
A Game-Theoretic Memory Mechanism for

Coevolution �

Sevan G. Ficici and Jordan B. Pollack

Department of Computer Science
Brandeis University

Waltham Massachusetts 02454 USA
www.demo.cs.brandeis.edu

Abstract. One problem associated with coevolutionary algorithms is
that of forgetting, where one or more previously acquired traits are lost
only to be needed later. We introduce a new coevolutionary memory
mechanism to help prevent forgetting that is built upon game-theoretic
principles, specifically Nash equilibrium. This “Nash memory” mech-
anism has the following properties: 1) It accumulates a collection of
salient traits discovered by search, and represents this collection as a
mixed strategy. 2) This mixed strategy monotonically approaches the
quality of a Nash equilibrium strategy as search progresses, thus acting
as a “ratchet” mechanism. 3) The memory naturally embodies the result
(solution) obtained by the coevolutionary process. 4) The memory appro-
priately handles intransitive cycles (subject to resource limitations). We
demonstrate our Nash memory using Watson and Pollack’s intransitive
numbers game, and compare its performance to the conventional “Hall of
Fame” memory and the more recently proposed Dominance Tournament.

1 Introduction

Among the problems one often confronts when using a coevolutionary algorithm
is that of forgetting, where one or more previously acquired traits (i.e., compo-
nents of behavior) are lost only to be needed later, and so must be re-learnt.
Since selection pressure determines which traits have the opportunity to repro-
duce, the disappearance of a trait has but a few explanations. First, a trait is
selected against when individuals with that trait are less fit, on average, than
individuals without it. Second, a trait is subject to drift when individuals with
that trait are equally fit, on average, as individuals without it. This drift may
occur in either of two ways (or both): Due to sampling error in the population
dynamics (where fewer of the individuals with the trait actually reproduce, thus
reducing their numbers and increasing the risk of extinction for that trait), and
due to variational biases that cause the trait to be lost in the generation of off-
spring. (Even if a trait is selected for, the variational process may be strongly

� E. Cantú-Paz et al. (Eds.): GECCO 2003, LNCS 2723, pp. 286-297, 2003. c©Springer-
Verlag Berlin Heidelberg 2003

biased against it, thus causing offspring to lack the trait; such variational bias
is the impetus behind the technique of elitism that is often used in evolutionary
algorithms [6].) The disappearance of a trait becomes an instance of forgetting
if the discarded trait is subsequently able to contribute positively to the fitness
of an individual lacking that trait.

Such variability in a trait’s contribution to fitness is possible in coevolution
because the observed quality of an individual (and the traits it carries) may be
highly contingent upon the context of its evaluation—the population of coevolv-
ing individuals. Thus, at one moment in evolutionary time, a trait may be highly
undesirable (or of neutral worth but difficult to maintain) and purged, only to
become of value at some later point in time. Simple zero-sum games with intran-
sitivities illustrate how contingency can cause a coevolutionary system to learn,
forget, and re-learn traits in a cyclic fashion; the familiar Rock-Paper-Scissors
game is the canonical example of an intransitive cycle (Rock beats Scissors,
which beats Paper, which in turn beats Rock), where one strategy exploits the
next, leading to a perpetual alternation of selective pressure for and then against
each strategy in turn.

The problem of designing a heuristic “memory mechanism” to prevent for-
getting intrinsically entails the problem of deciding what it is that we are trying
to “remember”—what is our solution concept? That is, what collection of traits
constitutes the desired or “correct” set, and what properties does this collection
have? A principled answer to this question is imperative when a domain forces
mutual exclusivity between certain traits, or when an evolutionary representa-
tion (genome) cannot simultaneously encode all desired traits. Once we have our
solution concept, what organizing principle do we use in the memory mechanism
to obtain it? Thus, we view a memory mechanism as an accumulator of traits;
a trait enters and remains in the memory only if it is “worth” remembering,
according to our organizing principle.

In this paper, we obtain our solution concept—Nash equilibrium—from game
theory, and use game theory to construct an organizing principle for a new mem-
ory mechanism for coevolution. Using Watson and Pollack’s intransitive numbers
game [13], which is rife with intransitive cycles, we demonstrate the ability of our
“Nash memory” mechanism to approximate a monotonic and asymptotic conver-
gence to the Nash equilibrium of the game. Further, we show that the commonly
used “best of generation” memory mechanisms (e.g., Rosin and Belew’s Hall of
Fame [9]), as well as Stanley and Miikkulainen’s more recently proposed Domi-
nance Tournament [11] mechanism, do not generally accumulate a collection of
traits that corresponds to Nash equilibrium.

The paper is organized as follows. Section 2 reviews key concepts from game
theory. Section 3 continues with additional concepts such as security and domi-
nation. Section 4 then reviews the literature on methods to detect and prevent
forgetting. Section 5 details the construction and operation of our Nash mem-
ory mechanism. Section 6 defines and discusses the properties of the intransitive
numbers game. Section 7 presents our experimental setup and results. Section 8
offers concluding remarks.

2 Game Theory Fundamentals

Here we present some fundamental points on game theory [5]. Due to limited
space, we must restrict our discussion to symmetric zero-sum games (in strate-
gic form) for two players; nevertheless, our Nash memory mechanism is easily
generalized to asymmetric constant-sum games for two players.

Being symmetric, the game G defines a single set of pure strategies, S, that
is made available to both players. A player may adopt a pure strategy s ∈ S or
may instead play a mixed strategy, which is specified by a probability distribution
over S. Pure strategies played with non-zero probability by a mixed strategy m
are in support of (also known as “carriers” of) m. The function C(m) returns
the set of pure strategies that support the mixture m; hence, C(m) = {s ∈ S :
Pr(s|m) > 0}. A pure strategy can be understood as a degenerate mixture.

For any pair of strategy choices made by the two players, the game G specifies
the expected payoff earned by each player; by convention, E(α, β) denotes the
expected payoff earned by strategy α when played against β. Since the game G
is zero-sum, E(α, β) + E(β, α) = 0. This implies that E(α, α) = 0.

Any pure or mixed strategy s∗ that is its own “best response” is a Nash
equilibrium strategy. More precisely, s∗ is a Nash iff ∀ mixtures m : E(s∗, s∗) ≥
E(m, s∗). That is, if one player plays s∗, then the highest payoff obtainable by
the other player is received by also playing s∗. Thus, a Nash strategy guarantees
that ∀ mixtures m : E(s∗, m) ≥ 0. Due to this property, Nash strategies provide
the maximal security level that can be obtained in a zero-sum game—no other
solution concept can guarantee a higher expected payoff without regard to the
opponent’s strategy choice. This security level is also known as the value of the
game. Finally, all games with finite S have at least one Nash equilibrium.

3 Additional Concepts

The security set of a mixture m is the set of pure strategies against which m
earns an expected payoff greater than or equal to zero; that is, S(m) = {s ∈ S :
E(m, s) ≥ 0}. If the security set of a mixture contains the mixture’s support set,
then the mixture is support-secure; mixture m is support-secure iff S(m) ⊇ C(m).
All pure strategies are trivially support-secure. For any pure or mixed Nash
strategy s∗, S(s∗) ⊇ C(s∗) and S(s∗) = S. The vulnerability set of a mixture m
is the complement (with respect to S) of the security set: V(m) = S(m).

One strategy α dominates another strategy β iff ∀s ∈ S : E(α, s) ≥ E(β, s)
and ∃s ∈ S : E(α, s) > E(β, s). By definition, for any strategy s and any Nash
strategy s∗, E(s∗, s) ≥ 0; therefore, any strategy that dominates a Nash must
be Nash, as well. At the same time, Nash strategies need not dominate all (or
any) non-Nash strategies. We examine this point further, below.

4 Memory Methods and Solution Concepts

Research to prevent forgetting includes a number of memory mechanisms that
maintain a collection of “good” individuals (according to some organizing prin-

ciple) discovered over evolutionary time; the memory thus encapsulates a wider
range of phenotypes than is typically found in the coevolving population at any
one time. The additional phenotypic variety afforded by the memory is used to
augment the evaluation process, broaden selection pressure, and thereby reduce
the likelihood of forgetting. (Note that memory mechanisms are often identical
to methods used to detect forgetting [2, 7, 11]. Some domains, however, permit
the use of an external objective metric of behavior [4], or allow easy comparison
to a known optimal solution [8], as alternative ways to detect forgetting.)

Almost all memory mechanisms in the literature are instances of a general
“best of generation” (BOG) model where 1) the most fit individual in each of
the m most recent generations is retained by the memory mechanism and 2) l
of the m (l ≤ m) retained individuals are sampled without replacement for use
in testing individuals in the current generation. Examples of this approach are
found in Sims [10] (m = 1, l = 1), Rosin and Belew [9] (e.g., m = ∞, l = 20),
and Nolfi and Floreano [7] (m = 10, l = 10).

In a contrasting approach, Stanley and Miikkulainen [11] propose that their
dominance tournament (DT)—a method intended to monitor coevolutionary
progress—can be adapted for use as a memory mechanism. The principle is to
retain the most fit individual of the current generation only if it beats all the in-
dividuals previously retained by the memory; that is, the “generation champion”
must dominate the contents of the memory to be included. (Note, however, that
domination is determined only with respect to the memory’s contents.) Thus,
no intransitive cycles can exist amongst the strategies in the memory.

As we state above, deciding how to organize a memory entails deciding what
kind of solution we wish to obtain. If we view the memory as a repository of
the most salient traits discovered so far, then the logical extension of this view
implies that we should probe the memory for the result (solution) obtained
through coevolution, not the coevolving population. In the standard coevolu-
tionary algorithm, the coevolving population is expected both to perform search
and represent the result of the coevolution. But, there is no reason to believe
that these two tasks are orthogonal, let alone mutually supportive; indeed, there
is evidence that these tasks may interfere with each other [3].

A well-designed memory mechanism relieves the coevolving population from
the burden (or, at least, the requirement) of representing the solution, allowing
the population to concentrate on search (to improve the solution represented
by the memory). The memory mechanism we introduce in this paper uses game
theory, particularly Nash equilibrium, as an organizing principle. A important
feature of the Nash concept is that it allows a solution to be a collective of strate-
gies. The appeal of this property is highlighted by results of Nolfi and Floreano
[7]. In the presence of intransitivity, they emphasize that the real solution they
obtain through coevolution is not a single, objectively best champion strategy—
none exists to find—but, rather a set of locations in genotype space that are
optimally poised for easy transformation into alternative strategies that have
been effective in evolutionary history. That is, when a population cannot simul-
taneously and stably represent all the strategies in certain intransitive cycles, the

best it can do is optimally traverse the cycle. This lack of a best pure strategy,
coupled with a dynamic that focuses on a particular set of pure strategies, is
highly suggestive of the mixtures that the Nash solution concept supports.

5 Construction and Operation of Nash Memory

5.1 General Framework and Instantiation

The Nash memory mechanism we examine in this paper is a particular instan-
tiation of a general framework, which consists of two mutually exclusive sets of
pure strategies, N and M. In addition to the memory mechanism, we assume
the existence of some external search heuristic H. The set N is unbounded in size
and defined to be the support set for a mixture that is secure at least against the
elements of N and M; that is, S(N) ⊇ N ∪M. (We use N to denote either the
mixture’s support set or the mixed strategy itself, as convenient.) The objective
of N is to represent a mixed strategy that is optimal (secure) with respect to
what the search heuristic has discovered thus far; we wish the protection afforded
by N (ideally) to increase monotonically as search progresses, thereby forming
a better and better approximation of a Nash strategy for the game G. The pur-
pose of set M is to act as an accumulator or memory; it contains pure strategies
that are not currently useful for N but were in the past and may be again in
the future. The capacity of M, however, is finite. In the present realization of
the abstract memory model, we define M to be simply an unordered set of pure
strategies with a cardinality no greater than some specified value c, which gives
the capacity of the memory. We can imagine that c can vary over evolutionary
time, in some adaptive fashion, but we instead assume a fixed value.

5.2 Initialization and First Update

We initializeN and M to be the empty set. Let Q be a set of strategies delivered
by the search heuristic to the memory mechanism; we assume |Q| < c. The first
set Q to arrive updates N such that C(N) ⊆ Q and S(N) ⊇ Q; the set M
is updated to contain those elements of Q not in support of N . For subsequent
values of Q, we must test the elements of Q against N to see if N and M require
updating.

5.3 Testing N
To verify that a mixed strategy is Nash, one need only check that the mixed
strategy is secure against all pure strategies; testing against all possible mixtures
(of which there is an uncountable infinity) is not required [12]. Consequently,
if E(q,N) > 0 for any q ∈ Q, then N is demonstrably not a Nash strategy
and we attempt to improve our approximation; otherwise, we leave N and M
undisturbed and wait for the search heuristic to deliver a new set of strategies.
We compute the value E(q,N) by playing q against each strategy in support of
N and taking a weighted average of outcomes, the weights being the probability
distribution for the mixture: E(q,N) =

∑
n∈C(N) Pr(n|N)E(q, n).

5.4 Updating N and M

We define the set W = {q ∈ Q : E(q,N) > 0}, that is, the “winners” from Q.
Given the pre-update values of N and M, we define the post-update value N ′

such that C(N ′) ⊆ (W ∪ N ∪M) and S(N ′) ⊇ (W ∪ N ∪M); we obtain the
value of N ′ with linear programming, which is the standard method for solving
zero-sum games and for which polynomial-time algorithms exist [12]. Note that
S(N ′) is not necessarily a superset of S(N).

As Figure 1 illustrates, the post-update value M′ contains zero or more
items from each of three sources; some strategies in W may not be required,
some strategies in N may be released, and some strategies may be retained
from M (while others may be recalled from M to N ′). If the resultant M′

has a cardinality |M′| > c, then we discard items from M′ until the capacity
constraint is met. We can imagine a number of policies for removing items from
M′; we currently remove items at random first from those retained from M,
then those released from N (there is never the need to remove those from W).

N M

N’ M’

W
re

ca
ll

Pre-Update State

Post-Update State

discard

From Search Heuristic

support

retain

release

~support retain

Fig. 1. Schematic of update step.

6 Intransitive Numbers Game

Watson and Pollack’s intransitive numbers game [13] is a coevolutionary domain
that is permeated by intransitive cycles. The game’s geometric nature allows easy
visualization of coevolutionary dynamics; we will use it to illustrate the operation
of our Nash memory mechanism.

6.1 Definition

Each pure strategy of the intransitive numbers game is an n-dimensional vector,
or point in n-dimensional space. For a pair of strategies α and β, the winning
strategy is the one with higher magnitude in the dimension of least difference be-
tween the two strategies. More precisely, for two strategies α and β, the expected
outcome E(α, β) is:

E(α, β) =
{

0 if min(h) = ∞
sign(

∑n
i=1 gi) otherwise (1)

gi =
{

αi − βi if hi = min(h)
0 otherwise (2)

hi =
{
|αi − βi| if |αi − βi| ≥ ε
∞ otherwise (3)

where ε is the smallest magnitude difference we wish to consider significant.
Equation 1 eliminates two asymmetries that exist in the original definition

found in [13]: First, the game is now formally symmetric; second, no single di-
mension is the arbiter when the deltas in multiple dimensions are minimal. Note
also that, while we use the term “expected outcome,” the game is deterministic.

While Equation 1 defines the outcome between two specified strategies, it
does not define the universe of strategies we are to consider, leaving the game’s
definition incomplete. Clearly, the strategy space may be finite or infinite, count-
able or uncountable; indeed, the intransitive numbers game can provide an im-
poverished form of open-endedness, if desired. For our purposes, we define the
strategy space to be n-dimensional vectors of natural numbers, where each di-
mension spans the interval [0, k]; this yields (k + 1)n distinct pure strategies.

6.2 Game Properties

The game defined above has a single Nash equilibrium strategy for all ε < k (ε =
k implies that all strategies tie each other, making them all Nash strategies—a
particularly uninteresting game). The Nash strategy is the pure strategy with

value k in all n dimensions, i.e., 〈
n︷ ︸︸ ︷

k, . . . , k 〉. Of course, other definitions of the
strategy space may yield multiple Nash as well as mixed Nash strategies.

As with all Nash equilibria in symmetric zero-sum games, the Nash strategy
of our game does not lose to any other strategy. With ε = 1, the Nash ties only
itself and beats all others; thus, the Nash also dominates all other strategies.
Here, the solution concepts of Nash equilibrium and domination agree.

With ε = 0, however, the solution concepts point to very different outcomes.
In this case, the Nash additionally ties all strategies that have the value k in
any dimension. (The strategies that tie the Nash are those on the surface of
the n-dimensional space. Thus, as n grows, the percentage of tieing strategies
asymptotically approaches 100%, even though the number of losing (i.e., inte-
rior) strategies grows exponentially. Nevertheless, for k = 100 and n = 10, the
percentage of tieing strategies is still < 10%. Thus, concern over the asymptotic
growth of tieing strategies must keep in mind the values of k and n.)

Thus, setting ε = 0 introduces additional ways in which a tie may occur
between strategies. In particular, the Nash now ties strategies that others can
beat; for example, in two dimensions, 〈k, k〉 (the Nash) ties both 〈k, k − 1〉 and
〈k − 2, k〉, yet 〈k − 2, k〉 beats 〈k, k − 1〉. Therefore, for a non-Nash strategy

to transform itself into the Nash, it may be required to discard certain skills—
the ability to beat certain strategies; the goal of security is not always served by
mere accumulation of prowess against opponents. Due to these additional ties,
virtually no strategy is dominated; those that are dominated are done so by the
Nash. With n = 2, only four strategies are dominated, regardless of the value
of k: 〈0, 0〉, 〈k − 1, k〉, 〈k, k − 1〉, and 〈k − 1, k − 1〉. With n > 2, the number of
dominated strategies is only one (strategy 〈0, 0, . . . , 0〉). Finally, with either value
of epsilon, the Nash strategy is the pure strategy with the most wins (though,
this is not a general feature of Nash equilibrium strategies).

7 Experiments

Rather than simply compare the performance of a coevolutionary algorithm
with and without the aid of our memory mechanism, we wish instead to probe
the ability of the memory mechanism to discover mixed strategies that provide
greater and greater security. To accomplish this, we use N as a quasi-static
evaluation function against which we repeatedly evolve a population of strategies.

7.1 Methods

The following procedure essentially transforms a co-evolutionary domain into an
evolutionary domain. We use the game defined in Section 6.1 with ε = 0, k = 100,
and n = 2. We represent an individual pure strategy for this game with a bit-
string b of length 200, such that the expressed strategy is 〈

∑99
i=0 bi,

∑199
i=100 bi〉.

The only variation operator we apply is bit-wise mutation with a per-bit muta-
tion probability of 0.01; recombinational operators are not used. We construct a
random strategy by setting each of the 200 bits to one with a probability of 0.5;
this yields an expected strategy of 〈50, 50〉. The memory’s capacity is c = 100.

The evolution proceeds in epochs, as follows: 0) Initialize memory and up-
date with a random strategy; 1) Initialize population (of size 100) with random
strategies; 2) Evolve population against N for 30 generations (one epoch); 3) If
highest-scoring individual ŝ in population beats N , then update memory with
ŝ; 4) Goto Step 1. Each generation in Step 2 proceeds as follows: a) Evaluate
each individual (pure strategy) s in the population against N (the score wi ob-
tained by each individual i is in the range [−1, 1]); b) The fitness of individual
i is fi = wi − min(w) + 0.1 (all fitness values are > 0); c) Copy the 10 most-fit
individuals to next generation (elitism); d) Fill the remaining 90 positions with
offspring using “fitness-proportionate” selection and asexual reproduction.

7.2 Results: Nash Memory

Figure 2 (Left) shows the mean and median scores obtained by the most fit
individual ŝ at the end of each epoch over 52 trials of our experiment. At the
beginning of the experiment, the evolution step (Step 2, above) easily finds pure
strategies that obtain the maximal score of 1.0 when played against the Nash

memory’s mixture N . Over the next 50 epochs, however, the ability of evolution
to discover pure strategies that score well against N is gradually neutralized as
the memory mechanism integrates knowledge gained from previous epochs. In-
deed, over subsequent epochs, the median score obtained by evolution asymptot-
ically approaches zero, which is the value of the intransitive numbers game (and
zero-sum games, in general—see Section 2, above). The mean score, however,
actually becomes negative; thus, the distribution is not normal. This indicates
that N tends to be somewhat superior to the strategies that evolution is able
to discover. Over the course of an experiment, the number of pure strategies in
support of N tends to grow. The mean size of C(N) at Epoch 500 is about 45,
though the distribution is not normal (median is 50).

50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

Epoch

S
co

re

Mean
Median

50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

Epoch

M
ea

n
S

co
re

Fig. 2. Performance of evolution over time against (Left) Nash memory, over 52 trials,
and (Right) BOG memory (m = ∞, l = 100), over 54 trials.

Figure 3 shows the behavior of a typical trial. (For convenience, N i will
denote the value of N at the beginning of the i-th epoch, similarly for Mi.) The
memory’s strategy N 1 is initialized to the pure strategy 〈53, 41〉 (indicated by
the square in Figure 3, Right). The evolution step (Step 2, above) easily finds a
pure strategy 〈55, 47〉 that beats N 1. Accordingly, we update the memory such
that N 2 is 〈55, 47〉, and move 〈53, 41〉 to the memory set M2.

In Epoch 2, the evolution step discovers the pure strategy 〈48, 52〉, which
beats N 2. Since M2 contains something, we must evaluate the performance
of 〈48, 52〉 against the contents of M2 before we can determine N 3. Though
〈48, 52〉 beats 〈55, 47〉, we find that it loses to 〈53, 41〉 (the strategy in M2).
Thus, we find an intransitive cycle; indeed, this intransitivity is symmetric (as
in the Rock-Scissors-Paper game), so no one pure strategy can be argued to be
any better than another (in any sense). This is not to say that the three strategies
are interchangeable, however, for each one has unique strengths and weaknesses
with respect to the other two. Since none of these pure strategies has an empty
vulnerability set (see Section 3, above), N 3 must be a mixture of some kind.
The solution (found with linear programming) happens to be a mixed strategy

-1

-0.5

0

0.5

1

S
co

re

50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

Epoch

|C
(N

)|

0 20 40 60 80 100
0

20

40

60

80

100

X Location

Y
 L

oc
at

io
n

Epoch 1
Epoch 21
Epoch 62
Epoch 500

Fig. 3. Example run of evolution against Nash memory over time. Left: Upper graph
gives maximal score achieved by evolution against N at the end of each epoch; lower
graph shows size of support set C(N) at the beginning of each epoch. Right: Pure
strategies in support of N at the beginning of Epochs 1, 21, 62, and 500.

where each of the pure strategies is played with equal probability; N 3 has all
three strategies in support and M3 is empty.

By the time we arrive at N 20, eleven strategies are in support. In this epoch,
evolution discovers pure strategy 〈66, 65〉 (triangle in Figure 3, Right), which
beats each of the eleven support strategies. Further, because N 21 = {〈66, 65〉},
we can infer that 〈66, 65〉 is also secure against the contents of M20. The strat-
egy N 21 is sufficiently good that the evolution step obtains the worst possible
score (−1) over the next few epochs. Later, we encounter a similar, but more
pronounced, situation where N 62 is the pure strategy 〈72, 71〉 (‘x’ in Figure 3,
Right). This strategy remains until Epoch 136, where it is replaced by a mixture.
The mixture N 500 (circles in Figure 3, Right) retains 〈72, 71〉 in support.

7.3 Results: Best of Generation and Dominance Tournament

We also run our experiment using the best-of-generation memory mechanism
with m = ∞, l = 100 (see Section 4, above). During evaluation, an evolving
individual’s score against the memory is the average score obtained against the
strategies sampled from the memory; the highest-scoring individual at the end
of an epoch is added to the memory if its score is > 0. Figure 2 (Right) shows
the mean scores (with standard deviation) obtained by the most fit individual
ŝ at the end of each epoch over 54 trials of this experiment; these data are
normally distributed. The mean score obtained by ŝ between epochs 250 and
500 is ≈ 0.375 (σ ≈ 0.160). In other experiments where m = 100, l = 100 (not
shown), the expected score of ŝ at steady-state is ≈ 0.758 (σ ≈ 0.148). Thus, the
organizing principle behind BOG provides considerably less effective learning.

We next use the Dominance Tournament as our memory mechanism. The
score given to an evolving individual is the number of consecutive pure strate-

gies, from the most to least recently placed in the memory, that the individual
beats. At the end of an epoch, if any individuals exist that beat the entire con-
tents of the memory, we randomly select one and place it in the memory. The
DT method quickly converges onto a pure strategy that cannot be dominated by
any other with respect to the memory’s contents. Because we only consider those
strategies in the memory to determine dominance, and not the entire universe
of strategies, false positives may occur; indeed, all but four strategies in our
game are actually non-dominated. Thus, the strategy onto which we converge is
highly path-dependent; particularly, we may converge onto the dominated strat-
egy 〈100, 99〉 (or 〈99, 100〉—see Section 6), after which the memory will reject
the Nash 〈100, 100〉, which dominates 〈100, 99〉 but does not beat it. Further, of
all the pure strategies onto which we may converge, only the Nash equilibrium
strategy has an empty vulnerability set; all the others are beatable.

7.4 Results: Bootstrapping with the Nash Memory

The results we report in Section 7.2 only show that the Nash memory is able to
learn a mixed strategy N that is secure against what the evolution step is likely
to discover, given the limitations we place on the evolution, such as the random
initial population. In particular, the mixed strategies N obtained above are not
the Nash equilibrium for the numbers game.

Therefore, we create a new outer loop around the method described in Section
7.1 to explore the ability of the memory to constructively contribute genetic
material to the search process. When the evolution step is unable to score higher
than 0.04 against N for 50 consecutive epochs, we change the procedure used
to initialize the population: A snapshot of N is taken and used to initialize
populations in all subsequent epochs (until our outer-loop criterion is met once
again). Specifically, the initial population contains the strategies in support of
N in proportion to their probabilities in the mixture distribution.

This new initialization process allows the evolution step to further challenge
the Nash memory. While we do not converge onto the precise Nash strategy
for our game (which is 〈100, 100〉), we do obtain a mixture N (with 123 pure
strategies in support) that virtually eliminates vulnerability to all strategies (N ’s
worst score ≈ −0.05) except the true Nash (N ’s score ≈ −0.323); the memory
mechanism is poised to accept the true Nash strategy, if search can find it.
Thus, the solution N is an excellent approximation to the true Nash strategy in
behavior, though superficially they appear nothing alike.

8 Conclusion

We examine the performance of three distinct memory mechanisms using Wat-
son and Pollack’s intransitive numbers game: Nash memory, Best-of-Generation,
and Dominance Tournament. We do not intend to argue that the BOG and DT
mechanisms cannot improve the performance of a coevolutionary algorithm; in-
deed, the BOG approach is known to help, e.g. [9, 7]. We are more interested in
the role of coevolutionary memory and its organization.

We show that the Nash memory improves its collection of traits, expressed
as a mixed strategy, as search exposes the memory to new traits. Over time, the
mixed strategy asymptotically approaches the performance of the Nash equilib-
rium strategy for the numbers game, thus providing 1) an excellent approxima-
tion of the (game-theoretic) solution, and 2) a gradually increasing challenge
for evolving strategies. In contrast, the BOG method exhibits only limited abil-
ity, when faced with pervasive intransitivity, to increasingly challenge evolution;
lacking a strong organizing principle, BOG does not converge to the Nash equi-
librium. The DT method implements the principle of domination, but only with
respect to local knowledge; without the global knowledge required to properly
determine domination, the numbers game easily leads the DT method astray.

Acknowledgements

The authors wish to thank Anthony Bucci, Edwin de Jong, Shivakumar
Viswanathan, and Richard Watson for many useful discussions.

References

1. R. Brooks and P. Maes, editors. Proc. 4th Conf. on Artif. Life. MIT Press, 1994.
2. D. Cliff and G. F. Miller. Tracking the red queen: Measurments of adaptive progress

in co-evolutionary simulations. In F. Moran et al., editors, 3rd Euro. Conf. on
Artificial Life, pages 200–218. Springer Verlag, 1995.

3. S. G. Ficici, O. Melnik, and J. B. Pollack. A game-theoretic investigation of selec-
tion methods used in evolutionary algorithms. In A. Zalzala et al., editors, Proc.
of 2000 Congress on Evolutionary Computation, pages 880–887. IEEE Press, 2000.

4. S. G. Ficici and J. B. Pollack. Challenges in coevolutionary learning: Arms-race
dynamics, open-endedness, and mediocre stable states. In C. Adami et al., editors,
Proc. of the Sixth Conf. on Artificial Life, pages 238–247. MIT Press, 1998.

5. D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1998.
6. D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison Wesley, 1989.
7. S. Nolfi and D. Floreano. Co-evolving predator and prey robots: Do ‘arm races’

arise in artificial evolution? Artificial Life, 4(4):311–335, 1998.
8. C. W. Reynolds. Competition, coevolution and the game of tag. In Brooks and

Maes [1], pages 59–69.
9. C. Rosin and R. Belew. New methods for competitive co-evolution. Evolutionary

Computation, 5(1):1–29, 1997.
10. K. Sims. Evolving 3d morphology and behavior by competition. In Brooks and

Maes [1], pages 28–39.
11. K. O. Stanley and R. Miikkulainen. The dominance tournament method of moni-

toring progress in coevolution. In A. Barry, editor, 2002 Genetic and Evolutionary
Computation Conference Workshop Program, pages 242–248, 2002.

12. P. R. Thie. An Introduction to Linear Programming and Game Theory. John
Wiley and Sons, 1988.

13. R. A. Watson and J. B. Pollack. Coevolutionary dynamics in a minimal substrate.
In L. Spector et al., editors, Proc. 2001 Genetic and Evolutionary Computation
Conf., pages 702–709. Morgan Kaufmann, 2001.

