn is forfeited. Thus, the learning system must be able to recognize an illegal move,

but building such a capability represents much less inductive bias than building a

legal move generator.

3.3 Monitoring Progress

An individual’s observed quality is a function of the interactions used to test that

individual; that is, observed quality (and ultimately fitness) is contextual. For ex-

ample, in a zero-sum game, a good individual interacting with superior individuals

will appear poor; on the other hand, a mediocre individual interacting with poor

individuals will appear superior. Thus, if we simply monitor population fitness values

(whether mean or maximum), we cannot reliably detect coevolutionary progress—the

evolution of increasingly optimal behaviors. This difficulty is a manifestation of van

Valen’s Red-Queen Effect [197].

To deal with the problem of detecting progress, a number of approaches can be

used. Interestingly, several methods to detect and monitor progress relate strongly to

various memory mechanisms, which we review below; the connection is not coinciden-

tal, as the prevention of evolutionary “forgetting” and the task of monitoring progress

can both be addressed by maintaining a history (or “memory”) of where search has

explored during its operation. Examples of these history-based monitoring methods
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include Miller and Cliff’s [140] (also Cliff and Miller [36, 37]) current individual ances-

tral opponents (CIAO) and Floreano and Nolfi’s [67, 68] master tournament (MT). A

method similar to CIAO and MT is used by Rosin [172, p. 99]. All of these methods

operate by collecting the most fit individuals over evolutionary time (typically the

most fit in each generation) and playing them against each other; if coevolution is

progressing, then individuals collected later in time will out-perform those collected

earlier in time. These methods are introduced in the context of asymmetric contests

(pursuit and evasion in the case of [140, 36, 37] and board games in [172]), but are

easily applied to symmetric games, as well.

Another method that collects individuals is Stanley and Miikkulainen’s [187] dom-

inance tournament (DT); this method is introduced in the context of a zero-sum

symmetric “robot duel” game, though it can be used in asymmetric games, as well.

Unlike the CIAO and MT methods, DT adds an individual to the collection if and

only if it defeats all other individuals already in the collection. This method ensures

that no intransitive cycle (which we discuss in detail below) can exist amongst the

individuals in the collection. Stanley and Miikkulainen argue that this strict cri-

terion for inclusion better reveals important evolutionary innovations. Further, the

computational cost of the dominance tournament is far less than than of CIAO and

MT, since we can stop evaluating a potential collection member as soon as it loses to

some current member; this savings is used by Stanley and Miikkulainen to evaluate

a given pair of individuals over many initial conditions and obtain a more accurate

assessment of which individual of the pair wins.

The above methods are relatively generic. Other methods to monitor progress

use domain-specific knowledge. For example, for the games of Tic-Tac-Toe and Nim,

Rosin [172, p. 96] (also Rosin and Belew [175]) exhaustively counts the number

of reachable game tree paths that lead an individual to a loss. Another example
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is Reynold’s [170] simple pursuit and evasion domain, where agent strategies are

represented by vector fields; we can easily compare strategies and contrast them to

known optimal solutions. Finally, our own early work in time series generation and

prediction [59, 60] uses entropy calculations to monitor the complexity of agents’

behaviors.

3.4 Loss of Gradient and Disengagement

As we state earlier, coevolution entails two search problems; the primary search

problem concerns the domain of interest, while the secondary search problem concerns

the discovery of interactions that will allow us to search the primary domain effectively

and recognize solutions. In many cases, these two search problems are easily identified.

For example, in cellular-automaton research, the primary search problem typically is

to find an optimal automaton rule; the secondary search problem is to find appropriate

automaton initial conditions. In other situations, the two search problems are more

intertwined. For example, in the case of checkers, strategies interact with other

strategies; here, test and tested are not categorically distinct. Even if we decide to

split strategies into two separate populations, according to whether they play black

or red, our goal most likely is to discover good strategies for both roles, not just

one. Thus, in such domains the distinction between primary and secondary search

problems is relative—red players act as tests to help find good black players and vice

versa.

Let L denote our current set of evolving individuals (i.e., search space locations)

in our primary search problem; we need to evaluate the members of L. Let T denote

our current set of interactions, obtained through the secondary search effort, that we

have available for testing the members of L. If no member of T can distinguish any
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two members of L, then we have a loss of gradient in the primary search effort. When

the primary and secondary search problems involve separate populations, then a loss

of gradient means that the populations have become disengaged. (Of course, loss of

gradient and disengagement are more realistically viewed as a matter of degree rather

than a categorical phenomenon.) Let us assume a state of gradient loss between L

and T ; further, let us assume that there exist members of L that are sub-optimal.

Given the state of L, if the solution concept for the secondary search problem OT

judges the members of T to be superior to (secondary) search space locations not in

T , then OT is either improper or has been incorrectly implemented.

3.4.1 Examples

We have already considered several examples of gradient loss. Juillé and Pollack

[104, 105, 106] coevolve cellular automaton rules with automaton initial conditions

for a density classification task. In one experiment, they use a competitive framework

between the two populations along with Rosin’s competitive fitness sharing [172] to

maintain test-case diversity. Competitive fitness sharing does maintain phenotypic

diversity, but only in the absence of a clearly superior alternative; in the case of Juillé

and Pollack’s illustration, once automaton rules achieve a nominal level of compe-

tence, the IC density that minimizes rule performance is 0.5, and so other densities

are quickly lost. Tests with density 0.5 are also the most difficult to accurately clas-

sify, and they arrive well before the automaton rules are ready for such a challenge;

disengagement is the result. Juillé and Pollack also illustrate that a strictly coopera-

tive relationship leads to gradient loss, as the IC densities are not incited to challenge

the rules.

Watson and Pollack’s [202] “numbers” games are geometric in nature and so pro-
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vide easily visualized domains in which to observe phenomena such as disengagement.

We discuss one such game in detail in Chapter 8. The numbers games vividly illus-

trate how two populations can become disengaged and, further, what can happen

afterwards: When every individual in one population beats every individual in the

other population, neither population has selection pressure acting on it. As a result,

both populations enter spontaneously created regions of fitness-landscape flatness

(i.e., networks of selective neutrality [112, 22]). The populations then drift solely

according to the biases of the variation methods. In the case of the numbers games,

this drift eventually brings the two populations back into “contact” and gradient is

re-established. (This drift causes another pathology known as evolutionary forgetting,

which we discuss below. Of course, to the extent that drift provides a way to repair

a state of disengagement, we may consider it beneficial, as does Rosin [172, p. 104].

Nevertheless, forgetting due to drift is not a satisfying remedy to disengagement; we

discuss an alternative in Chapter 7.)

Our early work [59, 60] provides an excellent example not only of gradient loss,

but also of how pathologies follow from improper solution concepts. In this work, we

examine a domain that is essentially a repeated matching-pennies game [82]. We have

one population of generators that ballistically produce binary time series; a generator

is implemented as a recurrent neural network that has no inputs and one output. We

have another population of predictors that observe generator behavior and attempt

to predict future behavior; these are implemented as recurrent neural networks that

have one input and one output.

Figure 3.1 illustrates the interaction between a generator and predictor. At each

time step t, both the generator and predictor simultaneously output a binary digit;

the goal of the predictor is to output the same bit as the generator. The output

of the generator at time t is observed by the predictor such that the output can be
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taken into account to help predict the generator’s output at time t +1; the generator

does not observe the predictor’s behavior and therefore has no indication about the

performance of the predictor during their interaction (the generator’s only feedback

comes at the end of their interaction).

G P

Outputs @ Time t

Input from Time t-1

Figure 3.1: Interaction between a generator and predictor.

If our goal (i.e., primary search problem) is to evolve good time-series predictors,

what solution concept should be used for evolving generators (i.e., the secondary

search problem)? If we reward generators for being predictable, then the generator

and predictor populations converge onto either “always output one” or “always output

zero” behaviors; the generators make the predictors appear perfect, and so further

progress is prevented. Alternatively, we can place the two populations in a zero-sum

setting, where the predictor gets one point for every time-step it predicts correctly

and the generator gets one point for every time-step the predictor is incorrect. In

this case, we obtain a classic intransitive cycle that leads to oscillatory behavior; we

will discuss this more below. Another alternative is to reward the predictor only

to the extent that it predicts better than random guessing; prediction rates ≤ 50%

give the predictor minimal reward and the generator maximal reward. This reward

structure causes the generators to quickly evolve high-entropy behaviors that cannot

be predicted better than random guessing, regardless of how clever the predictor is.
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Thus, we again obtain a lack of gradient. (This case in particular illustrates that

a purely competitive framework does not necessarily keep landscapes dynamic and

therefore help evolution escape local minima, as Hillis [92] suggests.)

Finally, we try a novel three-population framework, where generators evolve to

be predictable to “friendly” predictors and simultaneously unpredictable to “hostile”

predictors; the three-way interaction that occurs in illustrated in Figure 3.2. Predic-

tors still receive minimal reward for prediction rates ≤ 50%, but now the generator

obtains maximal reward when the friendly predictor is perfect and the hostile predic-

tor is no better than random. This framework constrains the generator by making

random behavior maladaptive; the predictors we evolve in this way are more robust.

This three-player framework anticipates the notion of distinctions that we develop in

Chapter 7.

G Ph

Outputs @ Time t

Input from Time t-1

Pf

Input from Time t-1

Figure 3.2: Interaction between a generator and two predictors, one friendly (Pf ) and
the other hostile (Ph).

3.4.2 Algorithmic Remedies

As with all of the common pathologies we discuss in this chapter, a great many

researchers have addressed the issue of gradient loss. Since gradient loss is most com-

monly associated with two-population coevolution, research has concentrated on this
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case. (Gradient loss in a single population implies that all of the evolving individuals

are receiving the same fitness; for example, we can imagine a symmetric zero-sum

game where all of the individuals tie each other.)

Rosin and Belew’s [172] phantom parasite method operates in conjunction with

their competitive fitness sharing mechanism in the context of zero-sum games. As

we state above, competitive fitness sharing is a diversity maintenance method. If a

member α of population X defeats all members of the opposing population, then α

loses by definition to the phantom parasite; if another member β in population X

loses to some member of the opposing population, then β wins by definition against

the phantom parasite. In this way, a niche is created in which the otherwise supe-

rior individual α is at a disadvantage; this prevents α from taking-over population

X, which allows “easier” individuals to remain in population X and keep the two

populations engaged. This approach clearly alters the solution concept; we will have

more to say about competitive fitness sharing and the phantom parasite in Chapter

5. The experiments of Juillé and Pollack [106] that show competitive fitness sharing

to lead to disengagement in the majority function problem do not use the phantom

parasite method to maintain “balance” between the populations; such an experiment

is certainly worth investigating.

Similar in spirit to Rosin and Belew, Cartlidge and Bullock [33] seek to discount

the fitnesses of individuals who attain perfect scores against the opposing population,

and thereby prevent them from taking over and causing disengagement. In particular,

Cartlidge and Bullock introduce a non-monotonicity in the function that maps per-

formance to fitness; an individual α who achieves moderate success against opponent

y obtains higher a fitness contribution than another individual β who achieves very

high success against y. The location of the function’s peak is a parameter. Cartlidge

and Bullock describe their approach as moderating parasite virulence. Clearly, this
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method changes the solution concept.

We next consider the approaches by Paredis [162] and Olsson [153]. These meth-

ods to prevent disengagement manipulate the sequence in which the two populations

create offspring; when one population appears to have an advantage over the other,

the evolutionary process of the stronger population is temporarily slowed or halted,

allowing the weaker population more time to adapt. Note that these two methods do

not alter solution concepts; that is, for any (cross-product) state of the two popula-

tions, the evaluator ratings obtained by the populations’ members when we use the

balancing methods are the same as when we do not use them. This is in contrast to

the other methods we discuss in this section, which actually modify evaluator ratings

(thereby distorting the solution concept) to affect inter-population balance.

Finally, we consider balancing mechanisms that are explicitly designed to adhere to

particular solution concepts. Juillé and Pollack [104, 105, 106] evolve a population of

cellular automaton rules for the majority function against another population of initial

condition densities. Rather than place them in a strictly competitive framework,

Juillé and Pollack additionally penalize densities that cause rules to perform similar

to random guessing; the heuristic here is that such densities provide little information

to guide the primary search effort.

In Chapter 7 (see also Ficici and Pollack [64]), we also use the majority function to

explore the problem of gradient loss and disengagement. We introduce a matched-pair

of solution concepts for the primary and secondary search problems; these solution

concepts derive from the notion of Pareto optimality. In our approach, an IC density

is rewarded for distinguishing the performance of different rules in pair-wise compar-

isons. The Pareto-coevolution method we introduce is subsequently pursued by Bucci

and Pollack [29, 30] and de Jong and Pollack [45].
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3.5 Intransitivity, Cycling, and the Red-Queen

Another pathology that has been investigated by many is cycling population dynam-

ics, which is caused by intransitive superiority structures. Perhaps the best-known

example of such a structure is the children’s game Rock-Paper-Scissors (RPS). This

is a symmetric zero-sum game for two players that has three pure strategies; these

strategies are arranged in an intransitive cycle: Rock beats Scissors, Scissors beats

Paper, and Paper beats Rock. There exists a single Nash equilibrium strategy for

this game, which is a mixed strategy where each of the three pure strategies is played

with probability one-third.

Evolutionary game theory shows that the Nash equilibrium of the RPS game

is not an attractor of the replicator dynamics [203, 93]. The standard discrete-time

replicator—equivalent to conventional “fitness-proportional” selection in generational

coevolutionary algorithms—causes the Nash equilibrium to be unstable; any pertur-

bation of equilibrium leads to divergent cyclic dynamics. Figure 3.3 gives a phase

plot of these dynamics. Given a finite population, such divergence will cause two

of the strategies to go extinct. (Continuous-time replicators cause the Nash equi-

librium to be neutrally stable; a perturbation of equilibrium produces a cycle that

does not increase in magnitude.) As we discuss below, a strategy driven to extinction

by intransitivity may be adaptive at some later point in time; this is an example of

evolutionary forgetting.

Another simple example of intransitivity is found in the matching pennies game

[82]. This is an asymmetric zero-sum game for two players. Each player has two

pure strategies, heads (H) and tails (T). Player 1 (P1) scores a point (and Player

2 scores nothing) if both players choose the same pure strategy, whereas Player 2

(P2) scores a point (and Player 1 scores nothing) if the players choose different pure
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Figure 3.3: Phase diagram of Rock-Paper-Scissors game under discrete-time replica-
tor dynamics. Circle indicates unstable Nash equilibrium; triangles indicate saddle
points.
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strategies. Thus, we have an intransitivity, as illustrated in Figure 3.4: If P1 plays

H, then T is adaptive for P2; if P2 plays T, then T is adaptive for P1; if P1 plays T,

then H is adaptive for P2; if P2 plays H, then H is adaptive for P1, and so on. The

Nash equilibrium for this game is for both players to choose each pure strategy with

probability one-half.

We can use the matching pennies game to illustrate cyclic dynamics in two pop-

ulations. As with RPS, above, the discrete-time replicator causes the equilibrium

to be unstable; any perturbation causes a divergent cycle. Figure 3.5 illustrates a

sample trajectory in the cross-product state space of the two populations. The Nash

equilibrium is indicated by the circle in the middle of the graph. Our initial condition

is a slight perturbation of the equilibrium proportions; from this initial condition, the

populations’ trajectories exhibit increasingly strong oscillations between the two pure

strategies.

Adaptive for Player 1 (H, H)

Adaptive for Player 2(H, T)

(T, T)

(T, H)

(H, H)

Adaptive for Player 1

Adaptive for Player 1

Adaptive for Player 2

Evolutionary Time

Figure 3.4: Intransitivity structure for matching pennies game.

Clearly, the standard replicator dynamic does not implement the solution con-

cept of Nash equilibrium in the above examples. More generally, we may claim that
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Figure 3.5: Sample trajectory of two populations in matching-pennies game. Hori-
zontal and vertical axes indicate the proportions of Player 1 and Player 2 populations
that plays Heads, respectively. Trajectory begins near unstable Nash equilibrium
(circle), which is at 0.5, 0.5.
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the standard replicator does not implement any solution concept for RPS and the

matching-pennies games for the simple reason that the system does not converge.

Thus, we argue that cycling manifestly indicates improper implementation of a so-

lution concept. (Alternatively, we may interpret cycling as an indication that no

solution exists.)

Discussions of cyclic dynamics almost always include a reference to van Valen’s

red-queen effect [197]. While related, these two phenomena are not synonymous.

The red-queen effect refers to the fact that, to maintain a level fitness in a dynamic

environment, a specie must continuously evolve. Thus, this principle certainly applies

where cyclic dynamics are found—indeed, we can argue that it is this principle that

animates the cyclic dynamics. In contrast, however, the red-queen effect also applies

to an evolutionary “arms race” between two competing species, where each specie

forces the other to become increasingly competent at certain behaviors. Because

of the relativistic nature of coevolution, these two situations cannot be distinguished

simply by monitoring fitness levels. For this reason, a variety of monitoring techniques

have been developed, which we review above in Section 3.3. Intransitivity and the Red

Queen have lead to the common perception that one cannot obtain “directionality” in

coevolution, which challenges the position that coevolution can be used to optimize;

we discuss this point in depth in Chapter 9.

3.5.1 Examples

We have already discussed several examples of cyclic dynamics. Both Paredis [161]

and Juillé and Pollack [104, 105, 106] describe cyclic dynamics in their work on the

majority function. Our early work [59, 60], where we use coevolution for a time-series

prediction task, also describes cyclic dynamics between two populations. The two-

90



population intransitivity that exists in both of these problem domains is essentially

the same as that found in the matching pennies game. In a different context, Cliff

and Miller [36] and Nolfi and Floreano [148] discuss cyclic dynamics in pursuit and

evasion contests.

3.5.2 Algorithmic Remedies

A number of different methods have been proposed to address intransitivity and

the cyclic dynamics it engenders. In the context of pursuit and evasion, Nolfi and

Floreano [148] show that the effect of intransitivity can be diminished by enriching

the environment in which the agents behave. By adding various static obstacles to the

environment that affect agent fitness, the fitness volatility created by intransitivity

is dampened. Of course, this approach is not generically applicable to all domains.

Nolfi and Floreano [148] also demonstrate how the use of a memory mechanism can

dampen cyclic dynamics; we discuss memory mechanisms more below and propose a

new mechanism based upon game-theoretic solution concepts in Chapter 8.

Bullock [31] argues that coevolutionary optimization cannot succeed unless selec-

tive pressure is sufficiently broad, or “diffuse”; otherwise, the outcomes of coevolu-

tion will be overspecialized and brittle. Indeed, the cyclic dynamics obtained from

intransitivity display a process of overspecialization. Hornby and Mirtich [96] adopt

Bullock’s argument in their work on the coevolution of pursuit and evasion behaviors.

They implement a diffuse selection pressure by evolving multiple (i.e., > 2), repro-

ductively isolated populations and having each agent interact with members of each

population; the greater genetic and behavioral diversity thus maintained broadens

selection pressure and dilutes the effect of intransitivity. (In addition, the static as-

pects of the environment are also enriched: The arena has an obstacle in the center,
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and a sophisticated 3D physics-based simulator is used. This echoes the work of Nolfi

and Floreano [148].) Hornby and Mirtich show that their multi-population approach

yields more complex pursuit and evasion behaviors than control experiments that do

not use “diffuse” coevolution.

Finally, Rosin and Belew’s [173, 172] competitive fitness sharing (CFS) provides

another method to enhance phenotypic diversity and thereby broaden selection pres-

sure. They prove that the equilibria of conventional and “shared” replicator dynamics

are identical for zero-sum games—a clear (yet uncommon) example of explicit consid-

eration for the solution concept in algorithm design. Nevertheless, Rosin and Belew do

not provide a theorem regarding how competitive fitness sharing affects the stability

of these equilibria—does competitive fitness sharing ameliorate the cyclic dynamics

produced by the standard discrete-time replicator in the presence of intransitivity?

To be fair, we must point out that CFS is not intended to address directly the issue

of cycling; rather, Rosin and Belew’s goal for CFS is to approximate teaching sets as

understood in the field of concept learning [177], which they apply to coevolutionary

optimization of competitive domains. We revisit the equilibrium and stability charac-

teristics of Rosin and Belew’s methods (competitive fitness sharing, shared sampling,

and phantom parasite) in Chapter 5.

In Chapters 7 and 8, we introduce two entirely new algorithmic methods that

systematically broaden selection pressure to subsume intransitive structures and the

cyclic dynamics they can create. Our work on Pareto coevolution at once ensures

that multiple populations remain engaged and intransitivity is properly handled. Our

work on Nash memory mechanisms provides a way to systematically broaden selection

pressure to prevent cycling and forgetting.
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3.6 Forgetting

The problem of forgetting is another common pathology in coevolutionary optimiza-

tion. As Figure 3.6 illustrates, the pathology of forgetting entails the process of trait

loss. For our purposes, a “trait” refers to any measurable aspect of behavior. Let

us say our population at time t contains some individuals with some trait x. This

trait can be lost if 1) the trait is selected against—individuals with the trait are less

fit, on average, than individuals without the trait, 2) the trait is not strongly acted

upon by selection pressure and is left to drift according to biases in the variational

operators, and 3) the trait is selected for, but is difficult to maintain—that is, the

variational operators are strongly biased against it, making offspring likely to lack the

trait. These causes of trait loss eventually lead to a population at some later point

in time t + k where no individual has trait x.

An example of trait-loss becomes an instance of forgetting when, at some yet later

point in time t + k + n, we have a population where 1) no individual has trait x and

2) some individual would obtain a gain in fitness if it were to obtain trait x. Thus,

in forgetting, a previously acquired and subsequently discarded trait is once again

desired. This description may remind us of the cycling dynamic; indeed, when a trait

is forgotten due to being selected against, an intransitive structure is at work. When a

trait is forgotten due to drift, selection pressure has become too narrow; this problem

has been called focusing [202]. When a trait is forgotten despite being selected for,

the coevolutionary system lacks a proper elitism strategy.

3.6.1 Examples

The issue of forgetting is discussed by many researchers. In the context of pursuit-and-

evasion contests, Cliff and Miller [36] discuss the role of intransitivity in forgetting;
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trait loss forgetting

Pop. t Pop. t +k Pop. t +k +n

x ⇒ fitness gain

selected against

selection-neutral

selected for

intransitivity

focusing

no elitism

Figure 3.6: Schematic of process of forgetting.

Floreano and Nolfi [68] use a shallow “Hall of Fame” memory (discussed below) to

help stabilize cycling, but still obtain forgetting due to intransitivity. The role of drift

in forgetting is discussed by Cliff and Miller [36], Rosin [172, p. 104] (also [175]), and

Watson and Pollack [202]. The numbers games of Watson and Pollack [202] provide

vivid illustrations of how forgetting ensues from genetic drift.

3.6.2 Algorithmic Remedies

The general antidote to the problem of forgetting is to maintain a sufficient diver-

sity of selection pressures. Pollack and Blair’s [164] work suggests that the game of

backgammon naturally provides such diverse selection pressures and is therefore re-

sistant to evolutionary forgetting. Backgammon is believed to have this property not

only due to its stochastic nature, but also because learned skills often apply broadly

and remain serviceable regardless of the opponent. Thus, once a player acquires a

new skill, the game provides ample opportunity to exercise it. This constant utiliza-
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tion of a player’s entire gamut of abilities is what creates a diverse selection pressure;

any genotype variation that causes skill loss is quickly exposed and culled from the

population.

Boyd [25] studies a version of the Iterated Prisoner’s Dilemma where the agents

can occasionally make mistakes, and defect when they intend to cooperate and vice

versa. Given the possibility of mistakes, the well-known tit-for-tat (TFT) strategy

can become embroiled in retaliatory oscillations against itself. A slight modification,

known as contrite tit-for-tat (CTFT), yields an IPD strategy that is more robust

in an environment where mistakes are made; indeed, Boyd proves that CTFT is an

evolutionarily stable strategy in such a context. In the ordinary IPD (i.e., without

mistakes), we know that exploitable cooperators can invade a population of TFT (or

CTFT) strategies through drift, and hence cause forgetting. The presence of mistakes

distinguishes CTFT from cooperative strategies that lack punishment mechanisms,

as well as from TFT; thus, mistakes provide a selection pressure to prevent forgetting

of important skills.

The above examples of backgammon and the IPD show that some domains are

naturally disinclined to the problem of forgetting. For domains that are susceptible to

the problem, there exist several methods that are generally applicable. For example,

forgetting can be ameliorated by using multiple, reproductively-isolated populations

(e.g., Hornby and Pollack [96]) or diversity methods such as competitive fitness shar-

ing (e.g., Rosin and Belew [175]).

Research to prevent forgetting also includes a number of memory mechanisms that

maintain a collection of “good” individuals (according to some organizing principle)

discovered over evolutionary time; the memory thus encapsulates a wider range of

phenotypes than is typically found in the coevolving population at any one moment.

The additional phenotypic variety afforded by the memory is used to augment the
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evaluation process, broaden selection pressure, and thereby reduce the likelihood of

forgetting.

The problem of designing a heuristic memory mechanism to prevent forgetting in-

trinsically entails the problem of deciding what it is that we are trying to “remember”—

what is our solution concept? That is, what collection of traits constitutes the desired

or “correct” set, and what properties does this collection have? A principled answer

to this question is imperative when a domain forces mutual exclusivity between cer-

tain traits, or when an evolutionary representation (genotype) cannot simultaneously

encode all desired traits. Once we have our solution concept, what organizing prin-

ciple do we use in the memory mechanism to obtain it? Thus, we view a memory

mechanism as an accumulator of traits; a trait enters and remains in the memory

only if it is “worth” remembering, according to our organizing principle.

Almost all memory mechanisms in the literature are instances of a general “best

of generation” (BOG) model where 1) the most fit individual in each of the m most

recent generations is retained by the memory mechanism and 2) l of the m retained

individuals are sampled without replacement for use in testing individuals in the

current generation. Examples of this approach are found in Sims [185] (m = 1,

l = 1), Cliff and Miller [36, 37] (m = 1, l = 1—so-called last elite opponent), Potter

and De Jong [166] (m = 1, l = 1), Rosin and Belew [175] (e.g., m = ∞, l = 20),

and Nolfi and Floreano [149, 148] (m = 10, l = 10) (see also [67, 68, 69, 70]). For

m = 1, the population itself usually acts as the repository of the “champion” (or,

elite) individual; thus, the elite contributes genetic material in addition to its role as

evaluator. As the value of m increases, however, the evolving population becomes a

less appropriate home for the generation elites and a separate data structure is used.

In a contrasting approach, Stanley and Miikkulainen [187] propose that their dom-

inance tournament (DT)—a method intended to monitor coevolutionary progress—
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can be adapted for use as a memory mechanism. The principle is to retain the most

fit individual of the current generation only if it beats all the individuals previously

retained by the memory; that is, the “generation champion” must dominate the con-

tents of the memory to be included. (Note, however, that domination is determined

only with respect to the memory’s contents.) Thus, no intransitive cycles can exist

amongst the strategies in the memory. While the dominance tournament is introduced

in the context of a symmetric zero-sum game, it can also apply to asymmetric games;

a very similar idea is discussed by Rosin [172, p. 25] in the context of asymmetric

zero-sum games.

The work of Paredis [159] introduces life-time fitness evaluation (LTFE), a mem-

ory method that does not collect elites. This method is used with a steady-state

evolutionary algorithm. The fitness of an individual is the sum of scores obtained by

the individual over its n most recent interactions with others. The LTFE approach

integrates performance over evolutionary time; in so doing, it smooths otherwise rapid

shifts in fitness landscapes. Rather than broaden selection pressure by retaining cham-

pions over evolutionary time, this method broadens selection pressure by integrating

performance over evolutionary time. Thus, LTFE operates within the population of

individuals that is being used for search.

In Chapter 8, we introduce a new memory mechanism [65] that is built around

the solution concept of Nash equilibrium. Our Nash memory mechanism accom-

plishes three goals: First, it detects and incorporates intransitive structures; second,

it systematically broadens selection pressure; third, it naturally represents the solu-

tion obtained by the coevolutionary effort—that is, it provides a principled elitism

method for coevolution. An important result of our work in Chapters 4 and 5 is that

the evolving population is not always able to effectively perform search and simulta-

neously represent the solution of the search effort. For this reason, our Nash memory
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method creates a collection of individuals that is external to the evolving population.

We compare the performance of the Nash memory mechanism to that of BOG and

the DT—methods that also use external collections—and contrast their organizing

principles, or solution concepts.

3.7 Fitness Deception Obscures Solutions

The task of locating the solution of an interactive domain is complicated by the

need to first discover the relevant tests (interactions) through which the solution can

be identified. Here we investigate an interesting frequency-dependent effect that ob-

scures the identity of monomorphic Nash equilibria that are attractors of the standard

replicator dynamic. To our knowledge, this particular pathology is reported only by

Dawid [44] and subsequently Ficici and Pollack [62] (discovered independently). We

begin our examination of the frequency effect by looking at a game that lacks it; this

game is known as a coordination game. We then introduce the Hawk-Dove-Retaliator

game, which displays the effect. Finally, we examine larger, 50-strategy games that

heighten the frequency-dependent effect.

3.7.1 Coordination Games

The canonical coordination game is a symmetric two-player variable-sum game where

both players must play the same pure strategy (i.e., coordinate) to receive maximal

payoff. Equation 3.1 gives the payoff matrix for a three-strategy coordination game.

Each of these pure strategies forms a Nash equilibrium with itself, where each player

receives a payoff of 1. Further, there exists a mixed Nash equilibrium strategy where

each pure strategy (A, B, and C) is played with probability 1/3. This mixture guar-

antees each player a payoff of 1/3, regardless of what the other player does; thus, the
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mixture does not require coordination, but neither does it deliver maximal payoff.

From a dynamical systems perspective, all four of the Nash equilibria are fixed-

points of the standard replicator used in evolutionary game theory. Nevertheless,

only the three pure strategies are attractors; the mixed strategy is an unstable fixed-

point. Figure 3.7 (top) shows the phase diagram of our example coordination game.

In the middle we have our unstable mixed Nash strategy; at the corners are the three

pure Nash attractors. Thus, we have three basins of attraction, one for each pure

strategy. Given a population state p = 〈pA, pB , pC〉 (where 0 ≤ pA, pB , pC ≤ 1 and

pA + pB + pC = 1.0), we are guaranteed to converge onto one of the pure strategies

if no two of the three strategies are present in the same proportion. We can easily

determine which basin of attraction p is in: Whichever strategy is the plurality of

population state p is also the attractor of p. For example, if pA > pB and pA > pC ,

then we are in strategy A’s basin of attraction and the population will converge onto

a state of all-A. In this way, evolutionary game theory provides a natural coordination

mechanism.

Figure 3.7 (bottom) labels points in phase space according to which of the three

pure strategies receives the highest fitness. The region in which a particular pure

strategy receives the highest fitness aligns precisely with its basin of attraction. Thus,

given some population state p, the following points are true for our example game:

1) if a pure strategy is the plurality, then it is also receiving the highest fitness, 2)

if one pure strategy receives higher fitness than the other two, then it is also in the

plurality, 3) a pure strategy in the plurality will take-over the population. Therefore,

for any population state in which the three pure strategies are present in different

concentrations we can immediately identify the solution we will obtain—we need not

wait for the population to converge.
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G =

A B C

A 1 0 0

B 0 1 0

C 0 0 1

(3.1)

3.7.2 Hawk-Dove-Retaliator

Equation 3.2 gives the payoff matrix for the Hawk-Dove-Retaliator (HDR) game [134].

Figure 3.8 (top) shows the phase diagram for this game. Like our coordination game,

the HDR game has three monomorphic fixed-points (where the population contains

only one pure strategy). Unlike the coordination game, only one monomorphic state—

all-Retaliator—is attractive; the other two are unstable. The HDR game also has an

unstable fixed point (more precisely, a saddle point, indicated by the triangle) where

all three strategies are present. In addition to the monomorphic attractor, the HDR

game has a polymorphic attractor where Hawks and Doves each compose half of the

population. Of the two attractors, the basin of attraction for all-Retaliator is the

larger.

Figure 3.8 (bottom) labels points in phase space according to which of the three

pure strategies receives the highest fitness. Unlike our coordination game, we find that

the regions indicated by the bottom graph do not align with the basins of attraction.

Most particularly, in most of the Retaliator’s basin of attraction, the Dove receives the

highest fitness. For example, the population state pH = 0.1, pD = 0.5, pR = 0.4 (which

we can more conveniently denote 〈0.1, 0.5, 0.4〉) is in Retaliator’s basin of attraction.

Yet, in this state, the pure strategy Dove gives every indication of superiority: Dove

is the most frequent pure strategy and it out-scores the other two (unnormalized

fitnesses are fH = 0.5, fD = 0.86, fR = 0.85).
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coordination game. Bottom: Phase space labeled by which strategy has the highest
fitness.
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Figure 3.9 shows an orbit starting at population state 〈0.8, 0.01, 0.19〉. We are

again in the Retaliator’s basin of attraction, yet Retaliator does not out-score Dove

until the tenth iteration of the replicator. Thus, even if a monomorphic attractor

exists, and we are in its basin of attraction, frequency-dependent effects can cause

fitness values to obscure the identity of the attractor. The attractor (i.e., solution)

for a particular population state need not obtain the highest fitness in that state. In

this sense, fitness values may “deceive” us. Note that this form of deception does not

involve the genotype space at all (as it does in GA trap functions [85], for example)—it

exists purely within the game-theoretic relationships of phenotype proportions. (Note

also that this frequency-dependent effect is unlike that found in Rocks-Paper-Scissors

in that RPS lacks a monomorphic attractor.)

The HDR game raises the question of how conventional coevolutionary algorithms

might be misled by this frequency-dependent effect in variable-sum games. In each

generation, decisions are made regarding which strategies should be kept and form

the basis for future search. The evolutionary heuristic maintains that fitter strategies

are more likely to yield superior offspring. Yet, strategies that exhibit superior fitness

only in transient population states may be less useful guideposts for search than

attractor strategies, which at least have some stability properties with respect to the

transient.

Thus arise questions regarding the time-scales on which selection and variation

should operate. (These questions relate indirectly to Hammerstein’s [87] streetcar the-

ory, which seeks to reconcile models of Mendelian genetics with those of phenotypic

adaptation.) In the conventional coevolutionary algorithm, selection and variation

operate on the same time scale. Alternatively, we may delay the application of varia-

tion operators until selection alone takes the population past the transient and brings

it to a state where fitness values are “believable”; we can then select parents for repro-
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duction based on more accurate assessments of their dynamical stability. Essentially,

this approach elongates the process of fitness evaluation through time, rather than

use instantaneous estimates. Unfortunately, this approach also will likely eliminate

too much genetic diversity for search to be effective. The population is essentially

being asked to perform two contradictory tasks: Indicate the solution and maintain

genetic diversity. We revisit this theme in Chapters 5 and 8. As an antidote, we can

imagine using some external black-box to provide believable fitness values, allowing

the population to concentrate on search; an instance of such a black-box could be a

secondary population to which we apply only selection.

G =

H D R

Hawk −1 2 −1

Dove 0 1 0.9

Retaliator −1 1.1 1

(3.2)

3.7.3 Random Variable-Sum Games

Here we explore the extent to which the above frequency-dependent effect can frus-

trate our ability to identify an attractor, or solution. Figures 3.10 through 3.13 present

results from three different random symmetric variable-sum games. Each game has 50

pure strategies and each payoff of each game is sampled from a uniform distribution

U(0, 1). Each figure depicts a single orbit, using the standard EGT replicator, that

begins at a random population state and converges to a monomorphic attractor. (Our

method to discover these orbits is simply to evolve the population for 1000 time-steps

and check the dynamic stability of the resulting population state if it is monomorphic.

We also check that numerical underflow does not occur during the orbit.)

Figure 3.10 gives results of a sample orbit where all 50 pure strategies are present
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in the initial population state. Figure 3.10 (top left) shows the evolution of strategy

proportions over 500 time-steps, with the attractor eventually taking-over the pop-

ulation (indicated by the bold line). In the bottom left of Figure 3.10, we show the

fitness values of each strategy over time. The attractor strategy is indicated by the

solid bold line, whereas the population’s average fitness (frequency-weighted) is indi-

cated by the dashed bold line. We see that the attractor is at or well below average

fitness for the first 79 generations. The attractor strategy first becomes the most fit

at generation 131, but does not permanently establish this position until generation

289.

Figure 3.10 (top right) shows how many of the 50 pure strategies out-score the

attractor; we see that as many as 44 other strategies receive better fitness values.

Figure 3.10 (bottom right) shows what proportion of the population out-scores the

attractor. This graph reveals an even more dramatic story: over 99.95% of the

population out-scores the attractor strategy at generation 61. Figures 3.12 and 3.13

give examples from two other random games.

Figure 3.11 shows the result of a different initial condition on the game used in

Figure 3.10; here, we begin with all strategies present in equal proportions (pi =

0.02 for all strategies i). The monomorphic attractor to which we converge is the

same as before (strategy 49). In this orbit, the attractor’s fitness reaches its nadir

at approximately generation 125; this point corresponds to the peak in numbers of

strategies that out-score the attractor (27) as well as the peak in the proportion of the

population that out-scores the attractor (over 99.96%). The smallest proportion that

the attractor has in the population during the orbit is pattractor = 5.5722× 10−5— far

less than at the initial condition.

All of the results we present here use an infinite population. If we were to have a

finite population, then quantization effects may be noticed. For example, a population
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of size 1000 can represent our initial condition, but not all the subsequent population

states our orbit visits on the way to convergence. Thus, our initial condition presents

a situation where we have our attractor strategy but will be unable to recognize

it—the attractor strategy will be driven out of the population before fitness values

reveal it to be our solution. Instead, the finite-population system will converge to

some saddle-point. Thus, the size of the attractor’s basin is reduced according to the

resolution supported by the population size.
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Figure 3.10: Sample orbit of random variable-sum game with 50 pure strategies. Top
Left: Strategy proportions over time. Top Right: Fitness rank of monomorphic at-
tractor over time. Bottom Left: Strategy fitness over time. Bottom Right: Proportion
of population with higher fitness than monomorphic attractor over time.
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Figure 3.11: Orbit from initial condition where all strategies are present in equal
proportions, using same game as that used in Figure 3.10. Top Left: Strategy pro-
portions over time. Top Right: Fitness rank of monomorphic attractor over time.
Bottom Left: Strategy fitness over time. Bottom Right: Proportion of population
with higher fitness than monomorphic attractor over time.
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Figure 3.12: Sample orbit of random variable-sum game with 50 pure strategies. Top
Left: Strategy proportions over time. Top Right: Fitness rank of monomorphic at-
tractor over time. Bottom Left: Strategy fitness over time. Bottom Right: Proportion
of population with higher fitness than monomorphic attractor over time.
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Figure 3.13: Sample orbit of random variable-sum game with 50 pure strategies. Top
Left: Strategy proportions over time. Top Right: Fitness rank of monomorphic at-
tractor over time. Bottom Left: Strategy fitness over time. Bottom Right: Proportion
of population with higher fitness than monomorphic attractor over time.
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3.8 Diversity Maintenance and Teaching

A general antidote to all of the common pathologies we discuss above is the main-

tenance of genetic and phenotypic diversity. The approaches to maintain diversity

that we examine above include methods to slow genetic convergence by halting evo-

lution in a population (e.g., Paredis [162] and Olsson [153]), spatial populations (e.g.,

Hillis [91] and Pagie and Hogeweg [156]), the use of multiple, reproductively isolated

populations (e.g., Bullock [31], and Hornby and Mirtich [96]), assortative mating (a

method to achieve speciation, e.g., Todd and Miller [193]), and various types of fitness

sharing (e.g., Rosin and Belew [175] and Juillé and Pollack [103, 105]). (In Chapter

5, we show that fitness sharing methods distort polymorphic Nash equilibria.)

The problem of providing gradient for coevolutionary search—what we describe

as our secondary search effort—has been addressed by many. Again, the maintenance

of phenotypic diversity figures prominently in efforts to improve gradient. Indeed, the

need for diversity of experience is stated even in non-evolutionary approaches to game

learning, for example in Epstein [55], who argues that a knowledge-based approach to

game learning provides systematic exposure to different aspects of a game. Rosin and

Belew’s heuristics to approximate teaching sets include phenotypic-diversity schemes

such as competitive fitness sharing and the phantom parasite. Juillé and Pollack [106]

show that avoidance of tests that cause learners to perform no better than random

is effective in a density classification task. The heuristic we present in Chapter 7

seeks tests that distinguish the performance of learners in the population. While very

different in approach, our method shares some affinity with the notions of teaching

sets and sequences; the connection is particularly apparent in the follow-up work of

Bucci and Pollack [30] and de Jong and Pollack [45].
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Chapter 4

Solution Concepts and Selection

Methods

4.1 Introduction

In Chapter 1, we briefly discussed evolutionary game theory [134] and pointed out

that the replicator equations used in EGT are equivalent to what is known in evolu-

tionary computation as fitness-proportionate selection. While the properties of this

standard replication scheme are well-studied, alternative selection methods (replica-

tors) used in evolutionary algorithms have escaped careful game-theoretic scrutiny.

This chapter investigates the properties of four common EA selection methods from

a game-theoretic and dynamical-systems perspective: truncation, (µ, λ)-ES, linear

ranking, and Boltzmann selection. The use of these various selection methods in

non-coevolutionary settings are reviewed in [86, 88, 141]; they are designed to pro-

vide different ways to manage genetic diversity and rates of convergence. But, how

do these methods compare to canonical fitness-proportionate selection when used in

a coevolutionary settings? Do they exhibit similar dynamics and promote the same

fixed-points and attractors? We will use the simple infinite-population model of evo-
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lutionary game theory to answer these questions.

In evolutionary game theory, every attractor of the standard (i.e., fitness-

proportionate) replicator is a Nash equilibrium [93]. Rather than maintain the dy-

namics and equilibria of EGT’s standard replicator, the alternative selection methods

we test yield cyclic dynamics, non-Nash attractors, and even chaos. Only Boltzmann

selection (and only at low selection pressures) is faithful to EGT equilibria. We

conclude that certain selection methods, while they may be effective in ordinary evo-

lutionary algorithms, are likely to be inappropriate for coevolution. Specifically, the

selection methods we test can fail to obtain polymorphic Nash equilibria in variable-

sum games.

Thus, we demonstrate how alternative selection methods distort the solution con-

cepts (in this case, Nash equilibrium) that we may otherwise believe to be operating.

In so doing, we reveal a virtually unknown class of coevolutionary pathology where

the solution concept for the primary search problem is improperly implemented. The

particular manifestation of this pathology that we encounter here indicates that cer-

tain selection methods used in coevolutionary algorithms prevent the attainment of

game-theoretically justifiable results.

We begin with a brief introduction to evolutionary game theory and the Hawk-

Dove game. The next two sections outline our dynamical systems approach, where we

first look at the dynamical features of the Hawk-Dove game, and then consider the role

of the selection method (the replicator). We then consider each of the four selection

methods, in turn. Discussions of how our results generalize to larger games, and

what the results mean for coevolutionary algorithms follow. We then review a general

methodology used in dynamical systems to determine the stability characteristics of

an arbitrary differentiable replicator function. The work we report in this chapter is

first published in Ficici, Melnik, and Pollack [58].
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4.2 Evolutionary Game Theory

A central achievement of evolutionary game theory was the introduction of a method

by which agents come to play “optimal” strategies in the absence of agent ratio-

nality [134]. Through a process of Darwinian selection, a population of agents can

converge to an evolutionary stable strategy (ESS), which is a Nash equilibrium with

an additional “stability” criterion. Despite the name, Maynard-Smith’s definition

of evolutionary stability is actually a static concept, and since its introduction many

other solution concepts have been proposed [126], including those that are more prop-

erly rooted in dynamical systems theory [176]. Nevertheless, for the game studied in

this chapter (the Hawk-Dove game), the ESS corresponds to a dynamical attractor

[93, 188].

4.2.1 Assumptions and Operation

A symmetric two-player game consisting of m “pure” strategies is described by an

m by m payoff matrix G. If Player 1 plays strategy i and Player 2 plays strategy

j, then their payoffs are given by matrix entries Gi,j and Gj,i, respectively. We

assume a single infinitely large population of agents, where each agent plays some

pure strategy. The state of a population is represented by column vector p, of length

m, where element pi represents the proportion with which game strategy i appears

in the population of agents. Thus, each element pi has a value between zero and one

(inclusive), and the elements must sum to one.

We assume complete mixing: All possible pair-wise interactions between agents

take place at each time step (i.e., generation). We define the cumulative payoff re-

ceived by an agent playing strategy i to be the sum of 1) payoffs obtained upon

interacting with all other agents (computed by the inner product of row i of the
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payoff matrix and the proportion vector p), and 2) a constant baseline fitness w0

(derived in Equation 4.2) endowed to each agent before interaction takes place. The

vector w gives the cumulative payoffs for all strategies and is calculated by matrix

multiplication and vector addition, as shown in Equation 4.1; wi is the cumulative

payoff of strategy i, and hence all agents that play strategy i. (Note: w0 is either a

column vector or matrix, as appropriate, where all elements are w0.)

Given the population state and cumulative payoff vectors at time t, pt and wt,

we compute the new state of our evolving population, pt+1, with Equation 4.3. This

difference equation is known as a replicator, and causes the number of agents playing

each strategy to increase (replicate) in proportion to cumulative payoff. We then

re-normalize strategy proportions such that they again sum to one. Note that strate-

gies absent from the initial population cannot appear at later time steps, since we

are describing a selection-only system—no variational operators (i.e., mutation or

recombination) exist to introduce strategies not already present.

w = Gp + w0 (4.1)

w0 = | min(min(G), 0) |+ k, k ≥ 0 (4.2)

pt+1 = normalize(diag(pt)wt) (4.3)

Agent fitness is defined to be proportional to reproductive success. Because an

agent can have no fewer than zero offspring, an agent’s fitness value f must be f ≥ 0.

Since the standard replicator used in EGT specifies that agents reproduce offspring

in proportion to cumulative payoff, we may interpret cumulative payoff to be syn-

onymous with fitness. Thus, we define w0 to be large enough to ensure that fitness

values are non-negative, even if complete mixing leaves an agent with a negative net
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payoff. As we examine alternatives to the standard replicator equation, we will find

that the relationship between cumulative payoff and fitness loses its linearity.

Finally, as shown in Equation 4.4, the baseline fitness w0 can instead be added to

each element in the payoff matrix G before multiplication with vector p to achieve

the same fitness values as in Equation 4.1 (recall that the elements of p sum to one).

Therefore, given a game G (with payoffs a, b, . . .) and a baseline fitness w0, we can

define a new game G′ (with payoffs A, B, . . .), as shown in Equation 4.5.

w = (G + w0)p = Gp + w0p = Gp + w0 (4.4)

G′ =


 A B

C D


 = G + w0 =


 a + w0 b + w0

c + w0 d + w0


 (4.5)

4.2.2 Nash Equilibrium

In a symmetric two-player game (e.g., the Hawk-Dove game defined below), a strategy

s∗ creates a Nash equilibrium iff it is its own best reply [145, 83]:

∀s ∈ S : E(s, s∗) ≤ E(s∗, s∗) (4.6)

where S is the set of possible pure and mixed strategies, and E(s1, s2) is the expected

payoff given to strategy s1 after interaction with strategy s2.

That is, if Player 2 chooses to play s∗, then the maximal expected payoff that

Player 1 can achieve is acquired by also playing strategy s∗, and vice versa. The

strategy s∗ may be pure or “mixed” (a probability distribution over the set of pure

strategies). If s∗ is a unique best reply, that is, if there exists no other strategy that

does as well when interacting with s∗ as s∗ itself, then the Nash equilibrium is strict.
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Otherwise, it is weak. All finite games have at least one mixed Nash equilibrium (pure

Nash equilibria being degenerate mixtures).

4.3 Standard Replicator

We are interested in how the dynamics and equilibria of the standard discrete-time

replicator (Equation 4.3) change when the calculation of strategy fitness is modified

to implement various selection methods (and forms of fitness sharing in Chapter 5).

In this section, we note the replicator’s normative behavior, that is, in the absence of

modifications.

The results we present throughout this chapter are illustrated with the Hawk-Dove

game, the payoff matrix for which is shown in Equation 4.7. This is a symmetric,

variable-sum game for two players that has two pure strategies (Hawk and Dove).

Such games always cause the standard replicator to converge to a point attractor that

is an ESS, and hence a Nash equilibrium [134]. Point attractors are either monomor-

phic or polymorphic. A monomorphic attractor is a population state comprised of a

single pure strategy (where all the other strategies are driven to “extinction,” that

is, an infinitely small proportion of the infinitely large population). A polymorphic

attractor is a population state comprised of more than one pure strategy, where the

surviving strategies have reached a fitness equilibrium at some particular strategy

proportion. As we will see below, the Hawk-Dove game has a polymorphic attractor.

G =

H D

H −25 50

D 0 15

(4.7)
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4.3.1 Equilibrium

Given an arbitrary symmetric game of two pure strategies x and y, the popula-

tion state vector is composed of two scalars p = [px py ]
T, as is the fitness vector

w = [wx wy]
T. We can find the proportion at which the strategies reach fitness equi-

librium (assuming that such a proportion exists) by setting wx = wy and solving for

px; the solution is given by Equation 4.8. If the game in question does not have a poly-

morphic equilibrium, then Equation 4.8 will give a value outside of the interval (0, 1)

or have a zero denominator. Because a two-strategy game yields a one-dimensional

system, the value of py can be inferred: py = 1− px.

The important feature of Equation 4.8 is that the fitness equilibrium ratio between

px and py does not depend on the value of w0. Indeed, the polymorphic equilibria of

Equation 4.3 are independent of w0 regardless of the number of strategies [176]. If

this is the case, we may ask why we need w0. Though the value of w0 is unimpor-

tant at fitness equilibrium, it is important when the population state is away from

equilibrium—recall that we need it to prevent negative fitness values. Thus, there

exist uncountably many games with the same set of fitness equilibria.

The Hawk-Dove game has a polymorphic Nash equilibrium; the proportion of

Hawks at this equilibrium is pH = (15−50)/(−25−50−0+15) = 7
12

. For population

states pH < 7
12

, Equation 4.1 shows that wH > wD; for population states pH > 7
12

, we

find wH < wD. (Note that the Hawk-Dove game has an additional Nash equilibrium

where one player plays Hawk and the other plays Dove; given such a configuration

of strategy choices, neither player is incited to unilaterally change strategies. Never-

theless, we cannot represent this Nash equilibrium with a single evolving population,

and so will not consider it in our present investigation. In contrast, a two-population

framework can obtain this Nash equilibrium in the standard EGT framework.)
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px =
D − B

A− B − C + D
=

d + w0 − b− w0

a + w0 − b− w0 − c −w0 + d + w0
=

d− b

a− b− c + d
(4.8)

4.3.2 Dynamics

Since two-strategy games give one-dimensional systems, we can depict the dynamics

of the Hawk-Dove game with a return map; the x-axis represents the state of the

population pH (proportion of Hawks in the population) at time t and the y-axis

represents pH at time t+1. Figure 4.1 shows the return map of the Hawk-Dove game

at two different values of w0. Both curves intersect the diagonal line at the same three

points; each of these intersections represents a fixed point of the dynamical system,

where the population state does not change from one time-step to the next. The

fixed-point in the middle of the graph is the polymorphic Nash equilibrium of the

Hawk-Dove game, where wH = wD.

The slope of the curve at a fixed-point determines the fixed-point’s stability. If

the absolute value of the slope is less than one, then the fixed-point is stable. We

see that both curves in Figure 4.1 meet this requirement where pH = 7
12

, and so the

polymorphism is an (indeed, the only) attractor of the dynamical system. Though w0

affects neither the stability nor the location of the polymorphism, we see that larger

values of w0 bring the curve closer to the diagonal, which results in a dynamical

system that moves more slowly to the attractor.
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Figure 4.1: Return map of Hawk-Dove game using different values of w0.
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4.4 Truncation Selection

Truncation selection is frequently used in a type of evolutionary computation known

as evolutionary programming [71]. Truncation operates by first sorting the population

according to fitness and then removing the worst k percent of the population and

replacing them with variations of the best k percent; the value k expresses a selection

pressure. For example, given a population of size 200 and selection pressure of k = 25,

we will remove the worst 50 individuals and replace them with variations of the best

50 individuals. This approach requires a selection pressure range of 0 ≤ k ≤ 50,

where higher values of k give higher selection pressure. Since evolutionary game

theory assumes selection only, we exclude variation operators and simply replace the

worst k% with exact copies of the best k%.

We can easily implement truncation selection for the infinite population that evo-

lutionary game theory assumes. All agents that play the same strategy receive the

same cumulative payoff; therefore, we need only sort the strategies by their cumula-

tive payoffs, given the state of the population, and note the proportions with which

each strategy appears in the population.

More precisely, given the population state p, strategy i exists with proportion pi

and receives a cumulative payoff of wi. We sort the strategies of the game according

to cumulative payoffs and obtain a new vector q. The element qsj is the proportion

with which strategy sj (the strategy with sorted rank j) appears in the population;

the index j ranges between 1 and m, and s1 signifies the strategy with the highest

cumulative payoff.

We construct a vector r to indicate the proportion of each strategy we are to

remove from the population; with r we represent the worst k percent of the population.

We construct a similar vector b to indicate the proportion of each strategy we are to
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add to the population; we use b to represent the best k percent of the population.

The new strategy proportions are q′ = q− r + b.

Figure 4.2 illustrates a game of three strategies where each strategy initially oc-

cupies 1/3 of the population; truncation is applied with maximum selection pressure

(k = 50). The worst half of the population contains all of the agents that play strat-

egy s3 and one half of those that play s2; the best half contains all of the agents that

play s1 and the other half of those who play s2 (note that we do not make special

accommodations for ties). After truncation, the new proportions q′ indicate that s1

and s2 compose 2/3 and 1/3 of the population, respectively; strategy s3 has been

eliminated.
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Best

{
{
{= 1/3

q

3
s

2
s

1
s

= 1/3

= 1/3
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}

+
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0
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=
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sk 

=
 5

0%

Figure 4.2: Truncation selection on an infinite population.
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What does truncation selection do at a fixed point that involves more than one

strategy, such as the polymorphic Nash equilibrium of the Hawk-Dove game? Recall

that, at a fixed point, all strategies present in the population receive the same fit-

ness. Since no special accommodation is made for fitness equilibria (ties), the result

of sorting, and therefore truncation selection, is ill-defined. Truncation selection is

unable to maintain arbitrary fixed points unless special precautions are taken to deal

with fitness equilibria.

When we use truncation selection instead of the standard replicator, we observe

three regimes of behavior as selection pressure is varied. For higher selection pressures,

in the range 42% ≤ k ≤ 50%, truncation selection causes the system to converge onto

a new attractor of all Hawks. Figure 4.3 (top) shows the return map produced by

truncation when k = 50. We find a large discontinuity precisely at the population

state where the attractive Nash equilibrium should be. The example orbit eventually

converges to the state of all Hawks.

Equation 4.1 gives both strategies the same cumulative payoff at the Nash equi-

librium proportion of pH = 7
12

; below this proportion, the Hawks outscore the Doves

and above this proportion the Doves outscore the Hawks. By virtue of this payoff

relationship, the standard replicator enables a simple feedback mechanism that gives

the Nash its stability. But, truncation selection breaks this feedback mechanism. As

an illustration, let us consider a population state where the proportion of Hawks is

1
2
≤ pH < 7

12
. Because pH is below the Nash equilibrium proportion, the Hawks

receive higher cumulative payoff than the Doves. But, the Hawks also comprise more

than half of the population. Thus, the best 50% of agents in the population can only

be playing the Hawk strategy, and the next generation will be 100% Hawks. The or-

bit of most initial conditions 0 < p0
H < 1 will eventually fall into the critical interval

1
2
≤ pH < 7

12
and converge to the non-Nash attractor of all Hawks. Nevertheless,
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cyclic behavior is possible as well; for example unstable period-two and period-three

cycles exist. If the population state begins at the Nash equilibrium, then we must

account for fitness ties and maintain the proper ratio of Hawks and Doves in the r

and b vectors; otherwise, the fixed-point will be lost.

For moderate selection pressures 31% ≤ k ≤ 41%, truncation selection produces

chaos. Figure 4.3 (middle) shows one such chaotic orbit where k = 36. The Liapunov

exponent of a dynamical system is a measure of sensitivity to initial conditions, and is

an indicator of chaotic behavior if it is greater than zero. To calculate the Liapunov

exponent, we normally measure the derivative of the map at each time step of an

orbit. But, the truncation map has a discontinuity, and so is not differentiable. The

map is piece-wise linear, however, and the lack of smoothness is negligible. Therefore,

we use the slope of the line segment. This yields a Liapunov exponent of λ = 0.69.

For lower selection pressures, 0 < k ≤ 30%, truncation selection gives neutrally

stable cycles. Figure 4.3 (bottom) provides a sample orbit where k = 15. The

discontinuity at the Nash proportion remains; for pH < 7
12

the map is above the

diagonal, and for pH > 7
12

the map is below. Therefore, all of the cycles go around

the Nash proportion. The exact location of the cycle is determined by where the orbit

first enters the cycle-inducing region of the map. As selection pressure decreases, the

limit cycles exhibit tighter orbits around 7/12.

4.5 (µ, λ)-ES Selection

The (µ, λ)-ES selection method is used in the branch of evolutionary computing known

as evolution strategies [17]. Given a population of λ offspring, the best µ offspring

are chosen to parent the next generation. Normally, variational operators are applied

during reproduction, but we omit variation here, as we did with truncation selection.
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Figure 4.3: Return maps of truncation selection method with selection pressure at
50% (top), 36% (middle), and 15% (bottom).
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The (µ, λ)-ES selection method is similar to truncation selection, but more drastic.

In (µ, λ)-ES selection, the best µ
λ
% expands to replace the entire population rather

than just the worst µ
λ
%.

The implementation of (µ, λ)-ES selection for infinite populations is identical to

that of truncation selection, except that now vector w is discarded and vector b is

normalized to create the new population. The fraction µ/λ determines the selection

pressure—the actual values of µ and λ are unimportant for an infinite population.

Thus, for (µ, λ)-ES selection, the selection pressure can be in the range 0 < µ
λ
≤ 1.0,

where lower values indicate higher selection pressure.

For the Hawk-Dove game, (µ, λ)-ES selection also has three regimes of behavior,

none of which are able to maintain arbitrary fixed points and all of which include

some initial conditions that lead to cycles. For the range .59 ≤ µ
λ

< 1.0, the behavior

is usually chaotic. Figure 4.4 (top) shows an example orbit where µ
λ

= 0.6. The mea-

sured Liapunov exponent is 0.52. In the range .42 ≤ µ
λ
≤ .58, the system converges

to all Hawks in a manner very similar to truncation selection. The range 0 < µ
λ
≤ .41

introduces the additional possibility of converging onto all Doves. This is shown in

Figure 4.4 (bottom), where µ
λ

= 0.3. Because the map of (µ, λ)-ES selection is not

differentiable, the stability properties of the all-Hawk and all-Dove fixed points are

unusual—they are attractors, but they are not locally stable. The same is true for

the all-Hawk attractor seen in truncation selection.

4.6 Linear Rank Selection

A common selection method used in genetic algorithms is ranking [85]; we sort agents

according to score and then assign fitness values according to their rank, such that

superior ranks yield higher fitness values. In linear ranking, fitness changes linearly
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Figure 4.4: Map diagrams of (µ, λ)-ES selection with µ
λ

= 0.6 (top) and 0.3 (below).
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with rank; agents are then selected in proportion to fitness. Ranking methods are

used to reshape the population’s fitness distribution. In the absence of ranking,

differences between agents’ fitnesses can become too small for the standard roulette

wheel to resolve, given a finite population; superior genetic material may be lost or

insufficiently exploited. Alternatively, a very large difference in fitness may lead to

premature convergence to local optima. With ranking, however, excessively large

fitness differences are attenuated while very small differences are expanded.

We implement linear ranking for our infinite population with ease; we simply rank

the strategies’ cumulative payoffs and then assign each agent a fitness value according

to the rank of the strategy it is playing. In the case of the Hawk-Dove game, we have

only two strategies; whichever of the two strategies obtains the higher cumulative

payoff for the given population state provides its agents a fitness of two, while the

other strategy provides a fitness of one. After normalization, the fitness values will

either be fH = 1
3
, fD = 2

3
, or fH = 2

3
, fD = 1

3
; if special care is taken to handle ties

(at Nash equilibrium), then we obtain fH = 1
2
, fD = 1

2
. Selection then proceeds in

proportion to these fitness values.

Figure 4.5 shows the return map for linear rank selection. Again, at the population

state that is the Nash equilibrium (pH = 7
12

), we find a discontinuity instead of

an attractor. Further, we find that linear ranking produces neutrally stable cycles

around the Nash equilibrium proportion; this is the only behavior that linear ranking

produces. Because the fitnesses, and hence rates of growth, of the two strategies are

exactly inverted as the Nash proportion is crossed, a period two cycle must result.

Ranking maps all possible fitness proportions to a single proportion. As a result,

rates of growth can never approach equality, which makes attractive polymorphic

fixed points impossible, as is visually obvious in Figure 4.5. Another version of rank-
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based selection assigns fitness values that vary exponentially with rank. This method

has the same properties as linear ranking that prevent convergence to polymorphisms.
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Figure 4.5: Return map of linear rank selection.

4.7 Boltzmann Selection

In Boltzmann selection, a method inspired by the technique of simulated annealing,

selection pressure is slowly increased over evolutionary time to gradually focus search

[141]. Given a fitness of f , Boltzmann selection assigns a new fitness, f ′, according

to the differentiable function:

f ′ = eβf (4.9)

where β > 0 and higher values of β give higher selection pressure.

Agents are then selected in proportion to their new fitnesses, f ′. In contrast to

the selection methods seen above, this selection method can maintain arbitrary fixed
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points without modification. But, it too exhibits multiple regimes of behavior. For low

selection pressures, Boltzmann selection can preserve the ESS attractor. Figure 4.6

(top) shows the map of Boltzmann selection in the Hawk-Dove game with β = 0.05;

we see that the ESS is intact. If we increase the selection pressure to β = 0.2, as in

Figure 4.6 (middle), a true limit cycle results and the ESS becomes an unstable fixed

point. A higher pressure of β = 0.5 brings the system to the edge of chaos, seen in

Figure 4.6 (bottom), yielding a small but positive Liapunov exponent. The analogy

between low annealing temperature and high selection pressure is strained—too low

a “temperature” actually destabilizes the system.

4.8 Large Games

What generalizations can we make from the results obtained with the two-strategy

Hawk-Dove game? Because truncation, (µ, λ)-ES, and rank-selection utilize sorting,

their dynamics are unable in principle to converge to a polymorphism, regardless of

the number of strategies involved. Rather, these selection methods introduce dis-

continuities where attractors should be. Because sorting introduces discontinuities,

selection methods that use sorting cannot converge onto polymorphic Nash equilibria.

For Boltzmann selection, the destabilizing effect of high selection pressure is damp-

ened as the number of strategies increases. The higher number of dimensions of large

games tends to bring fitness values closer together. Thus, higher selection pressure is

required to induce chaos in large games.
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Figure 4.6: Map diagrams of Boltzmann selection method with β = 0.05 (top), 0.2
(middle), and 0.5 (bottom).

131



4.9 When does a map have a stable fixed-point?

We have analyzed the stability properties of four particular selection methods. In this

section, we review a standard test that can be applied to any differentiable selection

function to determine its stability properties [54]. This test is based on the Hartman-

Grobman theorem, which allows us to treat a system as if it were linear in the vicinity

of the fixed-point. By doing so, we can apply the simple stability tests of linear maps

to the fixed points.

Let pt+1 = M(pt) be a map with a fixed point at pfix. We first linearize the

system by calculating its first derivative at pfix. For a game of n strategies, we have

an m = n − 1 dimensional map. If n > 2, then the map is a multi-variable function,

and we need to calculate its Jacobian Matrix :

∂M(p) =




∂Mp1

∂p1 . . .
∂Mp1

∂pm

...
. . .

...

∂Mpm

∂p1 . . .
∂Mpm

∂pm


 (4.10)

where
∂Mpi

∂pj is the partial derivative of function variable pi with respect to variable pj.

The test for convergence is to check whether the eigenvalues of ∂M(pfix) are within

the interior of the unit-circle. That is, we check each eigenvalue, λ, of the Jacobian

to see if ‖λ‖ < 1 (where λ is potentially a complex number). If all eigenvalues fall

within the unit circle, then the fixed point is stable. If one of the eigenvalues falls

outside, then the fixed point is unstable.

To gain some intuition about this test, consider a one-dimensional map, such as

the one we saw for fitness-proportionate selection in Figure 4.1. This map contains

a stable fixed-point, such that if we iterate the map from a point near the fixed-

point, we will converge onto the fixed-point. Why do points in the neighborhood
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of the fixed-point converge onto it? Take a point at an offset from the fixed point,

p0 = pfix + µ, close enough to the fixed point that we can treat the map as linear.

The linearization of the map in the region allows us to approximate the map as

M(p) ≈ pfix + λ(p − pfix), where λ corresponds to the slope of the map at the fixed

point. An iteration of the map has the effect of multiplying the offset by the slope,

p1 = M(p0) ≈ pfix +λ(pfix +µ− pfix) = pfix +λµ. If |λ| is less than 1, then application

of the map will cause p1 to be closer to pfix than p0. Therefore, multiple iterations of

the map cause the offset to be multiplied repeatedly by the slope, pn = pfix + λnµ,

and (if |λ| < 1) bring it closer and closer to the fixed-point.

Thus, the one-dimensional map test is whether the absolute value of the derivative

(slope) at the fixed point is less than one. The multi-dimensional test is based on the

same convergence properties as the one-dimensional case. In a way, taking the eigen-

values of the Jacobian matrix is equivalent to breaking the multi-dimensional system

down into constituent one-dimensional systems, where each eigenvalue represents the

rate of change (derivative) of each one-dimensional degree of freedom of the multi-

dimensional system. These eigenvalues can be complex numbers, rather than reals.

Nevertheless, the test stays the same in the sense that we still test whether multiply-

ing an offset by an eigenvalue will shrink the offset. Thus, in the multi-dimensional

case, the test becomes whether all the eigenvalues’ magnitudes are less than one, i.e.,

in the unit circle.

4.10 Discussion

The importance of understanding that certain mechanisms distort the expected evo-

lutionary dynamics is appreciated with the following case study (which stimulated the

work we report here). Since the strong assumptions made by evolutionary game the-
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ory are, of course, not to be found in the real world, D. Fogel and G. Fogel [73, 74, 75]

investigate the effects of finite populations, noisy payoffs, and incomplete mixing upon

the equilibria and dynamics that EGT predicts. They use the Hawk-Dove game in

their simulations, but they also use truncation selection for several of their experi-

ments. The results they report are consistent with those we discuss above, but they

attribute their results to the factors they study, such as finite populations; they con-

clude that evolutionary game theory loses predictive power in the real world. We

know from our experiments, however, that truncation violates the expected outcome

even when the strong assumptions of evolutionary game theory are met.

As another case study, we can examine the body of research concerning the it-

erated prisoner’s dilemma (IPD); the IPD is a variable-sum game, and a finite col-

lection of IPD strategies can easily have a polymorphic Nash equilibrium. Meuleau

and Lattaud [137] use (µ, λ)-ES as well as fitness-proportionate selection in their IPD

experiments; they note dramatic differences in their results that are consistent with

ours. Indeed, even the seminal evolutionary investigation of Axelrod [14] (what is

probably the first instance of the conventional coevolutionary algorithm) uses a se-

lection method that introduces discontinuities: Agents with cumulative scores within

one standard deviation of the population average each receive one offspring; those one

standard deviation above average receive two offspring, and those one standard devi-

ation below average receive none. Clearly, this method performs a sorting operation

that loses information about payoff convergence. This method is in contrast to the

standard EGT framework Axelrod [13, p. 50–51] uses to analyze his earlier computer

tournament results.

Thus, in light of our results, we believe that the many coevolutionary (and game-

theoretic) investigations in the literature that use alternative selection methods may
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require a second look, especially where a single population is used and the domain

under investigation is a variable-sum game.

4.11 Summary and Conclusion

With the Hawk-Dove game as a backdrop, we use evolutionary game theory to es-

tablish the normative behavior and outcome for a coevolutionary algorithm. The

Hawk-Dove game has a single polymorphic Nash equilibrium that is an attractor of

the standard replicator dynamic used in EGT. Against this norm we contrast the

operation of a coevolutionary algorithm using four alternatives to the standard repli-

cator equation; these methods are truncation, (µ, λ)-ES, Boltzmann, and linear rank

selection.

When applied to variable-sum games with attractive polymorphic Nash, these

methods alter selection pressures such that the system either fails to converge or

converges to solutions that lack game-theoretic justification. Truncation, (µ, λ)-ES,

and linear rank selection cannot attain Nash equilibria that involve more than one

strategy. Instead, these methods exhibit cyclic behavior, chaos, or fixed points that

are essentially unrelated to the values of the payoff matrix. Boltzmann selection,

however, is able to retain the dynamics and equilibria seen in evolutionary game

theory, provided that the selection pressure is not too high.

Our results indicate that selection methods cannot be moved whole-sale from evo-

lutionary to co-evolutionary frameworks without careful consideration. Specifically,

three of the four methods we consider in this chapter appear to be pathological in the

context of single-population coevolution in variable-sum games. Nevertheless, a test

from dynamical systems theory allows one to determine analytically the appropriate-

ness for coevolution of arbitrary differentiable selection functions, without the need
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for empirical investigation. Indeed, any number of differentiable functions can be

substituted for fitness proportional selection and provide variable selection pressure

while maintaining “proper” operation.

Our future work will expand the results presented here in two directions. First, we

will extend our investigation to a two-population framework, where the asymmetric

Nash equilibrium arises (i.e., where one player plays Hawk and the other Dove). Some

of our results are easily transferred to this situation. Truncation selection (at 50%

selection pressure) provides an easy example; if both populations have proportions of

Hawks 0.5 ≤ pH ≤ 7
12

at time t, then both populations will converge to all-Hawks

in the next time-step—clearly not the asymmetric Nash equilibrium. Second, we will

extend our investigation to polymorphisms that involve more than two strategies.

Such games are easily constructed and our preliminary results indicate that truncation

selection becomes even more prone to chaotic behavior in these circumstances.
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Chapter 5

Solution Concepts and Fitness

Sharing Methods

5.1 Introduction

In this chapter, we use the methodology of the previous chapter to investigate fitness

sharing methods. Fitness sharing mechanisms are designed to maintain a higher level

of genetic diversity than ordinary fitness-proportionate selection can maintain alone.

We examine two mechanisms in particular: Similarity-based fitness sharing [85] and

competitive fitness sharing [172]. We find that both of these methods prevent con-

vergence onto polymorphic Nash equilibria in variable-sum games. Our investigation

uses the Hawk-Dove game to illustrate the effects of fitness sharing. We also discuss

two methods by Rosin and Belew [172], phantom parasite and shared sampling, that

are intended for use with competitive fitness sharing. The work presented in this

chapter is also found in Ficici and Pollack [63].
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5.2 Standard Replicator

For convenience, we reproduce here our main results from the previous chapter that

concern the behavior of fitness-proportionate selection in the Hawk-Dove game. For

additional detail, please see Chapter 4. Equation 5.1 presents the payoff matrix

for the Hawk-Dove game; this is a symmetric variable-sum game for two players.

Given a two strategy game, such as in Equation 5.1, we can calculate the strategy

proportions at which the two strategies are in equilibrium (if such an equilibrium

exists) with Equation 5.2. The dynamics of fitness-proportionate selection operating

on the Hawk-Dove game are shown in Figure 5.1. The system has a point attractor

where the proportion of Hawks in the population is 7/12; this is the polymorphic

Nash equilibrium of the Hawk-Dove game.

G =

H D

H −25 50

D 0 15

(5.1)

px =
D − B

A− B − C + D
=

d + w0 − b− w0

a + w0 − b− w0 − c −w0 + d + w0

=

d− b

a− b− c + d
(5.2)

5.3 Competitive Fitness Sharing

Competitive fitness sharing is a diversity maintenance technique for coevolution pro-

posed by Rosin [172]. The games Rosin considers are a subset of zero-sum games—a
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Figure 5.1: Return map of Hawk-Dove game using different values of w0.
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strategy either wins or loses to another strategy. When an agent α defeats an oppo-

nent β, the reward given to α is 1/n, where n is the total number of agents capable

of defeating β.

5.3.1 Equilibrium

We can easily extend competitive fitness sharing to variable sum games. The payoff

agent α (playing strategy i) receives from interacting with agent β (playing strategy j)

is
G′

i,j

d
, where d is the total payoff awarded to all agents by interacting with agent β.

In a two-strategy game, we calculate the “shared” fitnesses for strategies x and y as

shown in Equation 5.3.

Given these equations, we set wx = wy and solve for px to find the proportion

at which the strategies achieve fitness equilibrium, assuming an equilibrium exists;

the solution for px is given by Equation 5.4. As with the standard replicator, if a

polymorphism does not exist, then Equation 5.4 will give a value outside of the interval

(0, 1). Rosin [172] proves that the equilibria for shared and non-shared fitness are the

same in win-lose games. But, as Equation 5.4 shows, this is not true in the general

case. We see instead that, for an arbitrary two-strategy game, the equilibrium point

depends upon the value of w0. Further, as w0 gets larger, the equilibrium approaches

that of the standard replicator (i.e., non-shared fitness).

wx =
pxA

pxA + pyC
+

pyB

pxB + pyD

(5.3)

wy =
pxC

pxA + pyC
+

pyD

pxB + pyD
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px =
C(D − B)

BA− 2BC + CD
=

c(d− b) + w0(d− b)

ab− 2bc + cd + w0(a− b− c + d)
(5.4)

5.3.2 Dynamics

Figure 5.2 shows the return map of the Hawk-Dove game under competitive fitness

sharing with the same two values of w0 used in Figure 5.1. Unlike the selection

methods we examine above, the map in Figure 5.2 is continuous; further, the fitness

equilibrium is an attractor, though it is not the Nash equilibrium of the game. As

Equation 5.4 indicates, the fitness equilibrium moves closer to 7/12 as w0 increases.

Again we see that the curves approach the diagonal as w0 increases, meaning that

the difference between two consecutive population states becomes smaller and the

population dynamic slows. A value of w0 sufficiently large to reasonably approximate

the equilibrium of 7/12 will cause the dynamics to move very slowly, indeed.

5.4 Similarity-Based Sharing

An older method for diversity maintenance discounts an agent’s fitness based upon

how genotypically or phenotypically redundant it is with respect to the rest of the

population. This method is known as similarity-based sharing [85] and was originally

used in non-coevolutionary algorithms. Since this method requires a similarity metric

to measure redundancy, and we can imagine a number of similarity metrics, there

exists many ways to formulate this procedure. Here we investigate one very simple

formulation that considers two agents to be similar only if they are playing the same

strategy. This metric is analytically convenient, but unlikely to be used in real-world

domains.
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Figure 5.2: Return map of Hawk-Dove game with competitive fitness sharing using
different values of w0.
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5.4.1 Equilibrium

Given a game of m pure strategies G′, the shared fitness of an agent playing strategy i

is the inner product of payoff matrix row i and population state vector p, divided

by the number of agents playing strategy i, thus wi = (
∑

j G
′
i,jpj)/pi. Equation 5.5

shows how we calculate shared fitness based on similarity in a two-strategy game.

wx =
pxA + pyB

px
= A +

py

px
B

(5.5)

wy =
pxC + pyD

py
=

px

py
C + D

Given Equation 5.5, we can solve for px to find the proportion at which two

strategies reach fitness equilibrium, if they do at all. This is somewhat more complex

than in competitive fitness sharing because we must find the roots of the polynomial

in Equation 5.6. Using the quadratic equation, we get Equation 5.7. We again find

that the location of the fitness equilibrium is dependent upon the magnitude of w0.

Indeed, as w0 approaches infinity, px approaches 1/2 regardless of the payoffs in the

game. For this to be true, the square root term must behave as shown in Equation 5.8.

The (a−d)2 term in Equation 5.8 becomes insignificant as w0 grows, so we concentrate

on the remaining terms, as shown in Equation 5.9. The square root of Equation 5.9 is

approximated by the square root of Equation 5.10 as w0 increases, which is the right

side of Equation 5.8. We use our approximation to simplify Equation 5.7 and obtain

Equation 5.11; thus, at w0 = ∞, we get px = 1
2
.

p2
x(−A + B − C + D) + px(A− 2B −D) + B = 0 (5.6)
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px =
−a + 2b + d + 2w0

2(−a + b− c + d)
±

√
(a− d)2 + (2b + 2w0)(2c + 2w0)

2(−a + b− c + d)
(5.7)

√
(a− d)2 + (2b + 2w0)(2c + 2w0) ≡w0→∞ b + c + 2w0 (5.8)

(2b + 2w0)(2c + 2w0) = 4bc + 4bw0 + 4cw0 + 4w2
0 (5.9)

(b + c + 2w0)
2 = b2 + bc + c2 + 4bw0 + 4cw0 + 4w2

0 (5.10)

−a + 2b + d + 2w0 − (b + c + 2w0)

2(−a + b− c + d)
=

1

2
(5.11)

5.4.2 Dynamics

Figure 5.3 shows the return map for the Hawk-Dove game using our formulation

of similarity-based fitness sharing. The values of w0 we use are 26 and 56; we see

that the polymorphic equilibrium moves towards 1/2 as w0 increases. Like the map

for competitive fitness sharing, the map in Figure 5.3 is continuous at the fitness

equilibrium; the equilibrium is an attractor, but not the Nash equilibrium of the

game. Because the slope of the curve is negative at fitness equilibrium, this system

approaches equilibrium via a damped oscillation rather than a monotonic convergence.

Another feature of this map is that it is discontinuous at px = 0 and px = 1, unlike

the previous maps.
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Figure 5.3: Return map of Hawk-Dove game with similarity-based fitness sharing
using different values of w0.
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5.5 Phantom Parasite and Shared Sampling

Rosin and Belew consider asymmetric zero-sum games where the outcomes are either

win or lose. They are careful to verify that, for such games, the equilibria obtained

under standard fitness-proportionate selection are unchanged by the addition of com-

petitive fitness sharing [175]. Nevertheless, they do not perform similar verifications

of two additional techniques that they offer for use in conjunction with competitive

fitness sharing; these techniques are shared sampling and phantom parasite.

The phantom parasite method is designed to help prevent disengagement between

two populations in an adversarial relationship. Let us arbitrarily designate one pop-

ulation as “hosts” and the other as “parasites.” If the host population contains some

individuals that beat all the individuals in the parasite population, then these more ac-

complished hosts will eventually crowd-out the weaker hosts (the accomplished hosts

are more fit, even under competitive fitness sharing). If parasites capable of defeating

the accomplished hosts are not discovered before the weaker hosts are removed, then

the two populations will become disengaged. As a result, both populations will be

subject to genetic drift and evolutionary forgetting may occur. Thus, when some

hosts defeat all parasites, the weaker hosts are asserted to defeat a phantom parasite

that the strong hosts do not. In this way, a niche is developed for the weaker hosts

that, when combined with competitive fitness sharing, gives the weaker hosts a fitness

advantage when they become too few.

Rosin [172, p. 71] offers the following example and analysis, which we illustrate

in Figure 5.4. We have N −L superior hosts that beat all P parasites and L inferior

hosts, each of which beat the same set of P −K parasites and lose to the same set of

K parasites. With competitive fitness sharing and the phantom parasite, Rosin shows

that each superior host receives a fitness of K
N−L

+ P−K
N

; each inferior host gets a fitness
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of 1
L

+ P−K
N

, where 1
L

represents the fitness contribution of the phantom parasite.

Rosin shows that the inferior hosts will have a fitness advantage over the superior

hosts when L < N
K+1

. Thus, while disengagement is addressed by the combination of

competitive fitness sharing and phantom parasite, we clearly see that it is at the cost

of distorting the equilibrium. Of course, if the solution we seek is a singleton, then

we do not have a problem; if we are open to polymorphisms, then we will misread

our result.

N hosts P parasites

N-L superior
hosts

L inferior
hosts

P-K parasites

K parasites

loose to

beat

Figure 5.4: Rosin’s [172, p. 71] example for phantom parasite operation.

If the cost of computing the outcome of an interaction is too costly, then we will be

unable to examine all pair-wise interactions between members of the two populations.

In this case, we may resort to sampling. Shared sampling is a heuristic to maximize

the diversity of the samples we take. With shared sampling, the distribution used to

take the samples follows the fitness values computed with competitive fitness sharing;

that is, individuals with higher competitive fitness are more likely to be sampled as

interaction partners. Clearly, one effect of this approach is to distort the apparent
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population state, which in turn distorts fitness values and therefore the equilibria of

the game.

5.6 Summary and Conclusions

The purpose of fitness-sharing methods is to maintain genetic diversity, and thereby

provide the evolutionary algorithm more genetic raw material with which to perform

variation and search. The methods we review above achieve their goal by manipulat-

ing the proportions with which the various genotypes, and hence phenotypes, appear

in the population. By doing so, fitness-sharing methods may easily act contrary

to the requirements of the solution we seek. Indeed, the fitness-sharing procedures

cause the polymorphic attractor of the Hawk-Dove game to deviate such that it is

no longer Nash. Within the confines of zero-sum games—where competitive fitness

sharing does not distort equilibria—we point out that the associated techniques of

phantom parasite and shared sampling introduce their own equilibrium distortions.

We should note that the degree of distortion introduced by competitive fitness

sharing depends upon not only the magnitude of w0, but also the number of strategies

in the polymorphism. We see considerable distortion when the polymorphism involves

only two strategies. But, as more strategies become involved, we get more equations

like those in Equation 5.3 and the divisors of those equations involve more and more

terms; more importantly, the shared-fitness equations for any two strategies (involved

in the polymorphism) will have more and more of their divisor terms in common.

Thus, as the polymorphism includes more strategies, the divisors tend to become

more similar, leaving us with an approximation of non-shared fitness. The quality

of the approximation still depends upon the payoffs of the game, however, and one

generally does not know a priori the size of the polymorphism(s) a game will have.
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Finally, our preliminary research on spatial populations shows that they too are

unable to converge onto polymorphic equilibria. The spatial pattern of interaction

typically provides an individual too few partners to form an accurate reflection of

the population’s true strategy distribution. This creates an effect similar to shared

sampling; a distorted experience of the population state leads to distorted fitness

values.
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Chapter 6

Effects of Finite Populations on

Polymorphisms

6.1 Introduction

The primary contribution of evolutionary game theory (EGT) is the concept of the

evolutionary stable strategy (ESS) [134]. The ESS is a refinement of Nash equilibrium

that does not require agents to be rational to attain it. Rather, agents achieve

equilibrium through a process of Darwinian selection.

At least three strong assumptions are made in the EGT formalism. First, the

evolving population is assumed to be infinitely large. Second, the payoffs that agents

receive are assumed to be without noise. Third, each agent is assumed to play against

every other agent to determine its fitness—there is complete mixing. Recently, Fo-

gel, et al, have questioned the usefulness of evolutionary game theory in real-world

situations where these assumptions, particularly the first, do not hold [73, 74, 75].

They begin their simulations with the population precisely at the ESS, and discover

that the population consistently moves away from it. At best, their simulation results
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differ from theoretical ESS values with statistical significance; at worst, their results

bear no semblance to the ESS whatsoever. Thus, they conclude that evolutionary

game theory loses predictive power once these assumptions are relaxed.

In this chapter, we concentrate on the first (and perhaps strongest) of the above

assumptions and revisit the question of whether ESS dynamics can exist in finite

populations. Fogel, et al, report using two different selection methods, truncation

and proportional roulette-wheel selection. By paying particular attention to the op-

eration of the selection mechanism, we are able to account for the divergence be-

tween ESS predictions (based on infinite populations) and results observed in our

own finite-population simulations. We then examine Baker’s SUS selection method

[20] that corrects the divergence to a great extent. We thus conclude that the dy-

namics of evolutionary game theory, and particularly the ESS, can indeed apply to

finite-population systems. Further, the selection method used in a simulation can

distort, or even disrupt completely, the dynamics we may expect to see.

We begin with a brief introduction to evolutionary game theory in Section 6.2,

and then review and analyze relevant previous work in Section 6.3. In Section 6.4

we introduce the methodology used in our own finite-population simulations and

give results. Section 6.5 analyzes the operation of our selection method and Section

6.6 constructs a Markov model to predict the amount of divergence to expect for

a particular population size. Section 6.7 examines the performance of Baker’s SUS

selection method. Section 6.8 focuses on the role of map asymmetry in the divergence

observed with finite populations. Section 6.9 offers final remarks. The work in this

chapter is first published in Ficici and Pollack [61].
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6.2 Evolutionary Game Theory

The Hawk-Dove game forms the backdrop for our investigation (as in [73, 74, 75]); it

has two pure strategies, H (hawk) and D (dove). The payoff matrix, G, for this game

is shown in Equation 6.1. Each entry, E(i, j), in row i, column j, is the expected

value of the payoff given to an agent playing strategy i when matched against an

agent playing strategy j—payoffs are assumed to be without noise. The evolving

population of agents is assumed to be infinitely large. The proportions with which

the strategies of G are used in the population can be represented by a column vector,

p; the elements of p sum to 1.0. The fitnesses, f , of the strategies are determined

by a weighted sum of the payoffs in G according to the proportions in p, and can

be computed by matrix multiplication, as in Equation 6.2. This equation assumes

complete mixing, that is, all agents play against all others. The next generation of

agents is formed through fitness-proportionate selection—each strategy increases its

representation, or “reproduces,” in direct proportion to its fitness. The reproductive

process is described by the difference equation shown in Equation 6.3.

G =

H D

H −25 50

D 0 15

(6.1)

f = G ∗ p + w0 (6.2)

p′ =
p× f

p • f
(6.3)
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where w0 = 26 is a constant added to fitnesses such that they are all greater than

zero, ‘×’ is element-wise multiplication, and ‘•’ is inner product. The lower term in

Equation 6.3 is for normalization.

At the heart of evolutionary game theory is the concept of the evolutionary stable

strategy. A population of agents that play an ESS cannot be “invaded” by a small

number of agents that play some mutant strategy; hence, the population is evolu-

tionarily stable. A polymorphic ESS actually involves two or more pure strategies,

all of which receive the same fitness. The Hawk-Dove game has a polymorphic ESS

where 7/12ths of the population plays hawk (pH = 7
12

), and 5/12ths dove (pD = 5
12

).

According to Maynard-Smith, for a strategy (or polymorphic population), i, to be an

ESS it must fulfill one of these two requirements against a mutant strategy, j, for all

j �= i[134]:

E(i, i) > E(j, i) OR (6.4)

E(i, i) = E(j, i) AND E(i, j) > E(j, j) (6.5)

6.3 Review of Previous Work

In this section, we review the experiments reported in [73, 74, 75], where Fogel, et

al, examine various factors that may influence EGT dynamics. All experiments have

finite populations and generational reproduction. Two different selection methods

are used. The truncation selection method operates by sorting agents according to

fitness and then replacing the worst v percent of the agents with copies of the best

v percent. The value of v lies in the interval [0, 50]; higher values exert a higher

selection pressure. The fitness-proportionate roulette-wheel selection method biases

153



a random variable (the roulette wheel) in proportion to the agents’ fitnesses. The

wheel is then “spun” n times to create an offspring population of size n.

6.3.1 Truncation Selection

In [73], truncation selection is used with maximum selection pressure, v = 50%. This

means that the worst half of the population is replaced by copies of the best half

to form the next generation. Three experiments are described. Population sizes of

60, 600, and 6000 are used in each experiment and all pair-wise encounters occur

during fitness evaluation (complete agent mixing). The first experiment adds a form

of noise to the payoffs; the second introduces an additional, but slight, mutation bias

(such that a hawk might become a dove, and vice versa). The third experiment is

presented as a control—payoffs without noise and no mutation. In every case, the

population is begun at the ESS and observed to move away. The results of the first

two experiments are reported as essentially indistinguishable: for population sizes of

60 and 600, both give apparently chaotic behavior or a series of short-lived, quasi

limit cycles. A population of size 6000, however, converges to all hawks in the first

experiment (the second experiment always introduces some number of mutations).

In the control experiment, the population is reported to jump immediately to all

hawks. Given the clear absence of an ESS, Fogel, et al, conclude that the dynamics

of evolutionary game theory not only assume, but require an infinite population.

Nevertheless, EGT also assumes fitness-proportional selection—not truncation.

Let us consider the behavior of truncation selection in the case of noiseless payoffs.

At the ESS, both strategies (and hence all agents) receive the same fitness: pH = 7
12
⇒

fH = fD. In contrast, pH < 7
12
⇒ fH > fD, and pH > 7

12
⇒ fH < fD. This describes

a simple feedback mechanism (that regulates properly with proportional selection).

154



Let us consider a population where the proportion of hawks is .5 ≤ pH < 7
12

. Because

the proportion of hawks is below the ESS, the hawks will receive higher fitness than

the doves. Yet, the hawks comprise at least 50% of the population. Thus, the top

50% of the population can only contain hawks, and so, with truncation selection, the

next generation must contain 100% hawks. This is true regardless of the size of the

population—indeed, even an infinite population. At the ESS itself, the behavior of

truncation selection is ill-defined because all agents have the same fitness—who are

in the top 50%? Unless special care is taken to account for ties, the fixed point of all

hawks will again emerge. The results of the third experiment (control) are consistent

with this analysis.

Now let us consider the first experiment, which adds the following noise to the

payoffs: rather than give both hawks in a hawk-hawk confrontation the expected

payoff of -25, one is randomly chosen to receive a payoff of -100 while the other

receives 50; similarly, when two doves meet, one is randomly chosen to receive a

payoff of 40 while the other receives -10, instead of the expected payoff of 15. The

payoffs of hawk-dove encounters are unchanged. Thus, after all pair-wise encounters

occur, the two strategies still obtain equal fitnesses at the ESS; but, individual agents

may do better or worse than others. We strongly suspect that the population of 6000

converges to all hawks because the higher number of encounters per agent allows

expected payoff values to emerge. With a good enough approximation of expected

payoff, the dynamics of the system are similar to noiseless payoffs, above.

As we know from Chapter 4, truncation selection cannot converge onto a poly-

morphic equilibrium, even when the population is of infinite size. Instead, we find a

fixed-point of all Hawks, cyclic behavior, or chaos, depending upon the selection pres-

sure; these infinite-population results agree with those reported by Fogel, et al. Given

that truncation selection so completely disrupts the dynamics of the Hawk-Dove game
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with an infinite population, we believe the experiments in Fogel, et al, [73, 74, 75] that

use truncation implicate the selection method more than other factors; the effects of

noisy payoffs, incomplete mixing, and finite populations are inadequately isolated to

warrant the stated conclusions.

6.3.2 Roulette Selection

The simulations of Fogel, et al, that do not use truncation selection use fitness-

proportionate roulette-wheel selection instead [74]. Their core concern is whether

evolutionary game theory can be applied to biological field study. Thus, if evolution-

ary game theory is applied to a finite population of physically embodied agents, such

as animals, then clearly no pair-wise encounter will match an individual against itself.

In this case, computation of fitness is slightly different than in Equation 6.2 because

the “self” must be subtracted from the counts. For the Hawk-Dove game, we have:

fH = E(H, H) ∗ (pH −
1

n
) + E(H, D) ∗ pD + w0 (6.6)

fD = E(D, H) ∗ pH + E(D, D) ∗ (pD −
1

n
) + w0

where fi is the fitness of strategy i, E(i, j) is the payoff for strategy i against

strategy j, pi is the proportion of strategy i in the population, and n is the population

size.

Fogel, et al [74], recognize that variations in population size cause Equation 6.6

to change the proportion at which the two strategies reach equal fitness. In the limit

of an infinite population, Equation 6.6 converges to the familiar ESS proportion of

7
12

Hawks. For finite population sizes, however, the fitness-equilibrium proportion

is actually higher. Their experiments that use fitness-proportional roulette-wheel

156



selection give data that deviate with statistical significance from the theoretical ESS.

But, the null hypothesis they choose to measure against is the equilibrium for an

infinite population, and not that predicted by Equation 6.6, which varies according to

population size. (Note that having an equilibrium higher than 7
12

does not invalidate

the above argument regarding truncation selection.)

6.4 The Effects of Finite Populations: A Second

Look

6.4.1 Assumptions

We now proceed with our own experiments. Since truncation selection appears patho-

logical in the context of evolutionary game theory, we will concentrate on proportional

roulette-wheel selection in our simulations. We assume complete mixing and noiseless

payoffs. We will also assume that an agent can play against itself. While this may

lack biological plausibility, it is entirely possible—indeed common—in coevolutionary

algorithms. The important mathematical consequence is that we can revert back to

Equation 6.2 and avoid the problems caused by Equation 6.6, above. Thus, we can

better isolate the effects of noise due to quantization and stochastic sampling that

arise with a finite population. Rather than use Maynard-Smith’s static conception of

an ESS, we choose instead to use the formalism of dynamical systems to describe sta-

bility concepts. As we discuss below, the ESS of the Hawk-Dove game is an attractive

fixed point.
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6.4.2 Methods

We implement proportional roulette-wheel selection as follows: the fitness scores, fi,

are normalized, such that they sum to 1.0; a vector of sum prefixes is computed, such

that the prefix value for agent i is the sum:

ri =
i∑

k=1

fk (6.7)

We draw a value, x, from a uniform distribution and select the first agent whose

prefix value is ≥ x to produce one offspring. This step is performed n times, where n

is the size of the desired population.

We begin each experiment with the population at the theoretical ESS ratio of

pH = 7
12

(and pD = 5
12

). The population sizes for all experiments are chosen such that

the ESS ratio is precisely representable by whole numbers of agents. Five different

population sizes are tested: 60, 120, 300, 600, and 900. Each simulation is run for

2000 generations. The mean number of hawks in a run constitutes a single data point

in an experiment; each experiment is repeated 100 times.

6.4.3 Results

Our results are shown in Figure 6.1. The x and y axes indicate the population size

used in an experiment and the proportion of hawks in the population, respectively.

Each circle represents the mean proportion of hawks seen during a single run. The

dashed line indicates the ESS that evolutionary game theory predicts for an infinite

population. The solid curve indicates the mean value of the 100 trials in each exper-

iment. We see that for all population sizes, the mean value of hawks over all trials

is consistently lower than the theoretical ESS proportion. As the population size

increases, the mean value asymptotically approaches the theoretical ESS. The sec-
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ond column of Table 6.1 lists the observed means and the fifth column gives t-values

obtained when applying the t-test to the data from each experiment with respect to

a null hypothesis H0 = .58333 . . . (the ESS). In all cases, the observed data deviate

with statistical significance from the theoretical ESS.
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0.575
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0.585
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Figure 6.1: Data from finite-population simulations of Hawk-Dove game. Five ex-
periments are conducted, each repeated 100 times. Each circle represents the mean
proportion of hawks observed during a single 2000-generation simulation. The dashed
line is the theoretical ESS. The solid curve indicates the mean values of the 100 data
points in each experiment.
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6.5 Analysis of Roulette Selection

That the data means come closer to the theoretical ESS as population size increases

is perhaps easy to accept. What is less intuitive, however, is why the approach

should be asymptotic from below the ESS value. To answer this question, we turn

to dynamical systems theory [163, 188]. Figure 6.2 (Top) shows the map diagram for

the Hawk-Dove game. Given a proportion of hawks, represented by the x-axis, one

iteration of the evolutionary difference equation (Equation 6.3) will produce a new

proportion, represented by the y-axis. The curve depicts the function that maps the

proportion of hawks from one generation to the next. Intersections of the curve with

the diagonal line indicate fixed points. If the slope of the curve at an intersection has

an absolute value less than one, then the fixed point is stable; if the absolute value

is greater than one, then the fixed point is unstable. The Hawk-Dove game has three

fixed points: two unstable, where the population is either all hawks or all doves, and

one stable, the polymorphic evolutionary stable strategy.

To see the dynamics of the Hawk-Dove game, one simply picks an initial point on

the x-axis, draws a vertical line to the curve, and then alternately draws a horizontal

line to the diagonal and then a vertical line to the curve until the ESS is reached.

This procedure produces a cobweb diagram that indicates the orbit of the initial point.

Two such orbits are shown in Figure 6.2 (Top), which begin ±0.25 away from the ESS

(pH = 7
12

). The key observation is that the orbit that begins below the ESS requires

more iterations to reach the ESS than does the orbit that begins above. Figure 6.2

(Middle) shows the number of iterations required for every initial condition from 0

to 1, at intervals of 0.001, to arrive within ε = 0.0001 of the ESS. For any δ, orbits

starting at 7
12
− δ require ≥ iterations than orbits starting at 7

12
+ δ.

This observation is important because the operation of the roulette-wheel method
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of proportional selection produces a binomial distribution around the desired propor-

tion of hawks indicated in the wheel. The binomial distribution obtained for n spins

of a roulette wheel that gives a hawk with probability p is:

bin(n, p) =


 n

i


 ∗ pi ∗ (1− p)n−i, for i = 0 . . . n (6.8)

That is, the probability of having exactly i hawks (and therefore n−i doves) in the

next generation of n agents is the probability of getting i hawks times the probability

of getting n − i doves times the number of ways n spins can result in i hawks. The

resulting distribution for all possible outcomes, from no hawks to no doves, has a

mean value of p ∗ n hawks—the desired proportion indicated in the wheel.

Figure 6.2 (Bottom) shows the “spread” of the binomial distribution for values

of n = {60, 120, 300, 600, 900} (the population sizes used in our simulations, above)

and p = 7
12

(the desired proportion of hawks at the ESS). Each curve in Figure 6.2

(Bottom) represents the possible outcomes that sum to 99 percent of likelihood. The

spread clearly widens as the population size decreases (and the law of large numbers

exerts less influence).

Returning to Figure 6.2 (Middle), we see that an increase in spread at the ESS will

cause the asymmetry in convergence time to grow. This is what causes the observed

population averages to tend to fall below the theoretical ESS by an amount inversely

related to population size. But, how might we approximate the actual divergence

without resorting to empirical methods? We offer an approach based on Markov

chains.
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Figure 6.2: Interaction of the map with the binomial distribution. Top: Map diagram
of Hawk-Dove game. The curve depicts the function that maps the proportion of
hawks from one generation to the next. Middle: Number of iterations needed to
arrive within ε = 0.0001 of the ESS. Bottom: Spread of binomial distribution at ESS
for various population sizes.
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6.6 Calculating the Divergence

6.6.1 Method

In this section, we develop the intuition from above to predict how experimental data

will deviate from the theoretical ESS value. For the Hawk-Dove game (or any two-

strategy game), there are only n+1 possible states in which a population of size n can

be, from 0 hawks to n hawks. These can be considered the states of a Markov chain.

At each population state, i, the binomial distribution of the roulette wheel gives a

set of transition probabilities to states j = 0 . . . n. This information is represented by

a transition matrix, M :

M =




Pr(0|0) . . . Pr(0|n)

...
. . .

...

Pr(n|0) . . . Pr(n|n)


 (6.9)

where each column gives the transition probabilities, p(j|i), from state i to states

j = 0 . . . n. Each column sums to 1.0.

To compute the matrix columns, we need only calculate the appropriate binomial

distribution for each possible state of the population. Recall that for any desired

proportion of hawks, d, the binomial distribution bin(n, d) tells us the likelihoods of

all possible proportions of hawks, given n spins of the roulette wheel. For a popu-

lation with i hawks (a proportion of i/n), the desired number of hawks for the next

generation is d = map(i/n), where the function map corresponds to an iteration of

the map diagram in Figure 6.2 (Top). Thus, the columns of the transition matrix,

M , are:

M = [bin(n, map(
0

n
)) . . . bin(n, map(

n

n
))] (6.10)
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Let us consider an initial population composed of exactly 7
12

hawks, and repre-

sent this population as a column vector, b, of probabilities on the different possible

population states:

b =




Pr(0)

...

Pr( 7
12

n− 1)

Pr( 7
12

n)

Pr( 7
12

n + 1)

...

Pr(n)




=




0

...

0

1

0

...

0




(6.11)

The distribution of possible populations after t generations is M raised to power

t times b:

bt = (M)t ∗ b (6.12)

Therefore, the expected proportion of hawks after t generations is given by the

weighted sum:

E[%hawks]t =
n∑

i=0

bt
i ∗ i

n
(6.13)

What is the limit behavior, as time goes to infinity? Observe that roulette selection

always gives a non-zero probability of arriving at a state of all hawks or all doves.

And, since a population of all hawks will remain all hawks, and a population of all

doves will remain all doves, we know that, in infinite time, one of these two absorbing

states is an inevitable outcome. The probabilities of these two absorbing states are

sensitive to the initial state.
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Thus, the distribution, b∞ must have the form:

b∞ = [Pr(0); 0; 0; . . . ; 0; 0; Pr(n)] (6.14)

where only states 0 and n have non-zero probability.

Referring back to Equation 6.13, this implies that the expected proportion of

hawks is simply the probability of ending in the absorbing state of all hawks. Thus,

E[%hawks]∞ = b∞n .

6.6.2 Predictions and Data

For the population sizes used in our experiments, the expected number of hawks

for even small values of t gives an excellent approximation of the limit behavior:

| b∞n − bt
n |< ε for small t. Figure 6.3 shows the values of Equation 6.13 for values

of t = 1 . . . 30. We see that the limiting distribution is approached asymptotically.

Our approximate expected values (computed at t = 100) are listed in column three

of Table 6.1. We see that they are very close, indeed, to the actual means observed

in our experiments (shown in column two). Further, using these predictions as null

hypotheses in the t-test, the resulting t-values (shown in column 4) indicate that none

of the predictions can be rejected (95% confidence level). Thus, the dynamics and

equilibria of evolutionary game theory have been demonstrated to exist and apply to

finite populations.

6.7 Stochastic Universal Sampling

While the predicted divergence from the theoretical ESS is clear when we look at

an ensemble of 100 data points, an individual run can show a rather large amount
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Table 6.1: Simulation results and predictions.
Size Mean Hawks Adj. ESS tAdj. tESS

60 0.578166 0.578008 0.4922 -16.09
120 0.580682 0.580755 -0.3289 -11.99
300 0.582301 0.582320 -0.1267 -6.72
600 0.582864 0.582829 0.3953 -5.31
900 0.582981 0.582998 -0.2132 -4.47
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Figure 6.3: Adjustment of ESS. Though small in magnitude, the adjusted values vary
from the ESS enough to cause statistically significant deviation from 7

12
in simulation

data (indicated by column 5 of Table 6.1).

of noise due to the roulette wheel. Figure 6.4 (top) shows 500 generations of the

Hawk-Dove game beginning at the ESS for a population of size 60. Though noise is

reduced with a larger population, there exists an alternative selection scheme that

reduces the noise even further while maintaining a small population.

Baker’s Stochastic Universal Sampling (SUS) [20] provides fitness-proportionate

selection with minimal use of a stochastic process. Simply, rather than spin a roulette

wheel with one “pointer” on it n times, we spin a roulette wheel with n equally-
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spaced pointers just once. This method guarantees that an individual that should

appear with proportion, pIdeal, will appear with proportion �pIdeal ∗ n�/n ≤ pActual ≤

�pIdeal∗n�/n. Baker’s analysis of this method indicates that is has excellent statistical

properties.

Indeed, SUS produces far less noisy results than ordinary proportional roulette

selection, as seen in Figure 6.4 (bottom). Because the ESS can be exactly represented

by a population of size 60, we instead choose a population of 61. We see that the

actual proportions remain as close to the theoretical ESS as the resolution of the

population allows. In fact, SUS will converge to the ESS within the resolution of the

population regardless of the initial condition (0 < pInitial
H < 1.0). For a population

of size 100, SUS selection gives data that cannot be rejected by the t-test (at 95%

confidence level) with a null hypothesis of H0 = 7
12

. That is, because SUS uses only

a single “spin,” the distribution of possible outcomes is made so narrow that the

calculation of divergence from the theoretical ESS is unnecessary.

6.8 Map Asymmetry and Divergence

In the Hawk-Dove game we examine above, we observe three types of asymmetry.

First, the polymorphic attractor is asymmetric in the sense that it is located at

p = 7
12

rather than at 0.5. Second, as we note above, the map is asymmetric about

the polymorphic attractor; that is, the curve in Figure 6.2 (top) is closer to the

diagonal on the left of the attractor than it is on the right. Thus, for any δ ∈ (0, 5
12

),

an orbit starting at 7
12
−δ will take longer to converge onto the attractor than an orbit

starting at 7
12

+ δ. Third, the binomial distribution at p = 7
12

is asymmetric; though

the expected value of this distribution is 7
12

, there is actually more probability mass

on the right side of the expected value than on the left (the difference depends upon
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Figure 6.4: Different implementations of proportional selection. Top: Sample run
with population size 60 using standard roulette-wheel selection. Bottom: Sample run
with population size 61 using Baker’s Stochastic Universal Sampling selection [20].
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population size). In this section we remove the first and third types of asymmetry to

concentrate on how the shape of the map affects the expected population state.

The three games in Equations 6.15–6.17 all have a polymorphic attractor at

p = 0.5; thus, with respect to equilibrium, these three games are identical. Since

the polymorphism occurs at p = 0.5, the first type of asymmetry we describe above

is eliminated. Further, the binomial distribution around p = 0.5 is symmetric, elimi-

nating the third type of asymmetry described above.

Despite these games having identical equilibria, the games have very different map

symmetries. Our “reference” game, Gref , has a symmetric map, as shown in Figure

6.5 (top). This symmetry suggests that a population begun at the attractor should

remain there, on average; indeed, the Markov chain model shows that the expected

population state remains at p = 0.5. In contrast, game Ghigh is asymmetric about

the attractor, as shown in Figure 6.5 (middle). Specifically, the map tends to be

nearer the diagonal for population states p > 0.5 than below. Thus, the rate of

return to the attractor is slower for population states above equilibrium than below.

For a population of size 60 starting at p = 0.5, the Markov model (at steady-state)

shows that the expected population state is p = 0.5995—a considerable distortion

of the infinite-population equilibrium. Finally, the game Glow simply inverts the

asymmetry of Ghigh , shown in Figure 6.5 (bottom); the Markov model accordingly

gives an expected population state of p = 0.4004.
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Gref =

A B

A 1 2

B 2 1

(6.15)

Ghigh =

A B

A 10 2

B 11 1

(6.16)

Glow =

A B

A 1 11

B 2 10

(6.17)

6.9 Conclusion

There is no question that the introduction of noise, be it from the finiteness of a popu-

lation, variation in payoffs, or incomplete mixing, affects the dynamics and equilibria

in evolutionary game theory. And, Fogel, et al, are correct to highlight the issue. But,

the selection method distorts the process, as well—it can never be made transparent.

In simulations that deal with finite populations, reproduction generally cannot occur

in exact proportion to fitness—agents can only replicate whole-numbers of offspring.

Thus, the question of how one is to implement reproduction, fitness-proportionate

or otherwise, arises. All these sources of “noise” determine whether the essential

character of evolutionary game theory remains intact.

Truncation selection is shown to be pathological in the context of evolutionary

game theory—it can neither attain nor maintain a polymorphic ESS (even with infi-
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Figure 6.5: Three maps with identical equilibria (p = 0.5) yet different symmetry.
Top: Reference game Gref ; this map is symmetric about the equilibrium. Middle:
Game Ghigh . This map is asymmetric about the equilibrium and tends to be nearer
the diagonal for population states p > 0.5 than below; thus, the rate of evolution
is slower for population states above equilibrium than below. Bottom: Game Glow .
This map has precisely the opposite asymmetry as that of game Ghigh ; thus, the rate
of evolution is slower for population states below equilibrium than above.
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nite populations). Roulette-wheel selection is shown to diverge from the theoretical

ESS due to the interaction between the wheel’s binomial distribution and the con-

vergence properties of the Hawk-Dove map (Figure 6.2, top)). We show how the

expected divergence can be computed without empirical data. Finally, we show that

Baker’s SUS selection method allows a finite population of modest size to approx-

imate the ESS without statistically significant deviation. If the population size n

can be divided into whole numbers that precisely represent the ESS ratio, then SUS

selection allows the population to converge to the exact ESS. Thus, we have demon-

strated that the dynamics and equilibria of evolutionary game theory can persist

with finite populations, provided that the selection method is appropriately chosen

and implemented.

Of course, this study has only addressed the smallest of games; what happens

when the number of strategies in a population is comparable to the population’s size?

This is akin to representing the state of a dynamical system with very low resolution,

and we will need to return to dynamical systems theory for a satisfactory answer.

While the primary concern of Fogel, et al, is the applicability of evolutionary game

theory to biological study, we make no attempt to relate our results and methods

to a biological context—we are primarily interested to learn what affects we might

encounter by using a finite population in the context of optimization, where we may

assume that an agent can play against itself.
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Chapter 7

Pareto Optimality: A Solution

Concept for Coevolution

Inventor, n. A person who makes an ingenious arrangement of wheels,

levers and springs, and believes it civilization. Ambrose Bierce 1

7.1 Introduction

The challenge facing an agent situated in a coevolutionary domain can be described

as a form of multi-objective optimization (MOO) where every other agent encoun-

tered constitutes an objective to be optimized. That the techniques of conventional

MOO, most notably those incorporating the notion of Pareto optimality, may be use-

fully applied to coevolution has recently been suggested [62, 201], but has yet to be

deeply explored. This chapter begins our investigation into the connection between

coevolution and multi-objective optimization, paying particular attention to how the

Pareto optimality concept may lead to methods that address issues unique to co-

1The Devil’s Dictionary. Neale Publishing Company, 1911. (Dover 1993 republication.)
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evolution. (See Noble and Watson [147] for another example of a “first-generation”

Pareto coevolutionary algorithm.)

All coevolutionary systems involve concurrent processes of gradient creation and

gradient following. The central themes of coevolution research concern the ways

in which these processes interact to dynamically modify the scope of interactions

that occur between coevolving entities. Hillis’ [92] seminal work on coevolving a

population of sorting networks against a population of input vectors gives a compelling

illustration of how these processes may interact. Hillis recognizes that the feedback

loops between the processes of gradient creation and gradient following can behave

like an optimizer with a dynamically adjustable evaluation function; by judiciously

selecting the range of test cases applied to the sorting networks, coevolution can make

more effective use of finite computational resources to achieve better results.

Nevertheless, the ability to dynamically alter a learning landscape does not by

itself guarantee that coevolution will lead to effective learning. Indeed, conven-

tional coevolutionary methods are known frequently to exhibit a number of irksome

modes of behavior that hinder learning. Intransitive superiority relationships [36] and

mediocre-stable states [164] are two examples.

Our experiments involve the coevolution between cellular automata (CA) rules for

a density classification task (the majority function) and initial condition densities.

We choose this problem because an extensive literature on the majority function

exists (e.g., [152, 204, 6, 119, 142]) and the best rules currently known derive from

coevolution (by Juillé and Pollack, with success rates of 85.1%, 86.0% [105], and 86.3%

[104]), allowing us to more meaningfully ascertain the significance of our results. We

are able to discover a rule that has a competitive success rate of 84.0%. While not

superior to the results of Juillé and Pollack, our rule is significantly better than all

results published elsewhere, and we anticipate improved results, as we discuss below.
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More importantly, we argue that our method offers a potentially more general and

comprehensive approach towards coevolution.

This chapter is organized as follows: Section 7.2 details how we employ the Pareto

optimality criterion in our coevolutionary algorithm; Section 7.3 describes the ma-

jority function and how we deploy our Pareto coevolutionary algorithm to work on

it; Section 7.4 gives additional details of our experiment setup; Section 7.5 reviews

results; Section 7.6 discusses plans for new experiments and concludes. The work in

this chapter is first published in Ficici and Pollack [64].

7.2 Pareto Coevolution Methodology

7.2.1 Learning from Teaching

We equate the processes of gradient following and gradient creation, discussed above,

with the roles of learning and teaching, respectively. Every agent with which a learner

interacts is a teacher, every agent with which a teacher interacts is a learner. An

agent in a coevolutionary framework usually, though not always, plays both roles

simultaneously; and, when both roles are played by an agent, they are usually not

performed with equal success. Our approach to coevolution considers the roles of

learning and teaching to be orthogonal.

The only evidence that a learner has to indicate success at following gradient

comes from achieving good outcomes (high payoffs) through interaction with agents

(teachers). But, the learning gradient is typically of very high dimension in coevolu-

tion, since each agent with which a learner can interact represents a dimension to be

optimized. Therefore, some principled method of integrating this space is required,

and this is the reason we look towards the Pareto optimality concept for help.
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We define the role of the teacher to be one that is awarded fitness for providing

gradient for learners. But, what evidence can we gather to infer success at this job?

We define the learnability of a teacher, with respect to a particular learner, to be the

probability that the learner can be transformed, over some number of variation steps,

to become competent (or more competent) at the task posed by the teacher. (Note

that learnability becomes sensitive to the state of an entire population if recombinative

methods are used in variation.) Thus, the task posed by a teacher is unlikely to be

learned if the learner is too remote from regions in variation space where learners are

competent at the task—the teacher is “too difficult.” Teachers that are completely

mastered by a learner also have a low learnability in the sense that the learner has

no chance of improving its performance on the task, since it is already perfect.

Rather than try to measure teacher learnability directly, our approach is to dis-

cover teachers that can demonstrate gaps in learner competence—i.e., show one

learner to be more proficient than another at a particular task. We operate on the in-

tuition that teachers that fill competence gaps are likely to be learnable because they

expose and explore pre-existing gradients of learner ability in different dimensions of

behavior. We rely on the variation process to open new dimensions. This way, we

can hope always to have relevant challenges that are of appropriate difficulty. Note

that, if an evolving population contains a learner (call it L∗) that is superior to all

other learners in the population with respect to every teacher, then no competence

gaps exist “above” L∗ to fill with teachers that are certain to challenge it. We must

wait until some variation occurs to generate a new learner that outperforms L∗ in

some dimension(s) and creates new gaps in competence. This approach to creating

and maintaining gradient for coevolutionary learning is substantially different from

those of Rosin [172], Juillé [101], Olsson [153], and Paredis [162].
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7.2.2 Learning: Following Gradient

This section describes how we measure success at following a high-dimensional gradi-

ent using the Pareto optimality concept. We name the set of learners R and the set of

teachers S. The payoff matrix G describes the performance of all learners against all

teachers, where Gi,j is the payoff earned by learner i when interacting with teacher

j. The solution concept for our learners (i.e., our primary search problem) is defined

as follows.

Definition 3 (Pareto Dominance) Learner x Pareto dominates learner y with re-

spect to the set of teachers S, denoted as x
S
� y, iff ∀w ∈ S : Gx,w ≥ Gy,w ∧

∃v ∈ S : Gx,v > Gy,v.

That is, learner x dominates learner y if and only if x does at least as well as y

with respect to all teachers in S and does strictly better than y with respect to at

least one teacher.

Definition 4 (Mutual Non-Domination) Learners x and y are mutually non-

dominating, denoted as x
S� y, iff ∃w, v ∈ S : Gx,w > Gy,w ∧ Gx,v < Gy,v.

That is, learners x and y mutually non-dominate if there simultaneously exists a

teacher in S with respect to which x out-performs y and another teacher with respect

to which y out-performs x.

Definition 5 (Pareto Front) The Pareto front of a set of learners R, denoted as

F 0(R), is the subset of all non-dominated learners in R (with respect to the set of

teachers S); that is, F 0(R) = {x ∈ R : ¬∃w ∈ R, w
S
� x}.

Definition 6 (Dominated Subset) The dominated subset ofR, denoted as D0(R),

is the subset of learners that are dominated by some learner in R (with respect to the

set of teachers S); that is, D0(R) = {x ∈ R : ∃w ∈ R, w
S
� x}.
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Note that a learner belongs exclusively either to the front or the dominated set:

F 0(R) ∩D0(R) = ∅ and F 0(R) ∪D0(R) = R.

Once we identify the Pareto front F 0 and the set of dominated learners D0, we may

compute the next Pareto layer, F 1(R) = F 0(D0(R))—the set of learners that are non-

dominated once we exclude the Pareto front. We may continue this process until every

learner is understood to belong to a particular Pareto layer; this recursive process is

illustrated in Figure 7.1. Pareto layers indicate both generality and uniqueness in

learner competence: Every learner in F n is less broad in competence than some

learner in F n−1, and every learner in F n can do something better than some other

learner in F n.

R F0(R)

F1(R) = F0(D0(R))

D1(R) = D0(D0(R))

D0(R)

Figure 7.1: Construction of Pareto layers.

Intra-Layer Ranking

High-dimensional spaces of competing objectives are known to cause problems for

Pareto ranking in ordinary (non-coevolutionary) EAs [76]. As we note above, a
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large number of teachers gives a high-dimensional gradient. This creates potentially

many ways in which a learner may excel and earn a place in a particular Pareto

layer. Indeed, we find in our experiments that the number of learners in F 0 tends to

increase over evolutionary time and may ultimately include as much as 75% of the

entire population.

We therefore require some form of intra-layer ranking to differentiate learners

within a particular (possibly crowded) layer. We consider two approaches, both stem-

ming from diversity-maintenance techniques, and find them to behave similarly (the

experiments we report in this chapter use the second approach). Our first approach

is similar to Juillé and Pollack’s [103] competitive evolution paradigm. In comparing

two learners from the same layer, we give each learner a point for each dimension

(teacher) in which it out-scores the other learner. (Alternatively, if learners x and

y out-score each other in nx and ny dimensions, respectively, then the better of the

two agents gets |nx − ny| points and the other gets 0 points.) We accumulate points

over all pair-wise comparisons of learners that belong to the same layer, and then rank

learners according to the sums. Our second approach applies Rosin’s [172] competitive

fitness sharing method within each layer. The learners within a layer are then ranked

with respect to each other according to the results of the fitness sharing. Regard-

less of which intra-layer ranking approach is used, inter -layer ranking is achieved by

giving the highest-ranked learner(s) of Pareto layer F n a global rank just below the

lowest-ranked learner(s) of Pareto layer F n−1.

7.2.3 Teaching: Creating Gradient

This section describes how we measure success at creating gradient for learning. We

begin with the m by n payoff matrix G, where m is the number of learners and n is
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the number of teachers. Matrix entry Gi,j is the payoff received by learner i when it

interacts with teacher j. If learner x performs better than learner y with respect to

teacher j (i.e., Gx,j > Gy,j), denoted x
j
> y, then we say that teacher j distinguishes

the learner pair (x, y) in favor of x. By causing a pair of learners to receive different

payoffs, a teacher exposes a gap in the proficiencies of the two learners. We are

interested to identify all such proficiency gaps in the population of learners, as made

apparent by the population of teachers.

To identify all learner pairs that are distinguished by each teacher, we construct a

new n by m2−m matrix M. Each column of this matrix corresponds to a particular

pair-wise comparison of learners across all n teachers. We exclude self-comparisons,

since there cannot exist any proficiency gaps between a learner and itself, and we

treat the learner pairs (A, B) and (B, A) as distinct—(A, B) is reserved for teachers

that distinguish A and B in favor of A, while (B, A) is for teachers that distinguish

in favor of B. The matrix entry Mj,k equals one if teacher j distinguishes the learners

in pair k = (x, y) in favor of x. Clearly, if entry Mj,k is non-zero, then entry Mj,k′

must be zero, where k = (x, y) and k′ = (y, x).

G =

α β γ

A 1 1 3

B 2 3 2

C 1 2 1

M =

(A, B) (A, C) (B, A) (B, C) (C, A) (C, B)

α 0 0 1 1 0 0

β 0 0 1 1 1 0

γ 1 1 0 1 0 0

(7.1)

Once we obtain matrix M, we have identified all the ways in which each teacher

demonstrates utility as a touchstone of learner competence. But, how shall we use

this information to create a selective pressure for teachers? To begin with, a teacher
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that fails to reveal any variation in learner ability is dubious.

One approach is to give all teachers that distinguish at least one learner pair a

score of one, and then divide each teacher’s score by the number teachers with an

identical profile (to better maintain diversity). But, we feel this method to be too

coarse-grained. Our compromise approach is to perform fitness sharing much like

Rosin [172]. (Subsequent work by Bucci and Pollack [29] and de Jong and Pollack

[45] applies the Pareto criterion to teachers to obtain their selective pressure, as well.

In this case, in Equation 7.1, we would prefer teacher β to teacher α because β makes

every distinction that α does, and more.)

Equation 7.2 shows that the score received by teacher j is the sum, across all

learner pairs distinguished by it, of the value of a learner pair divided by the pair’s

discount factor. The discount factor of a pair is the total number of teachers that

distinguish it. For the value of a pair, we experiment with two possibilities. Our

first approach (Equation 7.3, left) simply gives every pair an equal value (vk = 1).

Our second approach (Equation 7.3, right) recognizes certain pairs as more significant

than others. For example, we may argue that a teacher should get more reward for

distinguishing between two good learners than for distinguishing between two poor

ones. Further, a teacher should be rewarded more for showing a generally good

learner to do something worse than a generally poor learner than the other way

around. Therefore, our second approach assigns the value of a learner pair k = (x, y)

to be the fitness of the loser y.

sj =
∑

k

Mj,k
vk

dk
dk =

∑
i

Mi,k (7.2)

vk = 1 OR vk = fitness(y), where k = (x, y) (7.3)
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7.2.4 Pareto Optimality and Intransitivity

Here we briefly review some properties of our solution concepts, Pareto optimality

and distinctions, with respect to intransitive cycles. In Chapter 3, we show that

intransitive structures cause conventional coevolutionary algorithms to exhibit oscil-

lations and forgetting; in particular, we discuss the emergence of oscillatory dynamics

in the majority-function domain. We revisit our canonical examples of intransitivity,

Rocks-Paper-Scissors and Matching Pennies.

Equation 7.4 gives the payoff matrix for the RPS game and the corresponding

teaching matrix M. The RPS game is a symmetric zero-sum game. We can easily

see that each of the three strategies must be in the non-dominated front F 0: Each

strategy out-performs the other two with respect to at least one strategy. For example,

R out-performs P and S with respect to S, and R out-performs S with respect to R.

The teaching matrix reveals that each teacher distinguishes three learner pairs. Of

these three, two are distinguished by some other teacher and one is not. Thus, all

three strategies receive identical rewards in their roles as learners and teachers. The

asymmetric zero-sum game of matching pennies yields similar results: Both strategies

(heads and tails) receive equal reward. This is in contrast to the oscillatory dynamic

that arises in the conventional coevolutionary algorithm.

G =

R P S

R 0 −1 1

P 1 0 −1

S −1 1 0

M =

(R, P) (P, R) (R, S) (S, R) (P, S) (S, P)

R 0 1 1 0 1 0

P 0 1 0 1 0 1

S 1 0 1 0 0 1

(7.4)
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7.3 Majority Function

7.3.1 Description

Density classification tasks are a popular area of study in cellular automata research

[152, 204, 104, 105, 6, 5, 119, 142]. The objective is to construct a rule that will cause

a one-dimensional, binary CA to converge, within some pre-determined number of

time-steps, to a state of all ones if the percentage (or density) of ones in the initial

condition (IC) is greater than or equal to some pre-established value, ρ ∈ [0, 1].

Otherwise, the rule should cause the CA to converge to a state of all zeros. The

majority function uses a value of ρ = 0.5.

Though Land and Belew [119] prove that no rule correctly classifies all initial

conditions, the highest possible success rate remains unknown. Currently, the best

rules (of radius three, operating on a CA lattice of 149 bits) achieve success rates

of 85.1%, 86.0%, and 86.3% over a uniform sampling of initial conditions, and were

discovered by Juillé and Pollack [105, 104, 106] through coevolution. These rules

represent a significant improvement over all earlier rules, for example ABK (82.4%),

DAS (82.3%), and GKL (81.5%), as discussed in [105, 152].

7.3.2 Coevolution of Rules and Densities

Following Juillé and Pollack [105, 104], we use two-population coevolution to find CA

rules of radius three that operate on a one-dimensional lattice of 149 bits. A radius

of n means that lattice positions i − n through i + n (with wrap-around) are used

by the CA rule to determine the next state of lattice position i. A radius of three

gives a “window” of seven bits, meaning the rule must contain 27 = 128 bits, one

for each possible window state. This gives us a search space of 2128 possible rules.
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A lattice of 149 bits has 2149 possible states, and therefore initial conditions. While

one population evolves rules (bit-strings of length 128), the other population evolves

initial condition densities (floating-point numbers)—not actual initial conditions.

Our experiments depart from those of Juillé and Pollack by using our Pareto co-

evolution methodology, outlined above. As with many two-population coevolutionary

domains, ours has an intrinsic asymmetry in the difficulties faced by the two popu-

lations: the discovery of good rules is much harder than the discovery of challenging

IC densities. Though the space of possible initial conditions is much larger than the

space of possible rules, there exist only 150 distinct IC densities (from all-zeros to

all-ones). Further, densities generally become more difficult as they approach 0.5

[142, 119], so the space in some sense approximates a unimodal landscape. For these

reasons, rules are assigned only the role of learners and IC densities are assigned only

the role of teachers. We can imagine other coevolutionary domains where coevolving

entities would be called upon to fulfill both roles, such as Tic-Tac-Toe.

7.3.3 Derivation of Payoff Matrix: Test Case Sampling

All ranking methods potentially impose severe non-linearities by expanding small

differences in performance and compressing large ones. Pareto ranking is no exception

and may even be considered more extreme in some ways. Because of this non-linear

behavior, the payoff matrix G, which forms the basis of our approach, should be as

accurate as possible. Thus, our approach is at least as sensitive to non-deterministic

domains as conventional coevolutionary methods.

Our CA domain, however, is deterministic. Because we evolve rules against densi-

ties rather than actual initial conditions, rule performance against a particular density

is expressed as the percentage of correctly classified ICs of that density class. But,
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we generally cannot afford to sample a particular density class exhaustively. This

impedes our ability to compare rules of similar ability. Further, as rules improve in

performance, we generally rely on densities closer to 0.5 to distinguish them. Yet, the

distribution of initial conditions over densities is binomial, which makes our sampling

of ICs significantly more sparse as densities approach 0.5 (and our estimation of rule

performance less accurate).

We desire a method to extract meaningful information about rule performance

with relatively few samples. Fortunately, for our Pareto coevolution methodology to

work, we do not need to know precisely how well a particular rule (learner) performs

against a particular IC density (teacher); we only need relative ranking information.

Our solution is to once again turn to the Pareto optimality criterion. Note that our

use of Pareto ranking to derive the payoff matrix (described here) is not to be confused

with our use of Pareto ranking to rate learners once payoffs are known (described in

Section 7.2.2).

We compute each column j of the payoff matrix G in the following manner. We

generate some number q of initial conditions (q = 40 in our experiments) that are

representative of density (teacher) j; all m rules (learners) are tested on this set of

ICs. The test results are placed in an m by q matrix H, where Hu,v = 1 if rule u

correctly classifies IC v and Hu,v = 0 otherwise. We then perform Pareto ranking of

rule performance based on H. Rules on the Pareto front F 0 are given the highest

payoff, those in layer F 1 the next highest, and so on. These payoffs form column j of

the payoff matrix G.

All rules cover some subset of ICs that belong to a particular density class. These

subsets may overlap in any number of ways. We require that a rule dominate another

in terms of measured coverage in order to receive a higher payoff; this is more stringent

than mere comparison of measured success rates. For example, two rules that each
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cover 50% of some density class may overlap entirely on the one extreme, or not at

all on the other extreme. Regardless of the amount of actual overlap, the chance that

our measured coverage will indicate one rule to dominate the other is extremely small,

even though the measured success rates (number of ICs solved by the two rules) will

very likely be unequal. But, as the actual performance rates of two rules grow apart,

the more likely it becomes for the better of the two to dominate the other in measured

coverage (especially if actual coverage of the stronger rule overlaps heavily with that

of the other).

Our method of test-case sampling removes the need for an explicit similarity

metric—similarity is guaranteed by the process of generating multiple ICs from a

density value. Juillé and Pollack [104, 105] require a similarity metric to cluster IC

densities so that rule performance can be gauged with respect to density.

7.4 Experimental Setup

A rule is given 320 time-steps to converge the CA to the correct state. The sizes of

our populations of rules and IC densities are NR = 150 and NIC = 100, respectively.

All rules are tested against all densities in every generation. Each density is sampled

40 times, giving a total of 6× 105 evaluations per generation.

The initial population of rules is composed of random bit-strings, distributed

uniformly over the range of string densities (0 to 128 ones). The initial population

of IC densities is distributed uniformly over the interval [0, 1]. Rules are varied by

one-point crossover and a 2% per-bit mutation rate. IC densities are varied by the

addition of Gaussian noise of zero mean and standard deviation of 0.05.

Rule ranks are squared before they are normalized for the roulette wheel. The

next generation of rules is created by using Baker’s [20] SUS method to select 75
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rules that remain unaltered and another 75 rules to which the variation operators

are applied. The next generation of IC densities is created by using SUS to select 50

densities that remain unaltered and another 25 that are varied. The remaining 25

densities are picked at random from a uniform distribution.

An IC density is converted to an actual initial condition by first adding Gaussian

noise of zero mean and standard deviation of 0.05. We multiply the result by 149 and

take the floor to arrive at an integer between 0 and 149. The initial condition will

be a random bit-string of exactly that number of ones. All rules see the same set of

initial conditions.

7.5 Results and Discussion

7.5.1 Rule Performance

We have conducted six runs of our experiment, three for each of our two methods of

valuating learner pairs (see Section 7.2.3 and Equation 7.3). Our best result to-date

is a rule that correctly classifies 84.0% of initial conditions, shown in Table 7.1. We

determine this success rate by testing the rule against 4 × 107 randomly generated

ICs (that is, a binomial distribution of IC densities). The rule took approximately

1300 generations to evolve. Two of the other runs each exceed 81% success; our worst

result is 78.8% success. While our best result comes from our first method of valuating

learner pairs (see Equation 7.3), the data do not distinguish the performance of the

two methods.

Figures 7.2 through 7.5 show four example runs of the rule in Table 7.1. The first

two runs are each examples of correct classification. Notable in these examples is that

the density of the cellular automaton lattice actually crosses the 0.5 threshold; since
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Bits 0–31 00010000 01010011 00000000 11010010
Bits 32–63 00000000 01010001 00001111 01011011
Bits 64–95 00011111 01010011 11111111 11011111
Bits 96–127 00001111 01010101 11001111 01011111

Table 7.1: Currently best evolved rule using Pareto coevolution; achieves 84.0% clas-
sification success. Bit i corresponds to the rule’s action when the binary integer
interpretation of a window equals i. (Rule bits are read left-to-right.)

the classification is correct, the number of crosses must be even. All the lattice states

we visit on the opposite side (from where we begin) of the 0.5 threshold represent

initial conditions that the rule will incorrectly classify. In contrast to the first two

examples, Figure 7.4 shows are run where lattice density monotonically increases.

Finally, Figure 7.5 shows a run in which the rule incorrectly classifies the initial

condition.

7.5.2 Dynamics of Teacher Population

Figure 7.6 shows four histograms of the IC population over time for a sample run (un-

fortunately, we do not have this data for the run from which our best rule originates).

As we specify in Section 7.4, the distribution of initial conditions in Generation 0

is uniform. As early as Generation 5, we find the distribution to heavily empha-

size density extrema; only five of the 100 individuals in the IC population fall in

the interval [0.4, 0.6]. By Generation 50, low and high density ICs are not longer

emphasized; instead, we have peaks approximately at 0.4 and 0.6 density, with the

immediate neighborhood around 0.5 still being rather sparse (six individuals in the

interval [0.47, 0.53] and thirteen in the interval [0.45, 0.55]). In Generation 250, the

distribution is heavily concentrated (60% of ICs) in the interval [0.4, 0.6]; 14 individ-

uals are now found in the interval [0.47, 0.53] and 25 in the interval [0.45, 0.55]. Thus,

we see a clear movement from uniform testing to the easiest densities, then to ICs of
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Figure 7.2: First example run of rule in Table 7.1. Left graph shows the time evolution
of the cellular automaton lattice; the right graph shows the density of the lattice over
time.
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Figure 7.3: Second example run of rule in Table 7.1. Left graph shows the time
evolution of the cellular automaton lattice; the right graph shows the density of the
lattice over time.
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Figure 7.4: Third example run of rule in Table 7.1. Left graph shows the time
evolution of the cellular automaton lattice; the right graph shows the density of the
lattice over time.
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Figure 7.5: Fourth example run of rule in Table 7.1. Left graph shows the time
evolution of the cellular automaton lattice; the right graph shows the density of the
lattice over time.
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moderate difficulty, and then to the most difficult ICs. Along with the quality of the

rules we are able to obtain, these data suggest that our notion of distinctions is able to

capture some meaningful information about where testing effort should concentrate.
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Figure 7.6: Histograms of initial condition densities for a sample run at Generations
0 (top left), 5 (top right), 50 (bottom left), and 250 (bottom right).

7.5.3 Comparison with Juillé and Pollack

In experiments where NR = NIC = 400 [105], Juillé and Pollack discover a rule that

achieves 85.1% success (some runs give ≤ 76%). Their best results (86.0% and 86.3%
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success) are discovered in experiments where NR = NIC = 1000 [105, 104] (experi-

ments last 5000 generations; all exceed 82.0% success). They test all rules against

all densities, but each density is sampled only once. In contrast, our experiments use

much smaller population sizes (NR = 150, NIC = 100), but we sample each density

40 times. Thus, the total amount of computation in our experiments falls in between

those of Juillé and Pollack. But, in exchange for a more expensive IC density sam-

pling procedure (see Section 7.3.3), we avoid the explicit similarity metric required

by Juillé and Pollack to classify ICs, and thereby arrive at an approach that should

more easily generalize to other problem domains (e.g., sorting networks). Indeed,

we intend ultimately to apply our Pareto coevolution methodology to variable-sum

games, in addition to zero-sum games such as those studied by Rosin [172] and Juillé

[101].

While we do not improve upon the results of Juillé and Pollack [105, 104], we

improve significantly upon all results published elsewhere. The next most effective

rule is by Andre, et al [6, 5], which performs at 82.4%. This rule was discovered

with genetic programming in experiments using a rule population size of 51,200, each

tested on 1000 different ICs (ICs were not coevolved) per generation. We believe that

we can improve our results with larger populations.

7.6 Conclusions

We build a novel coevolutionary algorithm based upon the principle of Pareto op-

timality that implements distinct solution concepts for the primary (learner) and

secondary (teacher) search efforts. Our algorithm distinguishes the role of the gradi-

ent follower from that of the gradient creator, even though both may coexist within

the same agent. We use our algorithm to coevolve cellular automata rules for the
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majority function and discover a rule that correctly classifies 84.0% of initial condi-

tions. Additional experiments to improve our result will consider larger populations

and perhaps different inter-generational replacement schemes. Of more interest to our

Pareto approach, we require control experiments to identify the contributions of each

component of our overall methodology. In these controls, we will substitute one or

two of our methods (for rewarding learners and teachers, and for sampling densities)

with more conventional mechanisms, for example using a problem-specific similarity

metric instead of our more expensive sampling method.

Despite our encouraging result, this chapter does little more than suggest an

interesting line of research. Specifically, we offer little formal (and indeed empirical)

justification for our approach; this work is ongoing. Nevertheless, a more formal

account of our Pareto coevolution methodology can be found in the follow-up work

of Bucci and Pollack [29] and de Jong and Pollack [45].

Finally, the work of Dolin, Bennett, and Rieffel [53] empirically compares our

method to evaluate teachers with Rosin’s shared sampling method in a variety of

problems. Using genetic programs as the evolutionary substrate, they test the two

methods on three symbolic regression problems; we reproduce the results in Table 7.2.

At worst, our method of distinctions requires approximately 2.2 times more evalua-

tions than shared sampling; at best, our method requires slightly less than one third

the number of evaluations. They next look at a robotic control task, the results of

which we reproduce in Table 7.3. Here, our method requires approximately 3.2 times

the number of fitness evaluations as shared sampling. To discover a control program

that correctly solves ≤ 70% of out-of-sample test cases (i.e., tests not used during

learning), the distinction method requires approximately twice as many fitness eval-

uations as random test-case sampling; the distinction method out-performs random

sampling for higher out-of-sample thresholds.
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Problem Shared Sampling Distinctions Random Test-
Case Sampling

1 33,840,000 50,700,000 600,600,000
2 334,800,000 100,440,000 not solved
3 21,120,000 47,040,000 56,550,000

Table 7.2: Experimental data from Dolin, et al. Minimal number of fitness evaluations
required (over 120 trials) to solve regression problem with probability 0.9. Data
reproduced from Dolin, et al, [53].

Percentage Solved Shared Sampling Distinctions Random Test-
Case Sampling

0.60 850,000 1,470,000 700,000
0.70 1,275,000 2,970,000 1,410,000
0.80 5,390,000 17,325,000 21,780,000
0.82 18,810,000 60,520,000 not solved

Table 7.3: Experimental data from Dolin, et al. Minimal number of fitness evalua-
tions required (over 120 trials) to solve given percentage of out-of-sample tests with
probability 0.9. Data reproduced from Dolin, et al, [53].
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Chapter 8

A Game-Theoretic Memory

Mechanism

8.1 Introduction

Among the problems one often confronts when using a coevolutionary algorithm is

that of forgetting, where one or more previously acquired traits (i.e., components of

behavior) are lost only to be needed later, and so must be re-learnt. Since selection

pressure determines which traits have the opportunity to reproduce, the disappear-

ance of a trait has but a few explanations. First, a trait is selected against when

individuals with that trait are less fit, on average, than individuals without it. Sec-

ond, a trait is subject to drift when individuals with that trait are equally fit, on

average, as individuals without it. This drift may occur in either of two ways (or

both): Due to sampling error in the population dynamics (where fewer of the indi-

viduals with the trait actually reproduce, thus reducing their numbers and increasing

the risk of extinction for that trait), and due to variational biases that cause the trait

to be lost in the generation of offspring. (Even if a trait is selected for, the variational
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process may be strongly biased against it, thus causing offspring to lack the trait;

such variational bias is the impetus behind the technique of elitism that is often used

in evolutionary algorithms [85].) The disappearance of a trait becomes an instance

of forgetting if the discarded trait is subsequently able to contribute positively to the

fitness of an individual lacking that trait.

Such variability in a trait’s contribution to fitness is possible in coevolution be-

cause the observed quality of an individual (and the traits it carries) may be highly

contingent upon the context of its evaluation—the population of coevolving individ-

uals. Thus, at one moment in evolutionary time, a trait may be highly undesirable

(or of neutral worth but difficult to maintain) and purged, only to become of value at

some later point in time. Simple zero-sum games with intransitivities illustrate how

contingency can cause a coevolutionary system to learn, forget, and re-learn traits in

a cyclic fashion; the familiar Rock-Paper-Scissors game is the canonical example of

an intransitive cycle (Rock beats Scissors, which beats Paper, which in turn beats

Rock), where one strategy exploits the next, leading to a perpetual alternation of

selective pressure for and then against each strategy in turn.

The problem of designing a heuristic “memory mechanism” to prevent forget-

ting intrinsically entails the problem of deciding what it is that we are trying to

“remember”—what is our solution concept? That is, what collection of traits consti-

tutes the desired or “correct” set, and what properties does this collection have? A

principled answer to this question is imperative when a domain forces mutual exclu-

sivity between certain traits, or when an evolutionary representation (genome) cannot

simultaneously encode all desired traits. Once we have our solution concept, what

organizing principle do we use in the memory mechanism to obtain it? Thus, we view

a memory mechanism as an accumulator of traits; a trait enters and remains in the

memory only if it is “worth” remembering, according to our organizing principle.
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In this chapter, we obtain our solution concept—Nash equilibrium—from game

theory, and use game theory to construct an organizing principle for a new memory

mechanism for coevolution. Using Watson and Pollack’s intransitive numbers game

[202], which is rife with intransitive cycles, we demonstrate the ability of our “Nash

memory” mechanism to approximate a monotonic and asymptotic convergence to the

Nash equilibrium of the game. Further, we show that the commonly used “best of

generation” memory mechanisms (e.g., Rosin and Belew’s Hall of Fame [175]), as

well as Stanley and Miikkulainen’s more recently proposed Dominance Tournament

[187] mechanism, do not generally accumulate a collection of traits that corresponds

to Nash equilibrium.

The chapter is organized as follows. Section 8.2 reviews key concepts from game

theory. Section 8.3 continues with additional concepts such as security and domi-

nation. Section 8.4 then reviews the literature on methods to detect and prevent

forgetting. Section 8.5 details the construction and operation of our Nash memory

mechanism. Section 8.6 defines and discusses the properties of the intransitive num-

bers game. Section 8.7 presents our experimental setup and results. Section 8.8

offers concluding remarks. The work in this chapter is first published in Ficici and

Pollack [65].

8.2 Game Theory Fundamentals

Here we present some fundamental points on game theory [83]. For simplicity, we

restrict our discussion to symmetric zero-sum games (in strategic form) for two play-

ers; nevertheless, our Nash memory mechanism can be generalized to asymmetric

constant-sum games for two players. (We note that variable-sum games easily com-

plicate matters. For example, a symmetric coordination game has a single mixed-
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strategy Nash equilibrium. We can use this strategy with indifference to the other

player’s actions and get a guaranteed minimal payoff; in this sense, the mixed Nash is

similar to one you might see in a zero-sum game, such as Rock-Paper-Scissors. Unlike

RPS, however, each pure strategy of a coordination game is a pure Nash equilibrium

strategy that Pareto dominates the mixed Nash strategy—that is, both players are

better-off if they play the same pure strategy than they would be if one or both played

the Nash mixture. To obtain these superior payoffs, the players must coordinate.)

Being symmetric, the game G defines a single set of pure strategies, S, that is

made available to both players. A player may adopt a pure strategy s ∈ S or may

instead play a mixed strategy, which is specified by a probability distribution over

S. Pure strategies played with non-zero probability by a mixed strategy m are in

support of (also known as “carriers” of) m. The function C(m) returns the set of

pure strategies that support the mixture m; hence, C(m) = {s ∈ S : Pr(s|m) > 0}.

A pure strategy can be understood as a degenerate mixture.

For any pair of strategy choices made by the two players, the game G specifies the

expected payoff earned by each player; by convention, E(α, β) denotes the expected

payoff earned by strategy α when played against β. Since the game G is zero-sum,

E(α, β) + E(β, α) = 0. This implies that E(α, α) = 0.

Any pure or mixed strategy s∗ that is its own “best response” is a Nash equilibrium

strategy. More precisely, s∗ is a Nash iff, for all mixtures m, E(s∗, s∗) ≥ E(m, s∗).

That is, if one player plays s∗, then the highest payoff obtainable by the other player is

received by also playing s∗. Thus, a Nash strategy guarantees that, for all mixtures m,

E(s∗, m) ≥ 0. Due to this property, Nash strategies provide the maximal security level

that can be obtained in a zero-sum game—no other solution concept can guarantee

a higher expected payoff without regard to the opponent’s strategy choice. This
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security level is also known as the value of the game. Finally, all games with finite S

have at least one Nash equilibrium.

8.3 Additional Concepts

The security set of a mixture m is the set of pure strategies against which m earns an

expected payoff greater than or equal to zero; that is, S(m) = {s ∈ S : E(m, s) ≥ 0}.

If the security set of a mixture contains the mixture’s support set, then the mixture

is support-secure; mixture m is support-secure iff S(m) ⊇ C(m). All pure strategies

are trivially support-secure. For any pure or mixed Nash strategy s∗, S(s∗) ⊇ C(s∗)

and S(s∗) = S. The vulnerability set of a mixture m is the complement (with respect

to S) of the security set: V(m) = S(m).

One strategy α dominates another strategy β iff ∀s ∈ S : E(α, s) ≥ E(β, s) and

∃s ∈ S : E(α, s) > E(β, s). By definition, for any strategy s and any Nash strategy s∗,

E(s∗, s) ≥ 0; therefore, any strategy that dominates a Nash must be Nash, as well. At

the same time, Nash strategies need not dominate all (or any) non-Nash strategies.

We examine this point further, below.

8.4 Memory Methods and Solution Concepts

Research to prevent forgetting includes a number of memory mechanisms that main-

tain a collection of “good” individuals (according to some organizing principle) dis-

covered over evolutionary time; the memory thus encapsulates a wider range of phe-

notypes than is typically found in the coevolving population at any one time. The ad-

ditional phenotypic variety afforded by the memory is used to augment the evaluation

process, broaden selection pressure, and thereby reduce the likelihood of forgetting.
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We review a number of memory methods used in the literature in Chapter 3.

As we state in Chapter 3, deciding how to organize a memory entails deciding

what kind of solution we wish to obtain. If we view the memory as a repository of

the most salient traits discovered so far, then the logical extension of this view implies

that we should probe the memory for the result (solution) obtained through coevo-

lution, not the coevolving population. In the standard coevolutionary algorithm, the

coevolving population is expected both to perform search and represent the result of

the coevolution. But, there is no reason to believe that these two tasks are orthogo-

nal, let alone mutually supportive; indeed, our results on fitness sharing in Chapter

5 provide evidence that these tasks may interfere with each other.

A well-designed memory mechanism relieves the coevolving population from the

burden (or, at least, the requirement) of representing the solution, allowing the popu-

lation to concentrate on search (to improve the solution represented by the memory).

The memory mechanism we introduce in this chapter uses game theory, particularly

Nash equilibrium, as an organizing principle. A important feature of the Nash con-

cept is that it allows a solution to be a collective of strategies. The appeal of this

property is highlighted by results of Nolfi and Floreano [148]. In the presence of in-

transitivity, they emphasize that the real solution they obtain through coevolution is

not a single, objectively best champion strategy—none exists to find—but, rather a

set of locations in genotype space that are optimally poised for easy transformation

into alternative strategies that have been effective in evolutionary history. That is,

when a population cannot simultaneously and stably represent all the strategies in

certain intransitive cycles, the best it can do is optimally traverse the cycle. This lack

of a best pure strategy, coupled with a dynamic that focuses on a particular set of

pure strategies, is highly suggestive of the mixtures that the Nash solution concept

supports.
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8.5 Construction and Operation of Nash Memory

8.5.1 General Framework and Instantiation

The Nash memory mechanism we examine in this chapter is a particular instantiation

of a general framework, which consists of two mutually exclusive sets of pure strate-

gies, N and M. In addition to the memory mechanism, we assume the existence of

some external search heuristic H. The set N is unbounded in size and defined to be

the support set for a mixture that is secure at least against the elements of N and

M; that is, S(N ) ⊇ N ∪ M. (We use N to denote either the mixture’s support

set or the mixed strategy itself, as convenient.) The objective of N is to represent a

mixed strategy that is optimal (secure) with respect to what the search heuristic has

discovered thus far; we wish the protection afforded by N (ideally) to increase mono-

tonically as search progresses, thereby forming a better and better approximation of

a Nash strategy for the game G. The purpose of set M is to act as an accumulator

or memory; it contains pure strategies that are not currently useful for N but were

in the past and may be again in the future. The capacity of M, however, is finite.

In the present realization of the abstract memory model, we define M to be simply

an unordered set of pure strategies with a cardinality no greater than some specified

value c, which gives the capacity of the memory. We can imagine that c can vary over

evolutionary time, in some adaptive fashion, but we instead assume a fixed value.
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8.5.2 Initialization and First Update

We initialize N and M to be the empty set. Let Q be a set of strategies delivered

by the search heuristic to the memory mechanism; we assume |Q| < c. The first set

Q to arrive updates N such that C(N ) ⊆ Q and S(N ) ⊇ Q; the set M is updated

to contain those elements of Q not in support of N . For subsequent values of Q, we

must test the elements of Q against N to see if N and M require updating.

8.5.3 Testing N

To verify that a mixed strategy is Nash, one need only check that the mixed strategy

is secure against all pure strategies; testing against all possible mixtures (of which

there is an uncountable infinity) is not required [192]. Consequently, if E(q,N ) > 0

for any q ∈ Q, then N is demonstrably not a Nash strategy and we attempt to

improve our approximation; otherwise, we leave N and M undisturbed and wait

for the search heuristic to deliver a new set of strategies. We compute the value

E(q,N ) by playing q against each strategy in support of N and taking a weighted

average of outcomes, the weights being the probability distribution for the mixture:

E(q,N ) =
∑

n∈C(N ) Pr(n|N )E(q, n).

8.5.4 Updating N and M

We define the set W = {q ∈ Q : E(q,N ) > 0}, that is, the “winners” from Q. Given

the pre-update values of N and M, we define the post-update value N ′ such that

C(N ′) ⊆ (W ∪N ∪M) and S(N ′) ⊇ (W ∪N ∪M); we obtain the value of N ′ with

linear programming, which is the standard method for solving zero-sum games and

for which polynomial-time algorithms exist [192]. Note that S(N ′) is not necessarily

a superset of S(N ).
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As Figure 8.1 illustrates, the post-update value M′ contains zero or more items

from each of three sources; some strategies inW may not be required, some strategies

in N may be released, and some strategies may be retained from M (while others

may be recalled from M to N ′). If the resultant M′ has a cardinality |M′| > c, then

we discard items from M′ until the capacity constraint is met. We can imagine a

number of policies for removing items fromM′; we currently remove items at random

first from those retained fromM, then those released from N (there is never the need

to remove those from W).

8.6 Intransitive Numbers Game

Watson and Pollack’s intransitive numbers game [202] is a coevolutionary domain

that is permeated by intransitive cycles. The game’s geometric nature allows easy

visualization of coevolutionary dynamics; we will use it to illustrate the operation of

our Nash memory mechanism.

8.6.1 Definition

Each pure strategy of the intransitive numbers game is an n-dimensional vector, or

point in n-dimensional space. For a pair of strategies α and β, the winning strategy

is the one with higher magnitude in the dimension of least difference between the

two strategies. More precisely, for two strategies α and β, the expected outcome

E(α, β) is:
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Figure 8.1: Test and update process of Nash memory.
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E(α, β) =




0 if min(h) = ∞

sign(
∑n

i=1 gi) otherwise
(8.1)

gi =




αi − βi if hi = min(h)

0 otherwise
(8.2)

hi =



|αi − βi| if |αi − βi| ≥ ε

∞ otherwise
(8.3)

where ε is the smallest magnitude difference we wish to consider significant.

Equation 8.1 eliminates two asymmetries that exist in the original definition found

in [202]: First, the game is now formally symmetric; second, no single dimension is

the arbiter when the deltas in multiple dimensions are minimal. Note also that, while

we use the term “expected outcome,” the game is deterministic.

Figure 8.2 illustrates the intransitive numbers game in the open plane. On top, we

calculate the winner of a pair-wise interaction between Strategies A and B. When we

calculate the coordinate differences between the two strategies, we find the dimension

of least difference to be the vertical dimension; in this dimension Strategy A has a

higher magnitude than B, and so A beats B. In the middle, we show the regions

in which an opponent against Strategy B can win and lose; Strategy A is clearly

in a winning region. On the bottom, we add a third strategy C, which forms an

intransitive cycle with Strategies A and B: A beats B, B beats C, and C beats A.

Strategy C may be anywhere in the colored region and still create an intransitive

cycle with Strategies A and B; this gives ample indication of how easily intransitivity

is obtained in this game.

While Equation 8.1 defines the outcome between two specified strategies, it does
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not define the universe of strategies we are to consider, leaving the game’s definition

incomplete. Clearly, the strategy space may be finite or infinite, countable or un-

countable; indeed, the intransitive numbers game can provide an impoverished form

of open-endedness, if desired. For our purposes, we define the strategy space to be

n-dimensional vectors of natural numbers, where each dimension spans the interval

[0, k]; this yields (k + 1)n distinct pure strategies.

8.6.2 Game Properties

The game defined above has a single Nash equilibrium strategy for all ε < k (ε = k

implies that all strategies tie each other, making them all Nash strategies—a partic-

ularly uninteresting game). The Nash strategy is the pure strategy with value k in

all n dimensions, i.e., 〈
n︷ ︸︸ ︷

k, . . . , k 〉. Of course, other definitions of the strategy space

may yield multiple Nash as well as mixed Nash strategies.

As with all Nash equilibria in symmetric zero-sum games, the Nash strategy of

our game does not lose to any other strategy. With ε = 1, the Nash ties only itself

and beats all others; thus, the Nash also dominates all other strategies. Here, the

solution concepts of Nash equilibrium and domination agree.

With ε = 0, however, the solution concepts point to very different outcomes. In

this case, the Nash additionally ties all strategies that have the value k in any dimen-

sion. (The strategies that tie the Nash are those on the surface of the n-dimensional

space. Thus, as n grows, the percentage of tieing strategies asymptotically approaches

100%, even though the number of losing (i.e., interior) strategies grows exponentially.

Nevertheless, for k = 100 and n = 10, the percentage of tieing strategies is still < 10%.

Thus, concern over the asymptotic growth of tieing strategies must keep in mind the

values of k and n.)
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Figure 8.2: Intransitive numbers game on open plane. Top: Calculation of winning
strategy in pair-wise interaction between Strategies A and B. Middle: Regions where
an opponent will win and lose against Strategy B; Strategy A is in winning region.
Bottom: Strategy C creates an intransitive cycle with Strategies A and B; Strategy
C may be located anywhere in colored region and create this intransitivity.
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Thus, setting ε = 0 introduces additional ways in which a tie may occur between

strategies. In particular, the Nash now ties strategies that others can beat; for exam-

ple, in two dimensions, 〈k, k〉 (the Nash) ties both 〈k, k−1〉 and 〈k−2, k〉, yet 〈k−2, k〉

beats 〈k, k− 1〉. Therefore, for a non-Nash strategy to transform itself into the Nash,

it may be required to discard certain skills—the ability to beat certain strategies; the

goal of security is not always served by mere accumulation of prowess against oppo-

nents. Due to these additional ties, virtually no strategy is dominated; those that are

dominated are done so by the Nash. With n = 2, only four strategies are dominated,

regardless of the value of k: 〈0, 0〉, 〈k−1, k〉, 〈k, k−1〉, and 〈k−1, k−1〉. With n > 2,

the number of dominated strategies is only one (strategy 〈0, 0, . . . , 0〉). Finally, with

either value of epsilon, the Nash strategy is the pure strategy with the most wins

(though, this is not a general feature of Nash equilibrium strategies).

8.7 Experiments

Rather than simply compare the performance of a coevolutionary algorithm with and

without the aid of our memory mechanism, we wish instead to probe the ability of

the memory mechanism to discover mixed strategies that provide greater and greater

security. To accomplish this, we use N as a quasi-static evaluation function against

which we repeatedly evolve a population of strategies.

8.7.1 Methods

The following procedure essentially transforms a co-evolutionary domain into an evo-

lutionary domain. We use the game defined in Section 8.6.1 with ε = 0, k = 100,

and n = 2. We represent an individual pure strategy for this game with a bit-string

b of length 200, such that the expressed strategy is 〈
∑99

i=0 bi,
∑199

i=100 bi〉. The only
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variation operator we apply is bit-wise mutation with a per-bit mutation probability

of 0.01; recombinational operators are not used. We construct a random strategy by

setting each of the 200 bits to one with a probability of 0.5; this yields an expected

strategy of 〈50, 50〉. The memory’s capacity is c = 100.

The evolution proceeds in epochs, as follows:

0. Initialize memory and update with a random strategy.

1. Initialize population (of size 100) with random strategies.

2. Evolve population against N for 30 generations (one epoch).

3. If highest-scoring individual ŝ in population beats N , then update memory

with ŝ.

4. Goto Step 1.

Each generation in Step 2 proceeds as follows:

a. Evaluate each individual (pure strategy) s in the population against N (the

score wi obtained by each individual i is in the range [−1, 1]).

b. The fitness of individual i is fi = wi−min(w) + 0.1 (all fitness values are > 0).

c. Copy the 10 most-fit individuals to next generation (elitism).

d. Fill the remaining 90 positions with offspring using “fitness-proportionate” se-

lection and asexual reproduction.

8.7.2 Results: Nash Memory

Figure 8.3 (Left) shows the mean and median scores obtained by the most fit individ-

ual ŝ at the end of each epoch over 52 trials of our experiment. At the beginning of the
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experiment, the evolution step (Step 2, above) easily finds pure strategies that obtain

the maximal score of 1.0 when played against the Nash memory’s mixture N . Over

the next 50 epochs, however, the ability of evolution to discover pure strategies that

score well against N is gradually neutralized as the memory mechanism integrates

knowledge gained from previous epochs. Indeed, over subsequent epochs, the median

score obtained by evolution asymptotically approaches zero, which is the value of the

intransitive numbers game (and zero-sum games, in general—see Section 8.2, above).

The mean score, however, actually becomes negative; thus, the distribution is not

normal. This indicates that N tends to be somewhat superior to the strategies that

evolution is able to discover. Over the course of an experiment, the number of pure

strategies in support of N tends to grow. The mean size of C(N ) at Epoch 500 is

about 45, though the distribution is not normal (median is 50).
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Figure 8.3: Performance of evolution over time against (Left) Nash memory, over 52
trials, and (Right) BOG memory (m = ∞, l = 100), over 54 trials.

Figures 8.4 and 8.5 shows the behavior of a typical trial. (For convenience, N i

will denote the value of N at the beginning of the i-th epoch, similarly for Mi.) The

memory’s strategy N 1 is initialized to the pure strategy 〈53, 41〉 (indicated by the

square in Figure 8.5). The evolution step (Step 2, above) easily finds a pure strategy
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〈55, 47〉 that beats N 1. Accordingly, we update the memory such that N 2 is 〈55, 47〉,

and move 〈53, 41〉 to the memory set M2.

In Epoch 2, the evolution step discovers the pure strategy 〈48, 52〉, which beatsN 2.

Since M2 contains something, we must evaluate the performance of 〈48, 52〉 against

the contents of M2 before we can determine N 3. Though 〈48, 52〉 beats 〈55, 47〉, we

find that it loses to 〈53, 41〉 (the strategy in M2). Thus, we find an intransitive cycle;

indeed, this intransitivity is symmetric (as in the Rock-Scissors-Paper game), so no

one pure strategy can be argued to be any better than another (in any sense). This

is not to say that the three strategies are interchangeable, however, for each one has

unique strengths and weaknesses with respect to the other two. Since none of these

pure strategies has an empty vulnerability set (see Section 8.3, above), N 3 must be a

mixture of some kind. The solution (found with linear programming) happens to be

a mixed strategy where each of the pure strategies is played with equal probability;

N 3 has all three strategies in support and M3 is empty.

By the time we arrive at N 20, eleven strategies are in support. In this epoch,

evolution discovers pure strategy 〈66, 65〉 (triangle in Figure 8.5), which beats each of

the eleven support strategies. Further, because N 21 = {〈66, 65〉}, we can infer that

〈66, 65〉 is also secure against the contents of M20. The strategy N 21 is sufficiently

good that the evolution step obtains the worst possible score (−1) over the next few

epochs. Later, we encounter a similar, but more pronounced, situation where N 62 is

the pure strategy 〈72, 71〉 (‘x’ in Figure 8.5). This strategy remains until Epoch 136,

where it is replaced by a mixture. The mixture N 500 (circles in Figure 8.5) retains

〈72, 71〉 in support.

Several other sample runs are shown in Figure 8.6.
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Figure 8.6: Sample runs using Nash memory mechanism. Runs 3, 5, 7, 12, 21, and
22.
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8.7.3 Results: Best of Generation

We also run our experiment using the best-of-generation memory mechanism with

m =∞, l = 100 (see Section 8.4, above). During evaluation, an evolving individual’s

score against the memory is the average score obtained against the strategies sampled

from the memory; the highest-scoring individual at the end of an epoch is added to

the memory if its score is greater than 0. We run 54 trials of this experiment, six of

which are shown in Figure 8.7; these graphs show the score obtained by the most fit

individual ŝ at the end of each epoch. We clearly see that random samples of memory

contents do not provide a sufficiently organized collection of opponents to effectively

broaden selection pressure.

Figure 8.3 (Right) shows the mean scores (with standard deviation) obtained by ŝ

over the 54 trials of this experiment; these data are normally distributed. The mean

score obtained by ŝ between epochs 250 and 500 is ≈ 0.375 (σ ≈ 0.160). In other

experiments where m = 100, l = 100 (not shown), the expected score of ŝ at steady-

state is ≈ 0.758 (σ ≈ 0.148). Thus, the organizing principle behind BOG provides

considerably less effective learning.

8.7.4 Results: Dominance Tournament

We next use the Dominance Tournament as our memory mechanism. The score given

to an evolving individual is the number of consecutive pure strategies, from the most

to least recently placed in the memory, that the individual beats. At the end of an

epoch, if any individuals exist that beat the entire contents of the memory, we ran-

domly select one such individual and place it in the memory. The DT method quickly

converges onto a pure strategy that cannot be dominated by any other with respect

to the memory’s contents. Because we only consider those strategies in the memory
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Figure 8.7: Sample runs using Hall of Fame memory mechanism. Runs 21, 22, 24,
36, 31, and 25.
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to determine dominance, and not the entire universe of strategies, false positives may

occur; indeed, all but four strategies in our game are actually non-dominated. Thus,

the strategy onto which we converge is highly path-dependent; particularly, we may

converge onto the dominated strategy 〈100, 99〉 (or 〈99, 100〉—see Section 8.6), after

which the memory will reject the Nash 〈100, 100〉, which dominates 〈100, 99〉 but

does not beat it. This situation is illustrated in Figure 8.8 (top). The small solid

circles represent a hypothetical set of strategies that are added sequentially to the

memory (moving diagonally to the top); each strategy in this sequence beats all other

strategies that come before it in the sequence. The sequence terminates with strat-

egy 〈n− 1, n〉 (represented by the hollow circle). This strategy is actually dominated

by the Nash strategy 〈n, n〉 (represented by the large shaded circle), yet we cannot

add the Nash strategy to the memory because it ties the dominated strategy rather

than beat it. Figure 8.8 (top and bottom) illustrates that the dominated strategy is

done so by the Nash with respect to the shaded regions of the n by n square. With

respect to these regions, the Nash does strictly better than the dominated strategy;

the two strategies obtain identical outcomes with respect to all other strategies in the

square. No strategy in the n by n square is capable of beating all of the strategies in

our sequence; thus, we converge onto a dominated strategy. Further, of all the pure

strategies onto which we may converge, only the Nash equilibrium strategy has an

empty vulnerability set; all the others are beatable.

8.7.5 Results: Bootstrapping with the Nash Memory

The results we report in Section 8.7.2 only show that the Nash memory is able to

learn a mixed strategy N that is secure against what the evolution step is likely to

discover, given the limitations we place on the evolution, such as the random initial
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population. In particular, the mixed strategies N obtained above are not the Nash

equilibrium for the numbers game.

Therefore, we create a new outer loop around the method described in Section

8.7.1 to explore the ability of the memory to constructively contribute genetic ma-

terial to the search process. When the evolution step is unable to score higher than

0.04 against N for 50 consecutive epochs, we change the procedure used to initialize

the population: A snapshot of N is taken and used to initialize populations in all

subsequent epochs (until our outer-loop criterion is met once again). Specifically,

the initial population contains the strategies in support of N in proportion to their

probabilities in the mixture distribution.

This new initialization process allows the evolution step to further challenge the

Nash memory. While we do not converge onto the precise Nash strategy for our game

(which is 〈100, 100〉), we do obtain a mixture N (with 123 pure strategies in support)

that virtually eliminates vulnerability to all strategies (N ’s worst score ≈ −0.05)

except the true Nash (N ’s score ≈ −0.323); the memory mechanism is poised to

accept the true Nash strategy, if search can find it. Thus, the solution N is an

excellent approximation to the true Nash strategy in behavior, though superficially

they appear nothing alike.

8.8 Conclusion

We examine the performance of three distinct memory mechanisms using Watson and

Pollack’s intransitive numbers game: Nash memory, Best-of-Generation, and Domi-

nance Tournament. We do not intend to argue that the BOG and DT mechanisms

cannot improve the performance of a coevolutionary algorithm; indeed, the BOG

approach is known to help, e.g. [175, 148]. We are more interested in the role of
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coevolutionary memory and its organization.

We show that the Nash memory improves its collection of traits, expressed as a

mixed strategy, as search exposes the memory to new traits. Over time, the mixed

strategy asymptotically approaches the performance of the Nash equilibrium strategy

for the numbers game, thus providing 1) an excellent approximation of the (game-

theoretic) solution, and 2) a gradually increasing challenge for evolving strategies. In

contrast, the BOG method exhibits only limited ability, when faced with pervasive in-

transitivity, to increasingly challenge evolution; lacking a strong organizing principle,

BOG does not converge to the Nash equilibrium. The DT method implements the

principle of domination, but only with respect to local knowledge; without the global

knowledge required to properly determine domination, the numbers game easily leads

the DT method astray.
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Chapter 9

Monotonic Solution Concepts

9.1 Introduction

In this chapter, we investigate how a coevolutionary algorithm may behave if it never

discards any information learned during its operation—all strategies discovered during

search are retained and utilized. As a general principle, the expected quality of

a solution returned by a search method should improve as the search method is

given more computational resources in time and/or space. More desirable still, if

we repeatedly query a search method (at “appropriate” points during its execution)

on any single run, then the quality of the solution returned by the method should

improve monotonically—that is, the quality of the solution at time t should be no

worse than the quality at time t− 1.

Given a coevolutionary algorithm that does not discard information during exe-

cution, can we expect it to meet the desideratum of monotonicity? On the one hand,

we may expect that it must, since the algorithm’s knowledge of the domain is ever

increasing; the accumulation of strategies makes the evaluation process increasingly

comprehensive and provides growing genetic diversity for the variation operators. On
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the other hand, we may remind ourselves that many of the problems associated with

coevolution arise because evaluation is never fully comprehensive, and therefore can

be misled when the domain contains intransitivities; new information may drastically

shift our perspective—how, then, can we guarantee that the solution will improve

monotonically with time?

This chapter shows that, when information is not discarded, a coevolutionary al-

gorithm may or may not behave monotonically, depending upon the solution concept

used by the algorithm. We develop a formal framework to discuss solution concepts

and monotonicity and show that certain solution concepts (Nash equilibrium) guar-

antee monotonicity and others (including that most commonly used in coevolution)

do not. The groundwork for this chapter is built in Chapter 2. Section 9.2 develops

the notion of the preference relation, which result from a solution concept; Section

9.3 presents the proofs that certain solution concepts are monotonic with respect to

the preference relation, while others are not; Sections 9.4 through 9.6 provide addi-

tional results that compare and contrast different solution concepts; finally, Section

9.7 discusses the relevance of the monotonicity results to open-ended domains.

9.2 Properties of Preference Relation

In Chapter 2, we define a preference relation (Definition 1) in which we prefer one

configuration Kα over another configuration Kβ if an only if every game for which Kβ

is a solution is a subgame of a game for which Kα is a solution. For convenience, we

reproduce Definition 1 here.

Definition 7 (Preference Relation) Pref(Kα,Kβ) = 1 iff for all Tβ, where Tβ ⊆

T and Kβ ∈ S∗(Tβ ,O), there exists Tα, where Tα ⊆ T and Kα ∈ S∗(Tα,O), such

that Tα ⊃ Tβ.
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9.2.1 Reflexivity, Symmetry, and Transitivity

The preference relation is not reflexive—we will never prefer a configuration to itself:

Pref(Kα,Kα) = 0. Non-reflexivity follows from the definition of the preference rela-

tion; given the set of games Gα in which Kα is a solution, there must exist at least

one game G ∈ Gα that does not have a superset in Gα.

The preference relation is not symmetric—if we prefer one configuration to an-

other, then the converse is not true: Pref(Kα,Kβ) = 1 =⇒ Pref(Kβ ,Kα) = 0.

Non-symmetry also follows from the definition of the preference relation. Let Gα be

the set of games where configuration Kα is a solution and Gβ be the set of games

where Kβ is a solution. Since we prefer Kα to Kβ, each game in Gβ is a subgame of

some game in Gα. If we simultaneously prefer Kβ to Kα, then each game in Gα must

also be a subgame of some game in Gβ; but, for this to be true, we must allow for an

intransitivity in the subset relation.

While the preference relation is neither reflexive nor symmetric, it is transitive—if

we prefer configuration Kα to Kβ, and prefer Kβ to Kγ, then we prefer Kα to Kγ.

The transitivity of the preference relation follows directly from the transitivity of the

subset relation, as Figure 9.1 illustrates. Since each game in Gγ is a subset of some

game in Gβ, and each game in Gβ is a subset of some game in Gα, then each game in

Gγ must also be a subset of some game in Gα.

Thus, the preference relation yields a partial ordering over the space of configura-

tions.

9.2.2 Monotonicity

Let Gx be the set of games for which Kx is a solution and Gy the set of games for which

Ky is a solution. The preference relation given by Definition 7 says that we prefer
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⊇
⊇

Figure 9.1: Transitivity of preference relation follows from transitivity of superset
relation. Directed edge indicates superset relation between two games.

Kx to another configuration Ky if and only if every game in Gy is a subgame of some

game in Gx. Of course, not every game in Gx must be a supergame; in particular,

the preference relation allows the existence of a game in Gx that is a subgame of a

game in Gy, as shown in Figure 9.2. Here, we prefer Kx to Ky, yet game E ∈ GX is a

subgame of game D ∈ Gy.

When a configuration K is a solution for games α and β, where α ⊃ β, but not for

some game γ, where α ⊃ γ ⊃ β, then we call the solution concept O non-monotonic.

We define a monotonic solution concept to be one such that every configuration K

that is a solution to games α and β, where α ⊇ β, will also be a solution to any game

γ, where α ⊇ γ ⊇ β. The solution concept in Figure 9.2 is therefore non-monotonic

and the relationship between game-sets Gx and Gy is an instance of non-monotonicity.

9.2.3 State of Knowledge

The game strategies that 1) have been discovered by a search heuristic and 2) are

still in the computer’s memory, such that they can be utilized by the heuristic, are

defined as the heuristic’s state of knowledge. We denote the state of knowledge at
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Figure 9.2: Non-monotonic solution concept.

time t as Wt. At any time-step t that is appropriate to query the search heuristic, the

configuration Kw returned by the heuristic should be a solution to the game defined

by Wt. Otherwise, the heuristic does not implement the solution concept O. Note

that all strategies included in configuration Kw must also be in Wt—we cannot use

strategies of which we lack knowledge.

9.2.4 Dynamics of Non-Monotonic Solution Concepts

For any solution concept, the preference relation provides a global partial ordering of

configurations. If the solution concept is non-monotonic, however, the process of local

search—even when it does not discard any information discovered during search—may

be unable to conform to the preference relation and will contradict it. For example,

let us return to Figure 9.2. If the game E ∈ Gx is our state of knowledge at time t

(i.e.,Wt = E), then the solution returned by the search heuristic when queried is Kx.

Let us say that at time t + 1, the heuristic discovers new strategies and our state of

knowledge is expanded to include these additional strategies such that our new state

of knowledge is game D. Since D �∈ Gx and D ∈ Gy, our solution is now Ky. We thus
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appear to have run counter to our preference relation, which says that we prefer Kx

to Ky.

9.2.5 Dynamics of Monotonic Solution Concepts

The definition of a monotonic solution concept guarantees that local search, when it

does not discard information, will always conform to the preference relation. To show

this must be the case, let us imagine two states of knowledge, Wt and Wt+k, where

Wt ⊂ Wt+k and k ≥ 1. Further, let us say that the solution for Wt is Kx and for

Wt+k is Ky. Now, if the solution concept if monotonic, then we cannot prefer Kx to

Ky. If we prefer Kx to Ky, then there must exist some game G that is a superset of

Wt+k for which Kx is a solution. But, if Kx is a solution of both games Wt and G,

and Wt ⊂ Wt+k ⊂ G, then either Kx must also be a solution to Wt+k (in which case

we do not transition to Ky) or the solution concept is not monotonic.

We can construct a directed graph of the preference relation where each vertex

is a configuration and for each pair of configurations Kx and Ky, where we prefer

Kx to Ky, there is a directed edge from Kx to Ky. If local search does not discard

information, then the property of monotonicity means that once we visit a vertex

on the graph, we will never follow an edge leading back to that vertex or to any of

its descendants in the graph. Thus, a monotonic solution concept means that the

quality of the result returned by a search heuristic (assuming that it does not discard

information) will also increase monotonically over time; this is not guaranteed to be

true for a non-monotonic solution concept, even when information is never discarded.
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9.3 Solution Concepts

Having discussed the properties of monotonic and non-monotonic solution concepts

in general, we now investigate some specific solution concepts. We show that Nash

equilibrium is monotonic, non-domination is monotonic if it is implemented in a

specific way, and the “best scoring” solution concept commonly used in coevolutionary

algorithms is not monotonic.

9.3.1 Nash Equilibrium

Nash equilibrium is a monotonic solution concept in zero-sum games. Our proof is

by contradiction. Let us assume that the Nash equilibrium concept is not monotonic.

Figure 9.3 shows our canonical non-monotonic solution concept (reproduced from

Figure 9.2 for convenience). We prefer configuration Kx to configuration Ky. From

the definition of Nash equilibrium, we know that if Kx is secure against the strategies

in game A, then it must also be secure against any subset of A; in particular, Kx must

be secure against game D. But, for Kx to be a solution for state of knowledge D, the

contents of Kx must be included in D—no solution can include strategies outside of

our state of knowledge. Because the strategies in Kx are in game E, they must also

be present in D (and C). Therefore, configuration Kx must be a solution for game

D, as well, in contradiction to what Figure 9.3 indicates. Thus, the Nash solution

concept must be monotonic. (To extend this proof to symmetric variable-sum games,

we merely substitute the criterion of security with best-response; that is, a strategy

is Nash with respect to some set of strategies if no strategy in the set is a better

response to the strategy than the strategy itself.) �
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Figure 9.3: A non-monotonic solution concept.

9.3.2 Non-Dominated Front

Another solution concept is that of the non-dominated front. Whether this concept is

monotonic or not depends upon a particular aspect of its implementation; specifically,

if we allow a newly-discovered strategy to join the non-dominated front, when it

appears identical to strategies already on the front, then non-monotonicities may

result. Therefore, disallowing strategies that appear identical to those on the front

is sufficient to guarantee that the solution concept is monotonic. The proof below is

rather more involved than that for Nash equilibrium above, so we first review some

properties of the non-domination solution concept and establish some notation.

Properties Let us first recall some properties of the non-domination concept. To

establish that two strategies α and β mutually non-dominate each other, we need

only two dimensions of comparison, one in which is α is superior to β and another

in which β is superior to α. Nevertheless, we might not have knowledge of these

dimensions that prove mutual non-dominance between the strategies. If α and β in

fact mutually non-dominate, but we lack knowledge of all dimensions that distinguish
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their performance, then α and β will appear identical; if we have dimensions in which

β out-performs α, but lack knowledge of dimensions in which α outperforms β, then

α will appear dominated by β.

To definitively establish that one strategy α dominates another β, we need to

demonstrate that α is no worse than β in all dimensions of comparison, and strictly

better in at least one. If α dominates β, but we lack knowledge of any dimension in

which α is superior to β, then the two strategies will appear identical, and therefore

(trivially) mutually non-dominating. In general, as more dimensions of behavior are

used to compare two strategies, the apparent relation between the strategies, if it

changes at all, can only progress from identical to dominated or from dominated

to mutually non-dominating. Figure 9.4 illustrates this process as a deterministic

three-state automaton.

≡ � ≈

Figure 9.4: Allowable state transitions in relation between two strategies as new
dimensions of behavior are discovered.

Notation Table 9.1 summarizes our notation for the non-domination solution con-

cept. All of the relations shown below are implicitly understood to exist with respect

to some set of dimensions of comparison. For example, it may be that α dominates β

with respect to the set of dimensionsR (denoted α
R
� β), but mutually non-dominates

with respect to a different set of dimensions S (denoted α
S≈ β). As another exam-

ple, α may appear identical to β given a set of dimensions R (denoted α
R≡ β), but

appear dominated with respect to another set of dimensions S. Finally, if α and β

appear identical with respect to the entire universe of strategies U , then they in fact
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have equal payoff profiles; that is, α
U≡ β ⇐⇒ α = β. (Of course, in an open-ended

domain, we can never firmly establish equality between two strategies; we may yet

discover a dimension of behavior that distinguishes them.)

Notation Meaning
α = β α and β in fact have identical payoff profiles

α
R≡ β α and β appear identical, given the dimensions used for comparison

α
R
� β α dominates β with respect to R

α
R≈ β α and β mutually non-dominate each other with respect to R

(which implies α
S≈ β for any S ⊃ R)

Table 9.1: Notation for non-domination solution concept.

Theorem and Proof We are now ready to state and prove the following theorem.

Theorem 1 (Non-Monotonicity of Non-Domination) Let us prefer configura-

tion Kx to Ky. A non-monotonic transition from configuration Kx to Ky implies that

at least one of the configurations contains a strategy that appears identical to another

strategy in the configuration, given its state of knowledge.

Figure 9.5 shows a non-monotonic transition from Kx to Ky. Configuration Kx is

a solution to games A and C , but not B, for which configuration Ky is a solution.

Further, A is a superset of B, which is a superset of C . Since all games in Ky are

subsets of some game in Kx, we prefer Kx to Ky. Our preliminary observations are

as follows: Games A and C must contain Kx, since Kx is a solution to those games;

similarly, game B must contain Ky. Because of the superset relationship between the

games, we also know that B must contain Kx, and A must contain Ky. We can thus

re-write the games as follows:
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C = X ∪ α (9.1)

B = X ∪ α ∪ Y ∪ β (9.2)

A = X ∪ α ∪ Y ∪ β ∪ γ (9.3)

where X and Y are the strategies in Kx and Ky, respectively, and α, β, and γ are

additional strategies that may be in the games but are not part of any solution (and

are therefore dominated by one or both of Kx and Ky).

Subgames where
Kx is a solution

Subgames where
Ky is a solution

A

B
C

Gx Gy

⊂

⊃

Figure 9.5: Monotonicity of Non-Domination.

As a next step, we must account for the fact that we do not know the relationship

between the two configurations—for example, do they have an empty intersection or

not? Is one a subset of the other? Therefore, we re-write X and Y to be X = x ∪ z

and Y = y ∪ z, respectively; the set z represents the intersection (if any) between X

and Y , and x and y represent those elements (if any) that are unique to X and Y ,

respectively. Our equations are now:
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Solution Game

Kx = x ∪ z C = x ∪ z ∪ α (9.4)

Ky = y ∪ z B = x ∪ z ∪ α ∪ y ∪ β (9.5)

Kx = x ∪ z A = x ∪ z ∪ α ∪ y ∪ β ∪ γ (9.6)

No more that one of x, y, and z may be an empty set. If x = ∅ and y = ∅, then

the two configurations Kx and Ky must be identical, which by definition they cannot

be. If x = ∅ and z = ∅, then Kx contains no strategies, which also cannot be the case

(similarly for Ky). Four possible cases remain, as summarized in Table 9.2.

Case Property Notes
1 x �= ∅, z �= ∅, y �= ∅ Non-empty intersection and each

configuration contains unique strategies
2 x = ∅ Kx is a proper subset of Ky

3 y = ∅ Kx is a proper superset of Ky

4 z = ∅ Empty intersection and each
configuration contains unique strategies

Table 9.2: Four possible relationships between Kx and Ky.

Case 1 The reasoning we follow to prove the theorem in Case 1 is shown in Figure

9.6. We assume that x, y, and z are non-empty. In game B, x is dominated. There-

fore, for each element xi ∈ x there exists an element in one or both of z and y that

dominates xi. We are free to assume either that yj ∈ y dominates xi in game B or

that yj and xi are mutually non-dominating; that is, either yj

B
� xi or yj

B≈ xi. (We

note that yj cannot appear identical to xi in game B because yj cannot simultane-

ously be non-dominated and appear identical to a dominated strategy.) Regardless

of the relationships between the elements of y and x in game B, the only possible
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relationship between y and x in game A = B ∪ γ is one of mutual non-domination,

since x is non-dominated in game A. That is, y
B∪γ
≈ x. Therefore, the only way for y

to be dominated in game A is to be dominated by z; that is, y
B∪γ
≺ z. This implies

that every element in y must appear identical to some element in z in game B—there

is no other way for the elements of y to avoid domination in game B yet become

dominated when we introduce the additional strategies of γ in game A. Thus, we

prove the theorem for Case 1: Configuration Ky contains strategies that appear iden-

tical to each other in the state of knowledge B, to which we make a non-monotonic

transition.

y  ≡ z
B

Requirement

yj  ≈ xi
B

yj  � xi
B OR

y  ≈ x
B ∪ γ

y  ≺ z
B ∪ γ

y ∪ z is front in B

Requirement

x ∪ z is front in A

Requirement

y is dominated in A

Figure 9.6: Proof of theorem for Case 1, where x �= ∅, z �= ∅, y �= ∅.
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Case 2 Here we assume that x = ∅; this implies that configuration Kx is a proper

subset ofKy. If the elements in y are not dominated in game B, but become dominated

in game A = B∪γ, where only z is non-dominated, then the following must be true. In

game A, for each element in y there must exist an element in z that dominates it, that

is, y
A
≺ z. This implies that each element of y must appear identical to some element

in z in game B; as we state above, there is no other way for the elements of y to

avoid domination in game B yet become dominated when we introduce the additional

strategies of γ in game A. Thus, we prove the theorem for Case 2: Configuration Ky

again contains strategies that appear identical to each other in the state of knowledge

B, to which we make a non-monotonic transition.

Case 3 Here we assume that y = ∅; this implies that configuration Kx is a proper

superset of Ky. Our argument is essential identical to that presented for Case 2. If

the elements in x are not dominated in game C , but become dominated in game B,

then the following must be true. In game B, for each element in x there must exist

an element in z that dominates it, that is, z
B
� x. This implies that each element of

x must appear identical to some element in z in game C ; there is no other way for

the elements of x to avoid domination in game C yet become dominated when we

introduce the additional strategies of β in game B. Thus, we prove the theorem for

Case 3: This time, configuration Kx contains strategies that appear identical to each

other in the state of knowledge A, from which we make a non-monotonic transition.

Case 4 We assume that z is empty. Thus, in game B, for each element in x there

must exist some element in y that dominates it: y
B
� x. But, when the dimensions γ

are added in game A, the set x is to become non-dominated and y is to become

dominated. Since z is empty, the only non-dominated strategies that remain to

236



dominate y are in x; but, the strategies in x can at best mutually non-dominate

those in y, for y
B
� x =⇒ ¬(x

B∪γ
� y). Thus, z cannot be empty and we can discard

Case 4. �

Corollary Theorem 1 states that, for the non-domination solution concept, non-

monotonicity implies a configuration that contains strategies that appear identical to

each other. The following corollary follows immediately from the theorem.

Corollary 1 (Guarantee of Monotonicity) Assume a state of knowledge Wt for

which configuration K is a solution; further, assume that no strategy in K appears

identical to any other strategy in K with respect to Wt. Given a new state of knowl-

edge Wt+1 = Wt ∪ Q, the prohibition of non-dominated strategies in Q that appear

identical to strategies in K that are non-dominated with respect to Wt+1 is necessary

and sufficient to guarantee the monotonicity of the non-domination solution concept.

This corollary is an actionable result for coevolutionary algorithm design if the

non-domination concept is to be used.

Digression: An Additional Proof In game B, x is dominated. Assuming that

x, y, and z are non-empty, we can prove that for every element in x there must exist

an element in z that dominates it. The reasoning of this proof is outlined in Figure

9.7. Our proof is by contradiction, so we assume that there exists some element

xi ∈ x that is not dominated by any member of z; specifically, xi must mutually non-

dominate every element in z (xi cannot appear identical to any element in z because x

is dominated whereas z is not). The implication of z
B≈ xi is that some element yj ∈ y

must dominate xi in game B. Since both y and z are on the front in game B, the

strategy yj must either mutually non-dominate each strategy in z (yj
B≈ z) or appear

identical to some strategy zh (yj
B≡ zh). If there exists some zh that appears identical
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to yj, then we have a contradiction because yj cannot simultaneously dominate xi

and appear identical to a strategy in z that we have already assumed must mutually

non-dominate xi. Therefore, yj must mutually non-dominate each element in z.

When we move to game A = B ∪ γ, the non-dominated front is now x ∪ z.

In particular, the strategies in y are now dominated. Because yj dominates xi in

game B, the only possible relationship between yj and xi in game A is mutual non-

domination (xi cannot dominate yj). Further, since yj is mutually non-dominated

with each strategy in z in game B, strategy yj must remain mutually non-dominated

with z in game A. Since no strategy in z dominates yj, nor does xi, then yj must

be dominated by some other strategy xk ∈ x. For yj to be dominated by xk in

game A, however, strategy yj must appear identical to xk in game B (yj can neither

dominate nor mutually non-dominate xk in game B). If yj
B≡ xk, then we have a

contradiction because yj cannot simultaneously be on the non-dominated front of

game B and appear identical to another strategy that must be dominated in game

B. Therefore, there cannot exist a strategy xi that mutually non-dominates every

element in z, and so for every element in x there must exist some element in z that

dominates it. Further, for any zh that dominates xi in game B, strategy zh must

mutually non-dominate xi in game A. �

9.3.3 Best-Scoring Strategy

We can imagine another solution concept that simply picks the strategy ŝ from a

set of unique strategies S that obtains the highest average score from interaction

with each member of S. This solution concept is similar to that typically used in

coevolution—namely, pick the individual that obtains the highest score after interac-

tion with the entire population. The essential difference is that we assume S not to
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AssumptionRequirement

z  ≈ xi
B

yj  ≡ zh
B

yj  ≈ z
B

Requirement

yj  � xi
B OR

Requirement

x ∪ z is front in A

yj  ≈ xi
B ∪ γ

yj  ≈ z
B ∪ γ

Requirement

y dominated in A

yj  ≺ xk
B ∪ γ

yj  ≡ xk

B 

Contradiction

x dominated in B

Contradiction

y ∪ z is front in B

Figure 9.7: Proof by contradiction that each element in x is dominated by some
element in z.
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contain duplicates, and therefore the choice of ŝ does not depend upon the frequency

with which difference strategies might appear; in standard coevolution, of course,

frequency-dependent effects exist.

We will call our alternative solution concept best-scoring strategy (BSS). Here we

show that BSS is a non-monotonic solution concept. Our proof is by contradiction,

so let us assume that BSS is monotonic. If BSS is monotonic, then by definition a

configuration Kx that is a solution to games A and C , where A ⊇ C , must also be

a solution to any game B, where A ⊇ B ⊇ C . Let us consider a simple symmetric

zero-sum game G. We can imagine the following sub-games of G:

C = c ∪ {x, y} (9.7)

B = C ∪ b (9.8)

A = B ∪ a (9.9)

where x and y are individual strategies, and a, b, c, A, B, C are sets. Figure 9.8

illustrates our example as a payoff matrix (‘*’ indicates that any sub-matrix can be

used).

Let us say that x and y tie each other; further, x beats everyone in c and a, but

loses to everyone in b, whereas y beats everyone in b, but loses to everyone in c and a.

Also, let us say that members of c tie against members of b and a, and members of b

tie against members of a. Certainly, x is the solution to game C , and for x to be the

solution to game A we need merely make |a|+ |c| > |b|. Now, if BSS is a monotonic

solution concept, then from the preceding should immediately follow that x is also

a solution to game B. But, if the cardinality of b is greater than that of c, then x

cannot be the solution to game B; instead, we find that y is the solution. Thus, our
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*

Figure 9.8: Game of Equations 9.7–9.8 as a payoff matrix.

assumption that BSS is monotonic is contradicted. �

The BSS solution concept is free of frequency-dependent effects, yet is still non-

monotonic; thus, we can easily see that the standard coevolutionary solution con-

cept of “best in the ecology” (BITE)—which is frequency-dependent—is also non-

monotonic. The non-monotonicity of BSS and BITE is certainly consistent with the

red-queen effect [197] and with the common sentiment that objective metrics of good-

ness are difficult to obtain for coevolutionary domains. In an effort to grasp the source

of this difficulty, Luke and Wiegand [131] approach this issue from the point of view

of the game, discussing properties that give a game an objective measure. In contrast,

the work we present here shifts the focus of attention away from the game and to

the solution concept; “monotonicity,” which must exist in one sense or another if we

are to have an objective metric of goodness, reveals that difficulty in obtaining an

objective metric of performance can be due, in no small part, to the solution concept

itself.
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9.4 Empirical Results

Here we compare three solution concepts, Nash equilibrium, non-domination (non-

monotonic version), and best-scoring strategy, by empirical results. Equation 9.10

shows a five-strategy, symmetric zero-sum game. Figure 9.9 shows the graph of the

preference relation generated by this game using Nash equilibrium as the solution

concept. Each “vertex” shows a configuration in bold and below it a list of games

(each line is a separate game) for which the configuration is a solution. A directed edge

that connects two vertices indicates the preference relation. For example, we prefer

configuration {bde} to configuration {ce}—each game for which {ce} is a solution is

a sub-game of some game for which {bde} is a solution. Since the preference relation

is transitive, we also prefer {bde} to {e}, for example. The depth of a preference

graph is the length of the longest (directed) path between any two vertices. Since the

preference relation is transitive, this path must be between a vertex with in-degree of

zero and another vertex with out-degree zero.

Figure 9.10 shows the preference relation graph generated by the same game except

now we use non-domination as the solution concept. There are several points to

notice. Most noticeably, Figure 9.10 has many more configurations than Figure 9.9—

17 instead of 8. Also, the depth of the graph in Figure 9.10 is greater—four instead

of three. The version of non-domination we use for this graph is non-monotonic, and

indeed we see non-monotonic transitions from configuration {ad} to configuration

{d}; specifically, game {ad} (for which {ad} is the solution) is a supergame of {d}

(for which {d} is the solution), and game {acd} is a supergame of games {d} and {cd}.
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G =

a b c d e

a 0 0 1 0 −1

b 0 0 −1 −1 1

c −1 1 0 −1 0

d 0 1 1 0 −1

e 1 −1 0 1 0

(9.10)

Statistical Properties Above, we examine how two solution concepts, Nash equi-

librium and non-dominated front (non-monotonic version), yield different preference

relation graphs for the same game. Here, we generate 100 random seven-strategy and

nine-strategy games each, and measure the number of configurations and the depth

of the preference graph for each game for each of the three solution concepts we

discuss above (Nash equilibrium, non-dominated front (non-monotonic version), and

best-scoring strategy). Our random games are symmetric zero-sum games where each

entry in the upper triangle of the payoff matrix is a 0, 1, or -1 with probability 1/3.

Tables 9.3 and 9.4 summarize our results for the seven-strategy and nine-strategy

games, respectively.

For both game sizes, the average number of configurations and average graph

depth generated by a game is smallest when using the Nash solution concept and

largest when using the non-dominated front, with best-scoring strategy in between;

the data are normally distributed and all differences in average value are significant

(0.01 significance level using paired Student’s t-test). Further, the gaps between

average values is much larger for nine-strategy games than for seven-strategy games,

which suggests very large gaps for realistic games; of course, the number of possible

subgames grows exponentially in the number of strategies, and so we should not be
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Figure 9.9: Preference diagram for game using Nash equilibrium.
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Figure 9.10: Preference diagram for game using non-domination.
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#Configurations Correlation Paired t-test value
Concept mean std nash score front nash score front

Nash 16.25 2.64 1.00 0.46 0.63 n/a 18.56 27.67
Score 23.40 4.25 0.46 1.00 0.65 18.56 n/a 19.95
Front 37.60 9.10 0.63 0.65 1.00 27.67 19.95 n/a

Graph Depth Correlation Paired t-test value
Concept mean std nash score front nash score front

Nash 4.93 0.61 1.00 -0.04 -0.19 n/a 13.74 16.68
Score 6.19 0.66 -0.04 1.00 0.33 13.74 n/a 3.00
Front 6.40 0.53 -0.19 0.33 1.00 16.68 3.00 n/a

Table 9.3: Summary statistics for random games of seven strategies. Top: Number
of configurations. Bottom: Preference graph depth.

#Configurations Correlation Paired t-test value
Concept mean std nash score front nash score front

Nash 33.12 6.35 1.00 0.77 0.79 n/a 28.61 29.84
Score 53.33 10.69 0.77 1.00 0.82 28.61 n/a 25.95
Front 122.69 34.75 0.79 0.82 1.00 29.84 25.95 n/a

Graph Depth Correlation Paired t-test value
Concept mean std nash score front nash score front

Nash 5.89 0.63 1.00 0.09 -0.06 n/a 17.77 28.00
Score 7.55 0.74 0.09 1.00 0.30 17.77 n/a 8.59
Front 8.20 0.49 -0.06 0.30 1.00 28.00 8.59 n/a

Table 9.4: Summary statistics for random games of nine strategies. Top: Number of
configurations. Bottom: Preference graph depth.

surprised to find rapid growth in the number of configurations. Nevertheless, the Nash

solution concept yields considerably fewer configurations to cover the same number

of subgames, and so we may regard Nash configurations as more robust in this sense.

Figures 9.11 and 9.12 show the individual data points that are summarized in

Tables 9.3 and 9.4, respectively. We sort the 100 games according to the number

of configurations obtained from the Nash solution concept; each vertical triple of

data points corresponds to data obtained from the different solution concepts for the

same game. In this way, we can visualize the degree of correlation between the Nash

concept and the other two. The figures clearly indicate the consistency with which
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the Nash concept generates the fewest configurations (and the non-dominated front

the most) for each game; indeed, of the 200 games in these figures, there is only one

instance—game 64 in Figure 9.11—where the non-dominated front does not generate

the most configurations (the best-scoring concept does). We find more variability in

the graph-depth data; in game 34 of Figure 9.11 the best-scoring concept creates the

most shallow graph (Nash and non-dominated front tie for deepest graph).
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Figure 9.11: Graph depth and number of configurations of 100 random seven-strategy
games.
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Figure 9.12: Graph depth and number of configurations of 100 random nine-strategy
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9.5 Pathological Games

We show above that the non-domination solution concept is non-monotonic when

identical-appearing strategies are allowed on the front. In this section, we show

one way to construct games that highlight the non-monotonicity obtained with non-

domination. Figure 9.13 illustrates the construction of such a game. We build a

symmetric zero-sum game as that has 2k strategies. We divide the game into four

sub-games, corresponding to the four sub-matrices indicated in the figure. Strategies

s1 through sk are defined to tie each other, thus the entries of the upper left sub-

matrix are all zero. The sub-game concerning strategies sk+1 through s2k (lower

right sub-matrix) may be any arbitrary zero-sum game, hence the “*” notation. The

upper right sub-matrix records the scores obtained by strategies s1 through sk against

strategies sk+1 through s2k. For each strategy si=1...k, we assign a unique combination

of wins against strategies sk+1 through s2k. For example, we can pick k of the


 k

2




(k choose 2) two-win combinations and assign them to the k strategies s1 through sk.

Finally, the lower left sub-matrix is the negative of the transpose of the upper right

sub-matrix, which is required to make G a proper symmetric zero-sum game.

Given any two strategies si and sj , where i, j = 1 . . . k, we will be unable to dis-

tinguish them without one of the four strategies (of sk+1 through s2k) that they beat

being in our state of knowledge W. Indeed, the game we construct above has many

such pairs, which is what allows the non-monotonic property of non-domination to

become acute. Equation 9.11 shows an example ten-strategy game built according

to the method shown above. This game has 133 configurations, 65 of which—nearly

half—have non-monotonic transitions. Further, many of these non-monotonic tran-

sitions lead to configurations that also have non-monotonic transitions. Figure 9.14
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Figure 9.13: Construction of a game that highlights non-monotonicity of non-
domination solution concept.

shows how many consecutive non-monotonic transitions are possible from each con-

figuration. For our example game, there are two configurations (numbers 16 and 120)

from which 23 consecutive non-monotonic transitions can be made. Thus, there exist

sequences of states of knowledge, where each subsequent state is a proper superset of

the previous one, that will nevertheless lead us to worse solutions over time.
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G =

a b c d e f g h i j

a 0 0 0 0 0 1 1 0 0 0

b 0 0 0 0 0 1 0 1 0 0

c 0 0 0 0 0 1 0 0 1 0

d 0 0 0 0 0 1 0 0 0 1

e 0 0 0 0 0 0 1 1 0 0

f −1 −1 −1 −1 0 0 0 1 −1 0

g −1 0 0 0 −1 0 0 1 −1 −1

h 0 −1 0 0 −1 −1 −1 0 −1 −1

i 0 0 −1 0 0 1 1 1 0 0

j 0 0 0 −1 0 0 1 1 0 0

(9.11)

9.6 Granularity of Gradient

A configuration K can be used as a static evaluation function for the evolution of

strategies; all the strategies in the evolving population interact with K, and the

outcomes combined with the solution concept will provide some number of levels

of fitness differential, or gradient, upon which selection can act. The question we

investigate here concerns the amount of fitness differential that a solution concept can

provide; the more levels of fitness that can be expressed by a solution concept, the

more fine-grain the gradient. While evolution cannot operate without gradient, the

“best” fitness granularity is likely to be a problem and substrate-dependent quantity.

We content ourselves here with simply demonstrating that different solution concepts

can have different granularity of gradient.

Our examination proceeds in the context of zero-sum games and in the absence
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of fitness sharing, for simplicity. Let us assume that the configuration K used for

evaluation is composed of n distinct strategies. For the best-scoring solution concept,

we are interested to count the number of configuration strategies each member of the

evolving population is able to defeat. Since there are n strategies in K, a population

member can achieve a score no less than zero and no more than n; thus, we have at

most n + 1 distinct fitness levels.

If our solution concept is non-domination, then we have at least two ways we can

score members of the evolving population. One way to score members is according

to the Pareto layer in which they belong; the individuals on the front F0 receive the

highest score, those only dominated by members of F0 are in F1 and receive the next

highest score, and so on. Thus, the number of distinct fitness values depends upon

on the number of Pareto layers we can have; given n dimensions of comparison, we

can have at most n layers. A second scoring method is to assign an individual a score

based upon the number of other individuals in the population that it dominates. In

this case, the number of fitness levels clearly depends upon the population size.

If our solution concept is Nash equilibrium, then the maximal number of fitness

levels we can obtain depends upon the probability distribution over the n strategies

in configuration K. If the distribution is uniform, then we can have no more than n

fitness values. On the other hand, if no probability value in the distribution can be

obtained through the summation and subtraction of the other probability values in

the distribution, then the maximal number of distinct fitness values is 2n. That is,

there are 2n distinct win/loss profiles that we can obtain when we play the n strategies

in K, and each one of these win/loss profiles generates a unique fitness value.
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9.7 Monotonicity and Open-Ended Domains

Much research in coevolution concerns how a coevolutionary dynamic may generate an

open-ended system, where novel and increasingly complex behaviors are continually

innovated. Examples of such research include the evolution of language [90, 60], the

Iterated Prisoner’s Dilemma [128, 98], competitive games in virtual worlds [185, 96],

artificial chemistries [77], and complex A-Life ecologies [168, 107, 125, 189]. Never-

theless, a precise articulation of open-endedness is made difficult by, among other

things, the lack of a universally agreed-upon notion of complexity [2, 40, 114]. From

the point of view of the framework developed in this chapter, we can contribute the

following thoughts.

The game, as we formally define it here, is merely a function that maps n-tuples

of strategies to vectors of payoffs; in particular, the game represents nothing about

the behavior of a strategy, other than the payoffs it earns—a highly abstracted view

of behavior, indeed. Thus, with respect to the theme of open-endedness, we can infer

only certain things from the game. For example, if the game is finite, then clearly

the domain (or, more accurately, that part of the domain exposed by the evolving

substrate) cannot be open-ended—there are only a finite number of strategies defined.

Tic-tac-toe is an example of a closed-ended domain. Other games, such as Watson

and Pollack’s numbers games [202], are open-ended at least in the sense that the

domain allows an infinity of strategies; nevertheless, for any finite set of numbers-

game strategies, we can always find another strategy that will beat all of them, yet

this winning strategy will appear no more complex than the others.

A more compelling form of open-endedness entails the generation of novel and un-

expected solutions to the problems posed by a coevolving population—open-endedness

is a sequence of set-breaking tasks. Innovative solutions not only have intrinsic in-
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terest, but also reveal the domain to which they belong to have more nuance than

previously imagined. We can thus make a simple taxonomy of domains: Closed-ended

domains have a finite space of behaviors (strategies); impoverished open-ended do-

mains have an infinity of behaviors, but these behaviors can be systematized in finite

space—i.e., the “rules of the game” are finite; rich open-ended domains not only have

an infinity of behaviors, but also the systematization of the domain requires infinite

space.

The idea of rich open-endedness appears to leave little room for objective metrics of

goodness, since every new innovation changes the prism through which we understand

the domain. For example, each innovation may uncover another intransitive structure

in the domain; a strategy previously understood as “poor” may regain respectability

because we realize that an entire aspect of its behavior was overlooked. But, we should

not conflate behavioral complexity with adaptive utility. Whatever our perception

of a strategy’s behavior, the game of our formalism does not distinguish between

impoverished and rich open-endedness, nor for that matter between closed-endedness

and open-endedness.

Since our formalizations of solution concept and monotonicity are built on the

game, and not the domain’s behaviors, our results concerning monotonicity apply

equally to all domains, closed-ended and open-ended, impoverished and rich. If we

do not discard information, then the solutions we obtain at time t are guaranteed

to be no worse, in an objective (i.e., global) sense, than solutions obtained earlier;

and, this is true regardless of the fact that we have only local knowledge of the domain

and no knowledge of what strategies we might discover in the future. If our solution

concept is non-monotonic, then no such guarantee can be made, even for closed-ended

domains.
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Chapter 10

Conclusions

This dissertation demonstrates the importance of solution concepts in the design,

operation, and understanding of coevolutionary algorithms. We show in Chapter 1

that solution concepts interface optimization problems with optimization methods;

favorable outcomes result when the solution concept implemented by the optimization

method is consistent with that required by the optimization problem. While this point

may seem obvious, years of coevolutionary practice indicate otherwise.

Being the algorithmic progeny of “ordinary” evolutionary methods (which opti-

mize fixed objective functions), co-evolutionary algorithms inherit not only a variety

of procedural traits but also (and more importantly) a custom of use. In particular,

we typically view coevolutionary algorithms as population-based search methods to

find an individual ; solutions are generally not conceived to be collectives. Many of

the search problems that we attempt to solve with coevolution reveal a variety of dif-

ficulties; this dissertation takes the position that these pathologies (which we review

in Chapter 3) result directly from incompatibilities between the solution concepts re-

quired by coevolutionary search problems and those implemented by methodologies

we inherit from earlier evolutionary optimization practice.
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From the point of view of compatibility with polymorphic Nash equilibria, Chap-

ters 4 through 6 examine the behaviors of various mechanisms that are frequently

used in coevolutionary algorithms. Chapter 4 shows that several selection methods,

commonly used in “ordinary” evolution, do not transfer with transparency to the

coevolutionary setting. Using an evolutionary game-theoretic framework, we show

that the selection methods we test prevent an evolving population from attaining

polymorphic Nash equilibria. Instead, a variety of other behaviors emerge, includ-

ing oscillation and even chaos. Along the lines of Chapter 4, Chapter 5 shows that

fitness sharing methods, used to enhance genotypic and phenotypic population di-

versity, distort polymorphic Nash equilibria. Chapter 6 shows that even a standard

finite-population replicator can distort polymorphic Nash equilibria due to the inter-

action of sampling effects with asymmetric dynamics of convergence; an alternative

replicator (Baker’s [20] SUS) is shown to dramatically reduce the effect. Thus, each

of these chapters provides a specific actionable result. More generally, a conclusion

that emerges from these chapters as a whole is that techniques used to improve the

population’s ability to perform search may interfere with its ability to represent the

solution.

We assert that pathologies in coevolutionary optimization arise when algorithms

fail to implement the required (or desired) solution concepts. Accordingly, in Chap-

ters 7 and 8, we design two novel heuristics around particular solution concepts in

an effort to address certain pathological outcomes. Chapter 7 introduces the use of

Pareto optimality as a solution concept for coevolutionary algorithms. We propose

a matched-pair of solution concepts: Pareto optimality for our primary search effort,

and our orthogonal concept of distinctions for our secondary search effort. Our ap-

proach, known as Pareto coevolution addresses the issues of gradient creation and

maintenance. Using this method, we discover an effective cellular automaton rule for
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a density classification task. Chapter 8 uses the concept of Nash equilibrium to build

a new type of memory mechanism that addresses the issue of evolutionary forgetting.

Using Watson and Pollack’s [202] intransitive numbers game, we demonstrate the

ability of our Nash memory to handle intransitive structures, systematically broaden

selection pressure, and provide an effective elitism scheme that also cleanly represents

our ultimate solution.

Building on the framework of Chapter 2, Chapter 9 takes a novel view at solution

concepts with respect to a property we call monotonicity. Assume an arbitrary search

algorithm that implements some solution concept O and has infinite memory. We

hope that, as it operates and accumulates knowledge of the search space, the algo-

rithm forms monotonically better answers to our search problem over time. We define

a preference relation into which any solution concept O may be embedded; this pref-

erence relation defines a partial order over the space of possible answers to a search

problem. We then show that, as our algorithm operates and refines its answer in

response to new information, the sequence of refinements generated by our algorithm

may or may not contradict our partial ordering dependent solely upon properties of

the solution concept itself. We prove that some solution concepts have this monotonic

property (e.g., Nash equilibrium), while others do only subject to particular imple-

mentation details (e.g., Pareto optimality), and yet others lack the property (e.g., the

solution concept used in conventional coevolutionary algorithms). Finally, our results

hold even if the domain in question is open-ended.

To summarize, in Chapters 1 through 3 we discuss the importance of solution

concepts to our understanding of coevolutionary algorithm operation and design. We

demonstrate in Chapters 4 through 6 how solution concepts help explain the diver-

gence between expected and actual algorithm outcomes, bringing our expectations of

coevolution more in line with algorithmic reality. In Chapters 7 and 8 we demon-
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strate how solution concepts can guide the design of algorithms, and thereby bring

algorithm operation more in line with our expectations and goals. Finally, in Chap-

ter 9 we show that solution concepts have intrinsic properties that cause (or prevent)

the dynamics of search to conform to a static, global partial-order over the space of

possible results.
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[18] T. Bäck et al., editors. Evolutionary Computation 1: Basic Algorithms and
Operators. Institute of Physics Publishing, 2000. 1.4.1
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Angeline, and T. Bäck, editors, Proceedings of the Fifth Annual Conference on
Evolutionary Programming, pages 461–468. MIT Press, 1996. 2.10.4
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