
Evolutionary Module Acquisition

Peter J. Angeline and Jordan Pollack

Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210
pja@cis.ohio-state.edu

pollack@cis.ohio-state.edu

To Appear in the Proceedings of:

 The Second Annual Conference on Evolutionary Programming,

February 25-26, 1993
La Jolla, California

The Ohio State University February 24, 1993 1

Abstract
Evolutionary programming and genetic algorithms
share many features, not the least of which is a
reliance of an analogy to natural selection over a
population as a means of implementing search.
With their commonalities come shared problems
whose solutions can be investigated at a higher
level and applied to both. One such problem is the
manipulation of solution parameters whose values
encode a desirable sub-solution. In this paper, we
define a superset of evolutionary programming
and genetic algorithms, called evolutionary algo-
rithms, and demonstrate a method of automatic
modularization that protects promising partial
solutions and speeds acquisition time.

1. Introduction

Evolutionary programming (EP) (Fogel 1992;
Fogel et. al. 1966) and genetic algorithms (GAs)
(Holland 1966; Goldberg 1989) have borrowed lit-
tle from each other. But there are many levels at
which EP and GAs are similar. For instance, both
employ an analogy to natural selection over a pop-
ulation to search through a space of possibilities.
Where these techniques intersect is a profitable
place to look for phenomena that reveal deeper
truths about the structure of all similar algorithms.

Our research concentrates on the more general set
of evolutionary algorithms (EAs) (Angeline
1993), which contains both evolutionary program-
ming and genetic algorithms in addition to many
other methods that use analogies to evolution for
problem solving, search and optimization. One
phenomenon that many evolutionary algorithms
share is the manipulation of representational com-
ponents that are necessary for the viability of the

individual. We would prefer that once such impor-
tant representational components are discovered,
they are preserved from further manipulation.
However, there is no general method that can con-
sistently and definitively identify which compo-
nents of an individual require no further
manipulation. As a result, these components con-
tinue to be modified when creating new offspring
which slows the search. This problem is exacer-
bated when the representation is large or dynamic
due to combinatorial explosion of the search
space.

In this paper, we describe a technique for improv-
ing the speed of acquisition for evolutionary algo-
rithms by reducing the manipulation of necessary
components of the representation. The selection of
which components to “freeze” is done randomly
and evaluated by the reproductive advantage it
provides to the individual. We demonstrate this
technique on an EP control problem and describe
an additional variant of the technique that enables
higher levels of representational expression to
emerge from the evolving solutions. From this dis-
cussion we suggest a more general mutation oper-
ator for evolutionary programs that can produce
self-similar solutions. We begin with a brief dis-
cussion of evolutionary algorithms and the inher-
ent empirical power of simulated evolutionary
methods.

2. Evolutionary Algorithms

Evolutionary algorithms (EAs) are a set of search
and optimization methods that simultaneously
manipulate apopulation of search space points.
These algorithms differ from parallel implementa-
tions of what can be called single point methods,
e.g. any classical AI search technique (Rich 1983),

Evolutionary Module Acquisition

Peter J. Angeline and Jordan Pollack
Laboratory for Artificial Intelligence Research
Computer and Information Science Department

The Ohio State University
Columbus, Ohio 43210
pja@cis.ohio-state.edu

pollack@cis.ohio-state.edu

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 2

since subsequent population members are depen-
dent on more than one member of the previous
population. In other words, the presence of a point
in populationn+1 is dependent on several points
having appeared in populationn. Parallel imple-
mentations of single point methods allow each of
the solutions inspected at a particular parallel time
step to be dependent on at most one solution of the
previous time step, if any.

More formally, we define an evolutionary algo-
rithm to be the 6-tupleEA = (I, F, R, S, L, H) where
each component is a function that is independent
from the other components of the EA. The compo-
nent functions are as follows:I is the population
initialization function;S is the function that selects
members of the population for reproduction;R is
the reproduction function; L is a function that
determines the size of the population;H is the halt-
ing criterion for the algorithm; andF is a function
that evaluates the worth of each member of the
population, more commonly called afitness func-
tion. Figure 1 shows the algorithmic template for
an evolutionary algorithm and how each of these
components is used. Similar figures have appeared
in several previous incarnations for genetic algo-
rithms (Grefensttete 1989; Michalewicz 1993;
Davis 1991). Notice in Figure 1 that some of the
functions take on several parameters. This
acknowledges the diversity of functions available
to an evolutionary algorithm and the variety of

Figure 1: Algorithm template for evolutionary algo-
rithms. Pi is the population at generation i. x and j are
temporary variables. The other functions are described
in the text.

begin
i := 0; {Initialize generation variable}
P0 := I(); {Create initial population}
P0 := F(P0, i); {Evaluate initial population}
while not H(Pi, i) do {Do until Halt criterion is true)

begin
i := i + 1; {Construct a new population}
for j=1 to L(Pi, i) do {Next Population length}

begin
x := S(Pi-1, i, j); {Select from last population}
Pi := Pi + R(x, Pi, i, j); {Add an offspring ofx to Pi}

end;
Pi := F(Pi, i); {Evaluate the new population}

end;
end;

variables on which these functions can depend.
Typically, many of these parameters are ignored
by the actual function.

Distinctions between evolutionary algorithms
arise through the diversity of characteristics found
in their respective component functions. For
instance, evolutionary programs and genetic algo-
rithms differ most pointedly in the philosophy of
their respective reproduction functions. The repro-
duction function used in genetic algorithms mod-
els evolution at the level of an individual’s genetic
composition while the reproduction function in
evolutionary programming employs a species-ori-
ented model. Both models of evolution are appli-
cable to different classes of problems that require
the specific strengths and weaknesses of one
model over the other. For a more complete discus-
sion of evolutionary algorithms and their various
components see Angeline (1993).

In spite of these differences, the reproduction
functions of evolutionary programming and
genetic algorithms share a much stronger similar-
ity. Both replicate members of the population
based on their fitness relative to the population.
The next section discusses the strength of this sim-
ple commonality among all evolutionary algo-
rithms.

3. The Empirical Strength of
Reproduction

One of the common links between all evolutionary
algorithms is the reproduction of current popula-
tion members to create the subsequent population.
This basic operation supplies a strong empirical
component to all evolutionary algorithms which
has not been fully exploited or explored.

Holland (1975) fitness proportionate reproduction
as a major component of his schema theorem. A
schema is a set of bit string patterns across the
assumed fixed-width binary string representation
of the population. Schemata take the form (1 + 0 +
#)n wheren is the length of the binary string repre-
sentation. A “1” or a “0” at positioni in a schema
signifies that each string in the set represented by
the schema contains that value at that position. A
“#” at position i designates strings that contain

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 3

either a “1” or a “0” at positioni are in the set.
Notice that the possible schemata for a given
lengthn do not cover all possible subsets of binary
strings of lengthn. For instance, there is no
schema of length 4 that represents the set {0101,
1010}.

We generalize from the concept of a schema toany
representational feature,µ, of the individual. A
representational feature can be any aspect of the
representation as long as it is copied from parent to
offspring during reproduction. For instance, it
could be any subset of possible values for particu-
lar positions in the representations or something
less tangible like a constraint on the variance for a
particular set of real components.

Let Λ(µ, t) be the set of population members at
time t which contain the featureµ. Also, letσ(i, t)
be the probability that population memberi will be
selected at generationt to be in the next genera-
tion. Generally,σ(i, t) will be correlated with the
fitness of the individual. The expected number of
population members at timet+1 which contain
featureµ is given by:

(1)

wheren is the population size andε(µ, t) is the
probability that the feature will be disrupted dur-
ing reproduction. We can rewrite equation (1) as
follows:

(2)

(3)

whereσ(µ, t) is the average probability of selec-
tion for a member ofΛ(µ, t). Notice that whenµ is
a schema,σ is defined in accordance with fitness
proportionate reproduction andε is defined to
adjust for crossover and point mutation we recover
the lower bound expression from the schema theo-
rem.

m µ t 1+(,) n 1 ε− µ t,()[] σ i t,()
i Λ µ t,()∈
∑=

m µ t 1+(,) n 1 ε− µ t,()[]
m µ t,()
m µ t,() σ i t,()

i Λ µ t,()∈
∑=

m µ t 1+(,) n 1 ε− µ t,()[] m µ t,() σ µ t,()=

The interest in equation (3) for general feature
propagation stems from its characterization of the
properties of reproduction as the relative fitness of
the population members with and withoutµ
change. As long asσ(µ, t) > 1/(n - nε(µ, t)), the
number of population members with the feature is
likely to be larger in the next generation. On the
other hand, ifσ(µ, t) < 1/(n - nε(µ, t)) then the
number of population members containingµ is
likely to decrease. In other words, as long asµ pre-
sents a sufficient selection advantage to the sub-
population that contains it, additional population
members will tend to acquire the feature. Whenµ
is no longer an advantage, the feature will be
removed from the population automatically by the
natural dynamics of the evolutionary algorithm.

Equation (3) characterizes the empirical power of
the reproductive process used in all evolutionary
algorithms. It is this strength that separates EAs
from other search and optimization techniques. Of
equal importance is the generality and exploitabil-
ity of this reproductive process. For example,
Davis (1991) and Bäck (1991) describe different
methods for evolving the parameters for manipu-
lating population members for two different evolu-
tionary algorithms. We wish to tap into this
empirical component of evolutionary algorithms
to address the unwarranted manipulation of imper-
ative components of an individual.

4. Evolutionary Module Acquisition

Evolutionary module acquisition relies on the
empirical strength of reproduction in an evolution-
ary algorithm to acquire problem specific group-
ings of the representational components in
developing population members. These groupings
designate components of the representation which
are to be immune from manipulation by the repro-
ductive operators. This forces the grouped compo-
nents to be copied “as is” into all subsequent
offspring.

To identify appropriate modules in the evolving
individuals, we add two operators to the reproduc-
tion process. The first operator, which we call
compress, selects a portion of the offspring to pre-
serve from future manipulation. The collection of
components that are compressed together we call a

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 4

module. The second operator,expand, is the oppo-
site of compress. Expand releases a portion of the
compressed components so they can once again be
manipulated by the reproduction operators. The
opposite actions of these operators is important to
allow the modularization to be non-linearly adapt-
able to the changing population.

Because there is no single, general method of
identifying what portions of the individual should
be compressed, the composition of each module is
selected at random. By the arguments of the last
section, if a randomly created module protects cru-
cial components of the representation from modifi-
cation, thus posing a benefit to the reproductive
ability of the individual, then this modularization
will be passed on to its offspring. Likewise, if a
module is detrimental to the member’s prolifera-
tion, then that module will be selected out of the
population. Referring back to equation (3), the
components in the module become the feature of
interest,µ, andε(µ, t) = 0 since the reproductive
operators can not modify the contents of the mod-
ule. Equation (3) then shows thatσ(µ, t) > 1/n is a
sufficient average selection probability to propa-
gate the module through the population.

Exactly how the compress and expand operators
modify the individual to signify modules is spe-
cific to the representation. The only guideline is
that the manipulation should be transparent to the
fitness function. In other words, the fitness of an
individual before and after any series of compres-
sions and expansions should never change. Com-
pression and expansion perform only a syntactic
manipulation to the individual and have no seman-
tic side effects. The side effects of these operators
apply only to the reproduction of the individual.

There are two different methods we have identi-
fied for the compression and expansion of mod-
ules. The first selects any subset of uncompressed
components in the individual for compression and
any subset of compressed components for expan-
sion. No care is given to ensure that the composi-
tion of a compressed module is preserved and
uncompressed as a unit. We call this simple form
of compressionfreezingsince the only effect of a
compression is to “freeze” the values of the com-
pressed representational components. Once a com-

ponent is compressed, no further compress
operations will effect it.Atomization, a second
form of compression, is more true to the operator’s
name. In this method, the compress operator
selects a portion of the representation, freezes it
and then treats the entire compressed module as a
new component of the representation. Because the
composite module is now an atomic component of
the representation, it is available for manipulation
as a single representational unit. This includes
additional compressions into other modules.
Unlike freezing, this second type of compression
creates a hierarchical organization of modules, i.e.
modules within modules. In the following sections
we discuss the advantages of both methods of
compression on specific representations.

5. Freezing Finite State Machines

To illustrate the effects of thefreezing form of
compression, we chose a control problem
described in Jefferson et. al. (1992) called the arti-
ficial ant problem. The goal of this task is to
evolve a controller to guide an artificial ant along
the path of food shown in Figure 2 within 200 time
steps. The path rests on a 32x32 toroidal grid and
contains a total of 89 pieces of food, shown in
black in the figure. The ant is equipped with a sin-

Start

Figure 2: Path of food on the toroidal grid used in the
ant problem. Simulated ant starts at the labeled position
facing EAST. Black squares are “food” which disap-
pear after the ant enters that position. Grey squares
identify the quickest route through the path and cannot
be seen by the ant. There are 89 positions with food in
the path.

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 5

gle sensor that can detect the presence or absence
of food in the square directly in front of it. Actua-
tion of the ant is signaled through four possible
action commands: move one square forward
(MOVE), spin left 90o (LEFT), spin right 90o

(RIGHT), or do nothing (NOOP). On each time
step, the ant executes an implicit sense/act loop
where an input of FOOD or NOFOOD is given to
the ant and it executes a single action command.
Once the ant enters a position on the grid with
food, the food is removed and a point of fitness is
awarded.

While this problem appears simple, the criterion of
completing the path within 200 time steps makes it
rather difficult. For instance, the simplistic path
following strategy represented by the finite state
machine (FSM) in Figure 3 requires a total of 314
time steps to traverse the path. In order for the ant
to receive the maximum fitness, it must induce a
controller tailored to the specifics of the path.

Jefferson et. al. (1992) used a genetic algorithm to
compare the evolution of bit strings which were
interpreted as either finite state machines (FSMs)
or recurrent neural networks depending on the
experiment. Jefferson et. al. (1992) used a popula-
tion size of 65,536 and replaced 95% of the popu-
lation each generation for both representations in
both experiments. Evolving an FSM controller for
this problem took 52 generations while the neural
network controller took 94 generations to emerge.
Thus their genetic algorithm searched a total of

NoFood/Right

NoFood/Right

NoFood/Right

NoFood/Right

Food/Move

Food/Move

Food/Move

Food/Move

Food/Move

NoFood/Move

Figure 3: Simple FSM that traverses the path of food in
314 time steps. The oversized arrow designates the ini-
tial state.

3,303,014 FSMs and 5,917,900 recurrent neural
networks to solve the ant problem.1

In our compression experiments, we evolve FSM
controllers for the ant problem using evolutionary
programming with and without freezing. To com-
press an FSM, a single state and up to 5 transitions
are selected at random and designated as being
“frozen” in the representation. Conversely, expan-
sion “unfreezes” a single randomly selected frozen
state and up to 5 frozen links. No effort was made
to unfreeze components that were frozen at the
same time, each expansion could select any frozen
component at anytime. When creating an offspring
there was a 10% chance that a compression would
be performed and a 20% chance that an expansion
would be performed. The higher expansion rate
was to ensure that if local minima were reached
the number of protected components would
decrease and allow components that had been pre-
viously protected to be mutable again. All com-
pressions and expansions were done to the
offspring prior to the other mutations. At most
75% of the states and 75% of the transitions for
any one FSM were allowed to be frozen at a time.

In order to provide slightly more discriminations
between evolved FSMs, we modified the original
fitness function to be:

(4)

wherefood is the amount of food found by the ant
within 200 time steps andt is the time step on
which the last piece of food was discovered. This
fitness function encodes a preference for FSMs
that acquire the same amount of food in fewer time
steps.

Our method of evolving FSMs is slightly different
than the methods described in Fogel et. al. (1966)
and Fogel (1992). First, during early experiments
with this problem we noticed that the evolutionary
process created individuals with larger and larger
numbers of states until reaching the allowed maxi-

1. See Angeline et. al. (1993) for an evolutionary program
that constructs a recurrent neural network for a variation of
this problem.

food 0.01 1
t

200
−()+

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 6

mum number of 32. In addition, we found that a
disproportionate percentage of the population
would acquire the same fitness for a considerable
amount of time. In these early experiments we
were using an equal chance between adding a
state, deleting a state or modifying a transition.

Because we knew the ant problem could be solved
in far fewer than the 32 state maximum, we tried
to determine exactly what was causing the popula-
tion to consistently acquire the maximum number
of states and why so many retained the same fit-
ness. After analyzing a few evolved machines it
became apparent that a large percentage of the
states were in fact unused. We deduced that the
additional states ensure a high percentage of self-
replication for the FSMs. By including a large
number of superfluous states, whenever a state
deletion or manipulation of a transition is per-
formed, there is a better chance that the offspring
will retain the ability of its parent. This accounts
for the inordinate number of machines with the
same fitness and maximum number of states.

To discourage such unproductive manipulations,
we altered the mutation of an FSM so that there
was an even chance of mutating either a state or a
transition. If a state mutation is selected, the
chance of deleting a state as opposed to adding a
state is given by:

(5)

wherenumstates is the number of states in the par-
ent FSM andmaxstates is the maximum number of
states allowed for the problem. Thus if the number
of states in the parent is less than half that allowed
for the problem, there is a greater chance of adding
a state than deleting a state. When the number of
states in the machine is more than half of the total
number allowed, there is a preference for deleting
states. While this did not entirely curb the ten-
dency for the runs to approach the maximum num-
ber of states, it did allow for a consistently broader
distribution of sizes in the population and
improved the overall acquisition times.

P delete() numstates
maxstates

=

The number of mutations made to a parent to cre-
ate an offspring in our experiments is given by the
function:

(6)

wheresize is the number of transitions in the par-
ent FSM andN(0, T) is a gaussian random variable
with mean 0 and variance proportional to the fit-
ness “temperature” of the parent. Our method of
selection was the competitive method described in
Fogel (1992) with the exception that if the two
population members being compared had the same
fitness, a “winner” was chosen randomly. The
number of competitions per individual was 5. The
population was sorted by their competitive selec-
tion scores with the best half of the population
retained and replicated to create the following gen-
eration. Each population member created exactly
one offspring for the next generation. A population
size of 300 machines was used for each run.

To determine the effect of simple compression on
the evolution of FSM controllers for the ant prob-
lem, eight runs were executed, four with compres-
sion and four without. Table 1 shows the total
number of FSMs constructed in each run until one
FSM in the population guided the ant to all 89
pieces of food within the allotted 200 time steps.
The number of generations created for each run is
listed in the parentheses. The runs are sorted into

1 round abs N 0 T,() size×[]()+

Run

Number of FSMs Evaluated
(Number of Generations) Speed

UpWithout
Compression

With
Compression

1
187,950
(1251)

63,000
(418)

2.99

2
269,850
(1797)

152,100
(1012)

1.77

3
331,200
(2206)

156,600
(1042)

2.12

4
734,850
(4897)

607,950
(4051)

1.20

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 7

increasing order so that the fastest and slowest of
both methods are compared directly. Speed-up,
shown in the last column, was computed by divid-
ing the result from the run without compression by
the result of the run with compression. Two addi-
tional runs, one with compression and one with-
out, did not find a solution within the maximum
5000 generations and have not been included in
the table.

First notice that all of the runs, both with and with-
out compression, evolved solutions to the ant
problem more quickly than Jefferson et. al. (1992).
The improvements range between factors of 52
and 4.5. Such improvement is often the case when
converting from a genetic algorithm using binary
representations to an evolutionary program. This
is because the added complication of a function to
convert between the genotypic and phenotypic
representations in the genetic algorithm is avoided
in evolutionary programming. Whether or not the
differences between the two evolutionary algo-
rithms is solely responsible for the improved
results or if our modified fitness function also con-
tributed to the speed-up is unknown. Regardless,
the improvement over Jefferson et. al. (1992) is
noteworthy.

Next, notice that each of the runs show speed-up
in favor of compression. An explanation for these
results is that the freezing process identifies and
protects components that are important to the via-
bility of the offspring. Subsequent mutations are
forced to alter only less crucial components in the
representation. Figure 4 shows the evolved FSM
from run 1 with compression. Frozen transitions
and states are shown in grey. This FSM guides the
ant to all 89 pieces of food in 193 time steps.
There are a total of 22 states in this solution only
eleven of which are used to solve the problem.
Twelve of the states and 23 of the 44 possible tran-
sitions are frozen in this solution. It is difficult to
deduce any significance for the frozen components
in this FSM. The non-determinism of our acquisi-
tion method places an emphasis on whatever gets
results. One observation is that states 1 through 6
and the transitions between them are largely pro-
tected from mutation. This portion of the FSM is
responsible for traversing the continuous stretches
of food of the path. Mutation of one of these states

or transitions has a high probability of creating an
offspring far below optimal.

The variation in the times for the runs using com-
pression illustrate an important point of this tech-
nique. How well modularization works on any
given run is determined by the types of modules it
acquires. In some cases, as in run #1 from the
table, the modularization will quickly find a good
compression and expedite the discovery of a solu-
tion. In other cases, simple freezing will protect a
portion of the representation that is in need of
mutation and allow it to remain unmodified. Occa-
sionally this inhibits the evolutionary process and
cause longer rather than shorter acquisition times.
But such inhibition will be rare if the representa-
tion is of sufficient flexibility. Assuming this,
modifications which “work around” inappropri-
ately frozen components will be discovered.

6. Evolving Modular Programs

A second method we have investigated for com-
pression isatomization. In this method we com-
press the selected components into a module so
that they are associated together as a single atomic
representational unit. Typically, the components
selected for this type of compression are chosen to
reflect some naturally exploitable modularity in

F/M F/M
F/M

N/M

1

2

3
N/R

4

F/M

5

6

F/M

F/M

N/L

7
N/M8N/L

9

N/LN/R

11

10

N/M

N/M
N/M

F/M

N/R

Figure 4: FSM evolved with compression in 420 genera-
tions. Frozen states and transitions are shown in grey.
Input symbol set is (F, N) and output symbol set is (M, L,
R, N) as described in the text. Extraneous states and tran-
sitions are not shown. The initial state is indicated by the
oversized arrow.

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 8

the representation’s syntax. For instance, Figure 5
shows the effect of this compression operator on
the labeled tree representation used in the Genetic
Library Builder (GLiB) (Angeline and Pollack
1993). GLiB is a genetic algorithm which evolves
modular expression trees to solve problems. The
expression trees are interpreted as Lisp programs
and are executed to produce a behavior in an envi-
ronment. The behavior of a program in the envi-
ronment provides is rated by the fitness function,
much as in the evaluation of FSMs in evolutionary
programming. The expression tree representation
for genetic algorithms is thoroughly investigated
in Koza (1992).

The compression operator for GLiB selects a sub-
tree of the tree representation, removes it from the
tree and defines a new function using the extracted
subtree as the definition, as shown in the figure. A
call to the new function is placed in the tree at the
point where the subtree was removed. Any portion
of the subtree that extends below a randomly
selected depth is clipped and used as a parameters
to the newly defined function. If one of the compo-
nents of the subtree happens to be a call to a com-
pressed function, then it is also compressed. The
syntactic atomicity of the function calls in the rep-
resentation assure that the extracted subtree will
not be altered by mutation or crossover during
reproduction. Expansion in GLiB searches the tree
representation for compressed subtrees and
restores its original structure, thus making it muta-

Figure 5: Compression of tree representation used in
genetic programming. The subtree is removed from the
individual and replaced by a new function call defined
with the removed subtree. The expansion of a compressed
function reverses the process by replacing the com-
pressed function name with the original subtree.

or

d0

d0

not or

d2notand

d1

(defunnewfunc (p1 p2 p3)
(or (not (and p1 p2))

(or (notp3) d2)))

not

compression

newfunc

d1 not

d0

d0

and
and

not

d2

not

d2

ble again. Angeline and Pollack (1993) describes
several experiments using this form of compres-
sion and expansion.

There are two benefits to this more complex form
of module acquisition. First, each compressed
structure becomes a new atomic element of the
representational language. Because the com-
pressed elements contain more primitive compo-
nents, the composite module forms a language
element that is at a higher level of abstraction from
components which comprise it. These abstractions
emerge directly from the interaction of reproduc-
tion with the task environment. This allows “suc-
cessful” hierarchical abstractions to be motivated
by constraints in the environment. Furthermore,
since each individual can have a unique collection
of compressed modules, multiple abstractions for
the problem will be explored simultaneously in the
population.

The second benefit of atomization of modules
arises once a general abstraction is made. In the
modular programs evolved in Angeline and Pol-
lack (1993) it was often the case that modules
would be copied by crossing over two individuals
with the same abstraction. The additional copies of
the modules were applied to other related portions
of the task. The ability to copy an evolved abstract
module and use it for multiple aspects of a prob-
lem is a powerful mechanism for an evolutionary
algorithm since it takes direct advantage of the
decomposability of a problem into easier subprob-
lems.

Given the mutation only reproductive mechanisms
of evolutionary programming, it would be nearly
impossible for two copies of a particularly useful
abstraction to arise within the same individual. In
order for evolutionary programs to take advantage
of multiple applications of representational
abstractions, an operation that copies a com-
pressed component in the individual is required.
One version of such a “split” mutation for an FSM
representation is depicted in Figure 6. In the fig-
ure, a composite state is split into two copies only
one of which retains the original incoming connec-
tions. This is much like a general “add state”
mutation for the FSM representation except the
added state is a composite module.

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 9

An advantage of the “split” mutation for evolu-
tionary programming applications is that the com-
plexity of an individual can grow to meet the
specifications of the problem more quickly. Such
growth should be more manipulatable by the evo-
lutionary program than a randomly generated
module of the same size since the behavior of the
split composite state will generally be immediately
exploitable to some degree. In future work, we
plan to investigate the implications of the “split”
mutation and composite modular representations
in evolutionary programs with both the FSM rep-
resentation and GNARL, an evolutionary program
that constructs recurrent neural networks (Ange-
line et al. 1993).

7. Conclusions

Advanced computational methods are typically
based on analytical solutions to a general class of
problems. But for a solution to be analytical, it
must be devoid of information about specific prob-
lems. Hence, their generality prevents them from

(a)

(b)

Figure 6: Illustration of proposed “split” mutation for
evolutionary programming. (a) An FSM with a compos-
ite module. States and links contained in the composite
module are frozen. (b) Result of “split” mutation on
composite module. The entire module is copied and the
external links are preserved. Links to the new composite
module would need to result from subsequent mutations.

exploiting problem specific solutions. Conversely,
knowledge-based methods encode problem spe-
cific approaches that must be recompiled for each
new problem, limiting their applicability to
domains that have been previously engineered.
Both of these approaches are untenable for consis-
tently determining which components of an evolv-
ing individual in an evolutionary algorithm are
necessary to the survival of subsequent offspring.

The empirical strength of the reproductive process
inherent in evolutionary algorithms can serve as a
powerful alternative to analytical and knowledge-
based methods. Evolutionary module acquisition
relies on this strength of evolutionary algorithms
to determine problem specific modularizations of
developing representations. The modularization of
representational components and their protection
from mutation can be viewed as removing unnec-
essary dimension from the search space on the
assumption that the component associated with the
dimension is set adequately. The dynamics of
compressions and expansions described above
remove and introduce search dimensions more or
less in accordance with the specific development
of each individual. Problem specific modulariza-
tions of the representation emerge through the
interaction of the evolutionary algorithm directly
with the problem. This is the purest form of
knowledge acquisition.

Other general features of evolving individuals
besides modules should also be acquirable by
methods similar to those described above. In the
future, we hope to demonstrate that many of the
methods employed by artificial intelligence can be
approximated with similar emergent methods.

8. Acknowledgments

This work was supported by the Office of Naval
Research under contract #N00014-92-J-1195. We
thank Greg Saunders for feedback and proof read-
ing assistance. We are also indebted to the mem-
bers of the Laboratory for Artificial Intelligence
Research (LAIR) at The Ohio State University for
allowing us to usurp their workstations for indeter-
minate amounts of time. Finally, thanks to David
Fogel for his many clarifications on all things EP.

Evolutionary Module Acquisition Angeline and Pollack

The Ohio State University February 24, 1993 10

9. References

Angeline, P. (1993) “An analysis of evolutionary
algorithms”, Submitted toInternational Confer-
ence on Genetic Algorithms 1993.

Angeline, P. and Pollack, J. (1993) “Coevolving
high-level representations,”Artificial Life III ,
Santa Fe Institute Studies in the Sciences of Com-
plexity. To Appear.

Angeline, P., Saunders, G. and Pollack, J. (1993)
“An evolutionary algorithm that constructs recur-
rent neural networks,” LAIR Technical Report
#93-PA-GNARLY, Submitted toIEEE Transac-
tions on Neural Networks Special Issue on Evolu-
tionary Programming.

Bäck, T., Hoffmeister, F. and Schwefel, H.-P.
(1991) “A survey of evolution strategies,”Pro-
ceedings of the Fourth International Conference
on Genetic Algorithms, R.K. Belew and L.B.
Booker (eds.), Morgan Kaufmann Publishers, San
Mateo.

Davis, L. (ed.) (1991)Handbook of Genetic Algo-
rithms, New York, Van Nostrand Reinhold.

Fogel, D. (1992) Evolving Artificial Intelligence,
Doctoral dissertation, University of California,
San Diego.

Fogel, L., Owens, A., and Walsh, M. (1966) Artifi-
cial Intelligence through Simulated Evolution.
John Wiley & Sons, New York.

Goldberg, D. (1989) Genetic Algorithms in
Search, Optimization, and Machine Learning,
Reading, MA: Addison-Wesley Publishing Com-
pany, Inc.

Grefensttete, J. (1989) “Incorporating problem
specific knowledge into genetic algorithms”, In
Genetic Algorithms and Simulated Annealing, L.
Davis editor, Morgan Kaufman.

Holland, J. (1975)Adaptation in Natural and Arti-
ficial Systems, Ann Arbor, MI: The University of
Michigan Press.

Jefferson, D., R. Collins, C. Cooper, M. Dyer, M.
Flowers, R. Korf, C. Taylor, and A. Wang. (1992)
“Evolution as a Theme in Artificial Life: The
Genesys/Tracker System.” InArtificial Life II,
edited by C. Langton, C. Taylor, J. Farmer and S.
Rasmussen. Reading, MA: Addison-Wesley Pub-
lishing Company, Inc.

Koza, J. (1992)Genetic Programming,Cam-
bridge, MA: MIT Press.

Michalewicz, Z. (1993) “A hierarchy of evolution
programs: an experimental study”,Evolutionary
Computation, 1 (1), To appear March 1993.

Rich, E. (1983)Artificial Intelligence, New York:
McGraw Hill.

