
On Identifying Global Optima in Cooperative Coevolution

Anthony Bucci
DEMO Lab

Computer Science Department
Brandeis University
Waltham, MA 02454

abucci@cs.brandeis.edu

Jordan B. Pollack
DEMO Lab

Computer Science Department
Brandeis University
Waltham, MA 02454

pollack@cs.brandeis.edu

ABSTRACT
When applied to optimization problems, Cooperative Co-
evolutionary Algorithms (CCEA) have been observed to ex-
hibit a behavior called relative overgeneralization. Roughly,
they tend to identify local optima with large basins of at-
traction which may or may not correspond to global optima.
A question which arises is whether one can modify the algo-
rithm to promote the discovery of global optima. We argue
that a mechanism from Pareto coevolution can achieve this
end. We observe that in CCEAs candidate individuals from
one population are used as tests or measurements of indi-
viduals in other populations; by treating individuals as tests
in this way, a finer-grained comparison can be made among
candidate individuals. This finer-grained view permits an
algorithm to see when two candidates are differently capa-
ble, even when one’s evident value is higher than the other’s.
By modifying an existing CCEA to compare individuals us-
ing Pareto dominance we have produced an algorithm which
reliably finds global optima. We demonstrate the algorithm
on two Maximum of Two Quadratics problems and discuss
why it works.

Categories and Subject Descriptors
G.1.6 [Mathematics of Computing]: Optimization; I.2.8
[Problem Solving, Control Methods, and Search]:
Heuristic Methods

General Terms
Algorithms,Theory

Keywords
coevolution, cooperative coevolution, Pareto coevolution

1. INTRODUCTION
The originally-stated aim of Cooperative Coevolutionary

Algorithms (CCEAs) was to attack the problem of evolving
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complicated objects by explicitly breaking them into parts,
evolving the parts separately, and then assembling the parts
into a working whole [8]. The intuition is that if we know
what makes a good part, then it should be easier to find
good parts and assemble them than it would be to find a
working whole directly. However, what makes a part good
is not clear and was not directly addressed by Potter in [8].

Wiegand has established the importance of this question
by pointing out that CCEAs do not optimize when they use
certain straightforward notions of what constitutes a good
part [11]. For instance, one might assess the value of a part
by testing the value of a whole made from that part and
other necessary parts. By repeating this process for a vari-
ety of combinations, one can then take an average or maxi-
mum value of the wholes produced and develop a sense for
how good the part is. Wiegand has shown that when this
is done, CCEAs exhibit a behavior called relative overgen-

eralization. Rather than finding complete objects which are
optimal with respect to the problem, CCEAs tend to find
objects which are robust under a change of parts, the robust

resting balance [11]. In certain problems, robust resting bal-
ance objects are not globally optimal. In cases where a ro-
bust solution is preferred to a globally optimal one, relative
overgeneralization is in fact a desirable behavior. However,
if one wishes to optimize with a CCEA, relative overgener-
alization is undesirable. The question becomes: how can we
modify the CCEA to encourage it to find global optima?

Panait et al. have approached this question by biasing
the assessment of a part towards what its optimal assessment
should be [7]. The technique is to assess a part in the context
of other coevolving parts, just as in ordinary CCEAs, but to
mix this with an estimate of the optimal assessment. In the
studies published in [7], the optimal assessment was given
to the algorithm in advance. The authors acknowledge that
such information is not available in real problem domains
and offer the hope that a useful estimate of this value can
be built as an algorithm runs. Whether this is the case
remains to be seen.

Here we take a different perspective on the question of
how to encourage a CCEA to optimize. Research on com-
petitive coevolution [9] made clear that averaging an indi-
vidual’s performance against coevolving opponents was the
source of several pathologies. Pareto coevolution was pro-
posed as a remedy for these difficulties [4, 6]. The idea
behind Pareto coevolutionary algorithms is to assess indi-
viduals not in terms of average performance but in terms
of a list of outcomes, one for each opponent. Individuals
can then be compared on an opponent-by-opponent basis



using a comparison called Pareto dominance borrowed from
Evolutionary Multiobjective Optimization (see, for instance
[5]). It has been shown formally that this technique virtually
eliminates one of the more serious pathologies, intransitivity
[2] (see also the discussion of monotonic solution concepts
in [3]). Pareto coevolution also highlights issues like over-
specialization which are otherwise not obvious [1] (see also
[10]). Can these lessons be brought to bear in cooperative
coevolution?

Following Panait et al. [7], we augment a traditional
CCEA with a Pareto dominance mechanism for comparing
individuals. We study its performance on the same Maxi-

mum of Two Quadratics function studied by Panait et al.
and first presented in [11]. What we observe is that the
augmented algorithm reliably discovers both the global op-
timum of the test function. We present an analysis of this
test function on the basis of the framework developed in [2]
to explain why this algorithm works. These results suggest
the beginnings of a fruitful cross fertilization between Pareto
coevolution and cooperative coevolution research.

This paper is organized as follows. In section 2 we give
necessary background from Pareto coevolution and coop-
erative coevolution. In section 3 we give and analyze the
particular Maximum of Two Quadratics used in [7] and in
the experiments reported here. In section 4 we present our
experimental results. Finally, in section 5 we discuss impli-
cations of what we have observed.

2. BACKGROUND
In this section we will review the cooperative coevolution-

ary framework and give the details of the Maximum of Two

Quadratics function and the CCEA studied in [7]. We will
then briefly review the mathematical framework for Pareto
coevolution laid out in [2], giving enough detail to explicate
the Pareto dominance mechanism we will be adding to the
CCEA and the informativeness mechanism which we will be
using to analyze MTQ functions.

2.1 Pareto Coevolution
Much of the material we are reviewing here can be found

in more detail in [2], which should be consulted for details.
Let p : S × T → R be a function; here S and T are sets

and R is an ordered set. The set S can be thought of as
the set of candidate solutions (candidates). These are the
entities which an algorithm is meant to optimize. The set
T can be thought of as tests; these individuals serve to test
or measure the candidates and give information about how
good they are. The ordered set R can be thought of as
results or outcomes of interactions between candidates and
tests.

It is worth pointing out that both candidates and tests are
roles that individuals can take. When we have an algorithm
like a CCEA over a function f : X ×Y →

�
, we are in much

the same situation as above: a two-place function into an
ordered set. However, the situation is slightly different. The
CCEA aims to optimize both individuals in X and individ-
uals in Y ; thus these sets act variously as candidates and
tests. At the stage of the algorithm when X elements are
selected, X is acting as the candidate set to be optimized;
the possible collaborators from Y can then be thought of as
tests measuring the X values. However, when we consider
updating Y , the reverse situation occurs: the Y values are
candidates and the X values are tests.

Let us return to the function p. We can use this function
to compare two candidates s1, s2 ∈ S as follows: s2 (Pareto)
covers s1, which we will denote s1 � s2 if, for all t ∈ T ,
p(s1, t) ≤ p(s2, t). If each t ∈ T is thought of as a test, this
relation says that for each test, s2 does at least as well as
s1. s2 Pareto dominates s1 if s1 � s2 and, in addition, there
is a t ∈ T such that p(s1, t) < p(s2, t). That is, s2 is at least
as good as s1 against all tests and is strictly better than s1

against at least one test.
If it happens that there are t1, t2 ∈ T such that p(s1, t1) <

p(s2, t1) but p(s1, t2) > p(s2, t2), then s1 and s2 are incom-

parable. We will denote incomparability s1 � s2. The idea
here is that there are two tests, one which shows s2 is better
than s1, but another which shows s1 is better than s2. In
this case we cannot give a strict relationship between the two
candidates; they each have value, albeit in different ways.

The relation � is a preorder on the set S. As such it has
a set of maximal elements; these are elements ŝ ∈ S such
that if ŝ � s, then s � ŝ must also hold, for any s ∈ S. In
words, ŝ is maximal if, whenever it appears to be less than
or equal to some other value, that value is less than or equal
to it (meaning the two values are equivalent). The set of
all maximal elements of � is called the Pareto optimal set,
Pareto front, or non-dominated front by various authors.

Thus far we have considered comparing candidates in S.
What about the tests in T ? An observation made in [4] is
that it is not appropriate to use Pareto covering or Pareto
dominance to compare tests. Rather, as advocated there
and in [2], it makes sense to compare tests according to how
informative they are about ranking candidates. It suffices
for our purposes to consider two cases. If two tests t1, t2 ∈ T

rank all the candidate individuals in the same order, then
they are equally informative. However, if there are s1, s2 ∈ S

such that p(s1, t1) < p(s2, t1) and p(s1, t2) > p(s2, t2), then
the tests t1 and t2 are differently informative.

2.2 Cooperative Coevolution
Cooperative coevolution has generally been presented as

a framework as opposed to a particular algorithm. We will
follow the scheme given in algorithm 2 of [11]. The algo-
rithm keeps some indexed set of populations ps. For each
population ps, parents are selected, offspring generated via
the variation operators, collaborators are selected from the
remaining populations, and the individuals of ps are evalu-
ated with these collaborators. The next generation for pop-
ulation ps consists of the individuals which survive selection
based on this evaluation. Within this framework one is free
to use whichever selection, generation, variation, collabora-
tion, and evaluation mechanism one wishes. In what follows
we will detail the choices which were made for the experi-
ments reported in section 4.

Some applications of cooperative coevolution involve a
function of form f : X × Y →

�
. The task is to find val-

ues in the sets X and Y which optimize this function. One
way to approach optimizing such a function is to define two
populations corresponding to settings for X and Y . The
evaluation of two individuals x ∈ X and y ∈ Y can then be
f(x, y) or some function thereof. Relative overgeneralization
is already evident in simple scenarios like this one.

We will be considering two Maximum of Two Quadrat-

ics (MTQ) functions [11]. Let f1 and f2 be two quadratic
functions defined:
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Figure 1: Plot of MTQ1.
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Figure 2: Plot of MTQ2.
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where hi, si, xi and yi are parameters controlling the
height, width, and vertex of the function. Given two such
functions, an MTQ function is defined:

MTQ(x, y) = max(f1(x, y), f2(x, y)) (1)

The function employed in [7] uses the following param-
eter settings: h1 = 50, s1 = 1.6, (x1, y1) = ( 3

4
, 3

4
); and

h2 = 150, s2 = 1
32

, (x2, y2) = ( 1
4
, 1

4
). 1 We will denote

this function MTQ1. We will also be considering a second
function MTQ2 which is MTQ1 but with h1 = 125. These
two functions are displayed in Figs. 1 and 2.

In our experiments we will be comparing three CCEAs.
The first is as in [7]; for brevity we will call this algorithm
simply CCEA. The sets X and Y are both sets of reals,
the unit interval [0, 1]. There are two populations, one con-
sisting of 32 individuals from X, the other containing 32
individuals from Y . Tournament selection is used. Here, to
perform selection on X for example, two individuals x1, x2

are selected at random from the X population. These in-
dividuals are varied by adding Gaussian noise with mean 0
and standard deviation 0.05. Then the individuals are eval-
uated. Evaluation is done by selecting the highest-valued
individual y∗ from the Y population of the previous gen-
eration2 as well as a random individual y. x1’s evaluation
is max(MTQ(x1, y

∗), MTQ(x1, y)); i.e., the objective func-
tion value of x1 and its best collaborator. Once evaluation
is performed, a random value r between 0 and 1 is chosen. If
r ≤ k, then the higher-valued of x1, x2 is added to the next

1We have switched the positions of the global and local op-
tima versus what was reported in Panait et al.
2Or from the current generation at step 1 of the algorithm

population; otherwise the lower-valued individual is added.
Here k is a parameter controlling the selection pressure; we
have used k = 0.75 in all experiments reported. One last
point is that the highest-valued individual of the previous
generation is always carried forward unmodified to the next
generation.

The second CCEA variant, which we will call pCCEA, has
two modifications over CCEA. First, at the stage when indi-
viduals are being compared, objective value with a collabo-
rator is not used. Instead, the two individuals are compared
according to Pareto dominance. That is, instead of consid-
ering adding the individual with the higher objective value,
we consider adding the dominant individual; for instance, if
x1 � x2 and r ≤ k, then x2 is added to the next generation.
If x1 � x2, both are added to the next generation. Second,
since there is no notion of best individual in this case, we
will carry forward the non-dominated front of the previous
generation. It is possible that dominated individuals make
it into the population; thus, we first find the Pareto front of
the current population, carry that forward to the next gen-
eration, and fill in any remaining space in the population
with individuals selected as above.

The final CCEA, which we call cCCEA, has one modifica-
tion over CCEA. Instead of comparing individuals according
to the best setting of the previous generation, we will have
each individual collaborate with all individuals in the other
population and give it the highest value it receives from all
these collaborations. We will use cCCEA as a control for
pCCEA: since the Pareto dominance mechanism in pCCEA
has access to all individuals in the test population, it seems
only fair to give CCEA the same information and see how
well it performs.

3. ANALYSIS
In this section we make two observations:

1. The initial populations of 32 X and Y settings fre-
quently represent individuals on the higher peak. That
is, there is a setting in the X population and a setting
in the Y population which, when paired together, lie
on the higher-valued peak;

2. In the domain defined by MTQ1, the globally-optimal
and locally-optimal settings for one population are Pareto
optimal as well as being differently informative when
treated as tests of the other population.

The import of the first observation is that the initial popu-
lation of these algorithms already contains individuals which
could potentially move to the global optimum. In the case
of the CCEA without the Pareto dominance mechanism, the
experimental observation that the algorithm often does not
find this global optimum implies that the algorithm is ac-
tively moving away from the higher-valued peak.

The import of the second observation is that, unlike the
situation in competitive domains, a CCEA running on these
MTQ functions does not require an explicit informative-
ness mechanism to keep informative tests in the population.
Pareto dominance suffices. The reason is that in compet-
itive domains, Pareto dominant individuals tend to make
poor tests; thus there is a need for a separate mechanism
to encourage informative tests to remain in the population.
In MTQ1 at least, the situation is different: Pareto optimal



(x, y) f1 f2

(0.2, 0.2) -252.5 -225.0
(0.2, 0.29) -207.05 -157.5
(0.29, 0.2) -207.05 -157.5
(0.29, 0.29) -161.6 -90.0

Table 1: Values of f1 and f2 on four points in the xy-

plane spanning a square which lies under the higher-

valued peak.

settings tend to also be informative tests of their collabora-
tors.

3.1 Initial Populations and the Higher Peak
We will show that, with an initial population of 32 X

and Y individuals, the initial population of a CCEA has
roughly a 90% chance of containing a representative on the
higher-valued peak. To prove this, we will show that all
points (x, y) in the square spanned by the points (0.2, 0.2)
and (0.29, 0.29) are such that f2(x, y) > f1(x, y); i.e. are
such that MTQ1(x, y) = f2(x, y). As a result, the points
are within this square are all on the higher-valued peak. We
will then calculate the probability that the initial population
contains at least one point in this square; this probability
will give a lower bound on the probability that the popula-
tion contains a representative on this peak.

Because the region for which this relation holds is simply
connected, it suffices to show the corners of the square are all
such that f2(x, y) > f1(x, y). In table 1 we give the values
of f1 and f2 for the four corners of this square; for all four
points f2’s value is larger.

The probability that a value chosen uniformly randomly
in the range [0, 1] will land in the subinterval [0.2, 0.29] is
p = 0.09. Now, if 32 values are chosen uniformly randomly,
the chance that at least one of them will lie in the subinterval
is 1 − (1 − p)2 or approximately 0.95. In other words, the
chance that the initial population of X values has at least
one individual in this range is roughly 0.95; similarly for
Y . Thus, the probability that the initial population has at
least one X value and one Y value in [0.2, 0.29] is roughly
0.95 ·0.95 or roughly 0.90. In short, roughly 90% of runs of a
CCEA with initial population of 32 X and Y values should
have at least one representative on the higher-fitness peak.

3.2 Dominance and Informativeness
Much can be said about the dominance and informative-

ness structure in the domain defined by MTQ1. We will sim-
ply show that the globally- and locally-optimal individuals
are Pareto optimal when treated as candidates and differ-
ently informative when treated as tests. Note that because
of the symmetry of the MTQ1 function, all statements made
treating X individuals as candidates apply equally well when
Y values are treated as candidates. Similarly, statements
about Y individuals as tests apply when X individuals are
treated as tests.

Regarding dominance, let the Y values be candidates and
X values tests. Let y∗ = 1

4
be the globally-optimal set-

ting for Y and let y∗ = 3
4

be the locally-optimal setting.
Fig. 3 depicts these two candidates as functions of X. Note
they are incomparable. For x1 ∈ (x, x′), MTQ1(x1, y∗) <

MTQ1(x1, y
∗). However, for x2 6∈ [x, x′], MTQ1(x2, y∗) >

MTQ1(x2, y
∗). Thus, there is a test, x1 which says that y∗
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Figure 3: Plot of candidates y∗ and y∗ as cross sec-

tions through MTQ1. The shaded interval (x, x′) con-

sists of those X settings for which y∗ is better than

y∗; for the remaining X settings, y∗ is better than

y∗, making the two non-dominated.

is better than y∗ and a test x2 which says that y∗ is better
than y∗.

Furthermore, both these settings are Pareto optimal. For
y∗, note that the corresponding x∗ is such that for all y ∈ Y ,
MTQ1(x∗, y) < MTQ1(x∗, y∗). Consequently, y∗ cannot be
dominated and so must lie on the Pareto front. Similarly,
for y∗, MTQ1(x

∗, y) < MTQ1(x
∗, y∗), meaning y∗ cannot

be dominated. Therefore both y∗ and y∗ are Pareto optimal
as candidates.

Now let us consider informativeness when treating Y set-
tings as tests. Partition Y into two subsets T1 and T2 as
follows: T1 = {y ∈ T |∀x ∈ X, MTQ1(x, y) = f1(x, y)} and
T2 = Y \ T1. Note that y∗ ∈ T1 (because all points (x, y∗)
are on the lower-valued peak; see fig 3) and y∗ ∈ T2.

First we observe that all tests in T1 are equally informa-
tive. Recall that this means they all put the X settings in
the same order. Let y, y′ ∈ T1 and define two functions on
X:

g(x) = f1(x, y)

h(x) = f1(x, y
′)

Simply, g gives the value of x ∈ X when y is applied to it;
h gives the value of x when y′ is applied. Now let x, x′ ∈ X.
Then g(x) ≤ g(x′) if and only if h(x) ≤ h(x′). To see this,

notice that g(x)+h1
16(y−y1)2

s1

−h1
16(y′

−y1)2

s1

= h(x) for any
x. Since adding a quantity to both sides of an inequality does
not change its direction, g(x) ≤ g(x′) implies h(x) ≤ h(x′).
A symmetrical argument shows that h(x) ≤ h(x′) implies
g(x) ≤ g(x′). Therefore g and h both induce the same order
on X by pullback [2]. Since g(x) = f1(x, y) = MTQ1(x, y)
and h(x) = f1(x, y′) = MTQ1(x, y′), it follows that y and
y′ order X in the same way. In other words y and y′ are
equally informative tests. In particular, since y∗ ∈ T1, this
test orders X in the same way as all other tests in T1.

The situation in T2 is more complicated than in T1. It
is beyond our scope to go into a detailed analysis of the
informativeness structure for T2. However, we observe that
the tests in T2 are differently informative than those in T1.
To see this, let y ∈ T1 and y′ ∈ T2, let x∗ = 1

4
be the

globally-optimal X setting and let x ∈ X be such that:
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Figure 4: Cross sections through MTQ1 defined by

two different Y values. x∗ and x depicted here satisfy

relations 2 through 4.

f1(x
∗

, y) < f1(x, y) (2)

f2(x, y
′) < f1(x, y

′) (3)

f1(x, y
′) < f2(x

∗

, y
′) (4)

Fig. 4 illustrates these relationships.
Relation 2 implies that MTQ1(x

∗, y) < MTQ1(x, y), in
other words that test y ranks x∗ strictly lower than x. Rela-
tion 3 implies that MTQ1(x, y′) = f1(x, y′). By definition of
x∗, MTQ1(x

∗, y′) = f2(x
∗, y′). Thus, relation 4 implies that

MTQ1(x, y′) < MTQ1(x
∗, y′) or, in other words, that test

y′ ranks x∗ strictly higher than x. In short, the tests y and
y′ rank x and x∗ differently, so are differently informative. y

and y′ were chosen arbitrarily from T1 and T2, respectively,
meaning that any test in T1 is differently informative from
any other test in T2. In particular, y∗ and y∗ are differently
informative. Recall that these two settings are also Pareto
optimal; therefore we have shown that two Pareto optimal
settings for Y also make differently informative tests, indi-
cating a close relationship between Pareto dominance and
informativeness which is not typically present in competitive
domains.

4. EXPERIMENTS
In this section we will report on the experiments per-

formed. We replicate the case reported in [7] on MTQ1

when δ = 0. We then perform the same experiment, this
time using Pareto dominance to compare individuals as out-
lined in section 2.2.

We ran CCEA, pCCEA, and cCCEA for 50 generations
on MTQ1. We repeated this experiment 250 times for each
algorithm. Table 2 reports the number of runs which found
an individual near the global optimum3 and gives the mean
objective value of the highest-valued individual from each of
the 250 runs. Recall that the objective value of the higher
peak is 150, while the objective value of the lower peak is 50.
CCEA never finds high-quality individuals; instead it always
finds individuals at or near the local optimum, corroborating
what was observed in [7] (see, for instance, Fig. 2 in that
paper for the case δ = 0). By contrast, pCCEA reliably
finds individuals at or near the global optimum.

However, cCCEA also tends to finds individuals near the
higher peak. The question arises whether pCCEA succeeds

3By which we mean the X and Y settings are in the range
[0.24, 0.26]

Algorithm Runs Near Optimum Mean Best
CCEA 0 49.9994
cCCEA 233 143.1958
pCCEA 243 146.9373

Table 2: Comparison of CCEA, cCCEA, and pC-

CEA on MTQ1. We give the number of runs out of

250 which produce a near-optimal pair of variable

settings, as well as the value of the highest-valued

individual from each run, averaged across all 250

runs. Note cCCEA and pCCEA are roughly com-

parable, but outperform CCEA significantly.

Algorithm Runs Near Optimum Mean Best
cCCEA 177 142.6876
pCCEA 248 149.3980

Table 3: Control experiment comparing cCCEA and

pCCEA on MTQ2. We give number of runs out of

250 which produce a near-optimal pair of variable

settings, as well as the value of the highest-valued

individual from each run, averaged across all 250

runs. Note cCCEA performs significantly worse on

this problem than on MTQ1, whereas pCCEA per-

forms comparably well.

simply because it has access to more collaboration informa-
tion than CCEA. To address this question we ran a second
experiment, applying both pCCEA and cCCEA to MTQ2.
Recall that MTQ2 is similar to MTQ1 except the local opti-
mum has objective value 125 rather than 50; thus, the spread
between the global optimum and local optimum is lower. Ta-
ble 3 gives the results for these two algorithms on MTQ2. In
terms of the number of runs which produce a near-optimal
pair, cCCEA does worse on MTQ2 than on MTQ1. How-
ever, pCCEA performs comparably well on both MTQ1 and
MTQ2. The reason for this is the Pareto dominance mecha-
nism permits the algorithm to see the value of an individual
as soon as it lands on a peak, regardless of how high on the
peak it falls.

5. DISCUSSION
We began with the question of modifying the CCEA to

promote the discovery of global optima. pCCEA, a cooper-
ative coevolutionary algorithm using a Pareto dominance
mechanism to compare individuals, achieves this aim re-
markably well. When compared with CCEA, pCCEA per-
forms quite a bit better. When compared with another mod-
ification of CCEA which uses the same number of evalua-
tions per generation (cCCEA), pCCEA performs compara-
bly on MTQ1 but significantly better on MTQ2. The expla-
nation we give for the difference in performance on MTQ2

is that cCCEA is sensitive to the relative, numerical objec-
tive values of the two peaks, whereas pCCEA is sensitive
to informational differences between individuals and is in-
sensitive to their numerical values. pCCEA’s ability to find
global optima suggests ideas from Pareto coevolution may
fruitfully be applied to optimization with CCEAs in other
domains.

In section 3 we observed that on MTQ1, informative-
ness and Pareto optimality coincide to some degree: certain
Pareto optimal individuals are also differently informative.



This observation raises an intriguing question: could the re-
lationship between informativeness and Pareto dominance
yield a metric of how competitive or cooperative a domain
is? It has been observed previously that in domains which
have traditionally been called competitive, for instance game
playing, Pareto dominance and informativeness are differ-
ent: highly capable, dominant players are poor tests [2]. In
the domain of chess playing, for example, Garry Kasparov
is a dominant player, but the outcomes of a set of players’
games against Kasparov would yield very little information
about how the players compare to one another. In short,
the discrepancy between informativeness and dominance in
competitive domains is marked, whereas at least on these
examples of cooperative domains, the two concepts appear
related. In future work we intend to explore the relation-
ship between these two orders and how their relationships
characterize domains.
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