
The Induction of Dynamical Recognizers
Jordan B. Pollack

Laboratory for AI Research &
Computer & Information Science Department

The Ohio State University
2036 Neil Avenue

Columbus, OH 43210
(614) 292-4890

pollack@cis.ohio-state.edu

ABSTRACT

A higher order recurrent neural network architecture learns to recognize and gen-

erate languages after being "trained" on categorized exemplars. Studying these networks

from the perspective of dynamical systems yields two interesting discoveries: First, a

longitudinal examination of the learning process illustrates a new form of mechanical

inference: Induction by phase transition. A small weight adjustment causes a "bifurca-

tion" in the limit behavior of the network. This phase transition corresponds to the onset

of the network’s capacity for generalizing to arbitrary-length strings. Second, a study of

the automata resulting from the acquisition of previously published training sets indicates

that while the architecture is not guaranteed to find a minimal finite automaton consistent

with the given exemplars, which is an NP-Hard problem, the architecture does appear

capable of generating non-regular languages by exploiting fractal and chaotic dynamics.

I end the paper with a hypothesis relating linguistic generative capacity to the behavioral

regimes of non-linear dynamical systems.

Table 1
iiiiiiiiiiiiiiiiiiii
ACCEPT REJECTiiiiiiiiiiiiiiiiiiii
1 0
0 1 0 0
1 0 1 1
1 0 1 1 0 1 0 1
0 0 1 0 1 0 1
1 1 1 1 0 0 0 1
0 1 0 1 1iiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c



2 J. B. Pollack

1. Introduction

Consider the two categories of binary strings in Table 1. After brief study, a human

or machine learner might decide to characterize the "accept" strings as those containing

an odd number of 1’s and the "reject" strings as those containing an even number of 1’s.

The language acquisition problem has been around for a long time. In its narrowest

formulation, it is a version of the inductive inference or "theory from data" problem for

syntax: Discover a compact mathematical description of string acceptability (which gen-

eralizes) from a finite presentation of examples. In its broadest formulation it involves

accounting for the psychogical and linguistic facts of native language acquisition by

human children, or even the acquisition of language itself by Homo Sapiens through

natural selection (Lieberman, 1984; Pinker & Bloom, 1990)

The problem has become specialized across many scientific disciplines, and there is

a voluminous literature. Mathematical and computational theorists are concerned with

the basic questions and definitions of language learning (Gold, 1967), with understanding

the complexity of the problem (Angluin, 1978; Gold, 1978), or with good algorithms

(Berwick, 1985; Rivest & Schapire, 1987). An excellent survey of this approach to the

problem has been written by (Angluin & Smith, 1983). Linguists are concerned with

grammatical frameworks which can adequately explain the basic fact that children

acquire their language (Chomsky, 1965; Wexler & Culicover, 1980), while psychologists

and psycholinguists are concerned, in detail, with how an acquisition mechanism sub-

stantiates and predicts empirically testable phenomena of child language acquisition.

(MacWhinney, 1987; Pinker, 1984).

My goals are much more limited than either the best algorithm or the most precise

psychological model; in fact I scrupulously avoid any strong claims of algorithmic

efficiency, or of neural or psychological plausibility for this initial work. I take as a cen-

tral research question for connectionism:

How could a neural computational system, with its slowly-changing structure,
numeric calculations, and iterative processes, ever come to possess linguistic
generative capacity, which seems to require dynamic representations, sym-
bolic computation, and recursive processes?

Although a rigorous theory may take some time to develop, the work I report in this

paper does address this question. I expose a recurrent higher order back-propagation net-

work to both positive and negative examples of boolean strings, and find that although



Dynamical Recognizers 3

the network does not converge on the minimal-description finite state automaton for the

data (which is NP-Hard), it does induction in a novel and interesting fashion, and

searches through a hypothesis space which, theoretically, is not constrained to machines

of finite state.

These results are of import to many related neural models currently under develop-

ment, e.g. (Elman, 1990; Giles et al., 1990; Servan-Schreiber et al., 1989), and ultimately

relates to the question of how linguistic capacity can arise in nature.

Of necessity, I will make use of the terminology of non-linear dynamical systems

for the remainder of this article. This terminology is not (yet) a common language to

most computer and cognitive scientists and thus warrants an introduction. The view of

neural networks as non-linear dynamical systems is commonly held by the physicists

who have helped to define the modern field of neural networks (Hopfield, 1982; Smolen-

sky, 1986), although complex dynamics have generally been suppressed in favor of more

tractable convergence (limit point) dynamics. But chaotic behavior has shown up repeat-

edly in studies of neural networks (Derrida & Meir, 1988; Huberman & Hogg, 1987;

Kolen & Pollack, 1990; Kurten, 1987; van der Maas et al., 1990), and a few scientists

have begun to explore how this dynamical complexity could be exploited for useful pur-

poses, e.g. (Hendin et al., 1991; Pollack, 1989; Skarda & Freeman, 1987).

In short, a discrete dynamical system is just an iterative computation. Starting in

some "initial condition" or state, the next state is computed as a mathematical function of

the current state, sometimes involving parameters and/or input or noise from an environ-

ment. Rather than studying the function of the computations, much of the work in this

field has been concerned with explaining universal temporal behaviors. Indeed, iterative

systems have some interesting properties: Their behavior in the limit reaches either a

steady state (limit point), an oscillation (limit cycle), or an aperiodic instability (chaos).

In terms of computer programs, these three "regimes" correspond, respectively, to those

programs which halt, those which have simple repetitive loops, and those which have

more "creative" infinite loops, such as broken self-modifying codes, an area of mechani-

cal behavior which has not been extensively studied. When the state spaces of dynamical

systems are plotted, these three regimes have characteristic figures called "attractors":

Limit points show up as "point attractors", limit cycles as "periodic attractors", and chaos

as "strange attractors", which usually have a "fractal" nature. Small changes in



4 J. B. Pollack

controlling parameters can lead through "phase transitions" to these qualitatively dif-

ferent behavioral regimes; a "bifurcation" is a change in the periodicity of the limit

behavior of a system, and the route from steady-state to periodic to aperiodic behavior

follows a universal pattern. Finally, one of the characteristics of chaotic systems is that

they can be very sensitive to initial conditions, and a slight change in the initial condition

can lead to radically different outcomes. Further details can be found in articles and

books on the field, e.g. (Crutchfield et al., 1986; Devaney, 1987; Gleick, 1987; Grebogi et

al., 1987)

2. Automata, Recurrent Networks, and Dynamical Recognizers

I should make it clear from the outset that the problem of inducing some recognizer

for a finite set of examples is "easy", as there are an infinite number of regular languages

which account for a finite sample, and an infinite number of automata for each language.

The difficult problem has always been finding the "minimal description," and no solution

is asymptotically much better than "learning by enumeration" -- brute-force searching of

all automata in order of ascending complexity. Another difficult issue is the determina-

tion of grammatical class. Because a finite set of examples does not give any clue as to

the complexity class of the source language, one apparently must find the most parsi-

monious regular grammar, context-free grammar, context-sensitive grammar, etc., and

compare them. Quite a formidable challenge for a problem-solver!

Thus, almost all language acquisition work has been done with an inductive bias of

presupposing some grammatical framework as the hypothesis space. Most have attacked

the problem of inducing finite-state recognizers for regular languages, e.g., (Feldman,

1972; Tomita, 1982).

A Finite State Recognizer is a quadruple {Q, Σ,δ,F}, where Q is a set of states (q 0

denotes the initial state), Σ is a finite input alphabet, δ is a transition function from

Q×Σ ⇒ Q and F is a set of final (accepting) states, a subset of Q. A string is accepted by

such a device, if, starting from q 0, the sequence of transitions dictated by the tokens in

the string ends up in one of the final states.

δ is usually specified as a table, which lists a new state for each state and input. As

an example, a machine which accepts boolean strings of odd parity can be specified as

Q={q 0,q 1}, Σ={0,1}, F={q 1}, and δ as shown in table 2.



Dynamical Recognizers 5

Table 2
iiiiiiiiiiiiiiii

Input
State 0 1iiiiiiiiiiiiiiii
q0 q0 q1
q1 q1 q0iiiiiiiiiiiiiiiicc

c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Although such machines are usually described with fully explicit tables or graphs,

transition functions can also be specified as a mathematical function of codes for the

current state and the input. For example, variable-length parity can be specified as the

exclusive-or of the current state and the input, each coded as a single bit. The primary

result in the field of neural networks is that under simplified assumptions, networks have

the capacity to perform arbitrary logical functions, and thus to act as finite-state controll-

ers (McCulloch & Pitts, 1943; Minsky, 1972). In various configurations, modern mul-

tilayer feed-forward networks are also able to perform arbitrary boolean functions (Hor-

nik et al., 1990; Lapedes & Farber, 1988; Lippman, 1987). Thus when used recurrently,

these networks have the capacity to be any finite state recognizer as well. The states and

tokens are assigned binary codes (say with one bit indicating which states are in F), and

the code for the next state is simply computed by a set of boolean functions of the codes

for current state and current input.

But the mathematical models for neural nets are "richer" than boolean functions,

and more like polynomials. What does this mean for automata? In order not to confuse

theory and implementation, I will first define a general mathematical object for language

recognition as a forced discrete-time continuous-space dynamical system plus a precise

initial condition and a decision function. The recurrent neural network architecture

presented in the next section is a constrained implementation of this object.

By analogy to a finite-state recognizer, a Dynamical Recognizer is a quadruple

{Z,Σ,Ω,G}, where Z ⊂ Rk is a "space" of states and zk(0) is the initial condition. Σ is a

finite input alphabet. Ω is the "dynamic," a parameterized set (one for each token) of

transformations on the space ωσi
:Z→Z, and G (Z)→{0,1} is the "decision" function.

Each finite length string of tokens in Σ* , σ1, σ2,
. . . σn , has a final state associated

with it, computed by applying a precise sequence of transformations to the initial state:

zk(n) = ωσn
( . . . (ωσ2

(ωσ1
(zk(0))))). The language accepted and generated1 by a dynami-

cal recognizer is the set of strings in Σ* whose final states pass the decision test.
hhhhhhhhhhhhhhh
1 To turn a recognizer into a generator, simply enumerate the strings in Σ* and filter out those the
recognizer rejects.



6 J. B. Pollack

In the "Mealy Machine" formulation (Mealy, 1955), which I use in the model

below, the decision function applies to the penultimate state and the final token:

G (zk(n −1),σn)→{0,1}. Just as in the case for finite automata, labeling the arcs rather

than the nodes can often result in smaller machines.

There are many variants possible, but both Ω and G must be constrained to avoid

the vacuous case where some ω or G is as powerful as a Turing Machine. For purposes

of this paper, I will assume that G is as weak as a conventional neural network decision

function, e.g. a hyperplane or a convex region, and that each ω is as weak as a linear or

quasi-linear transformation. G could also be a graded function instead of a forced deci-

sion, which would lead to a "more-or-less" notion of string acceptability, or it could be a

function which returned a more complex categorization or even a representation, in

which case I would be discussing dynamical parsers. Finally, one could generalize from

discrete symbols to continuous symbols (MacLennan, 1989; Touretzky & Geva, 1987),

or from discrete-time to continuous-time systems (Pearlmutter, 1989; Pineda, 1987).

There are some difficult questions which can be asked immediately about dynamical

recognizers. What kind of languages can they recognize and generate? How does this

mathematical description compare to various formal grammars on the grounds of parsi-

mony, efficiency of parsing, neural and psychological plausibility, and learnability? I do

not yet have the definitive answers to these questions, as this paper is the first study, but

will touch on some of these issues later.

One thing is clear from the outset, that even a linear dynamical recognizer model

can function as an arbitrary finite state automaton. The states of the automaton are

"embedded" in a finite dimensional space such that a linear transformation can account

for the state transitions associated with each token. Consider the case where each of k

states is a k-dimensional binary unit vector (a 1-in-k code) Each ωσi
is simply a permuta-

tion matrix which "lists" the state transitions for each token, and the decision function is

just a logical mask which selects those states in F. It is perhaps an interesting theoretical

question to determine the minimum dimensionality of such a linear "embedding" for an

arbitrary regular language.

With the introduction of non-linearities, more complex grammars can also be

accounted for. Consider a one-dimensional system where Z is the unit line, z 0 = 1, G

tests if z (n)>.75, and Σ={L,R}. If the transformation ωL is "multiply z by 0.5" and ωR is



Dynamical Recognizers 7

"multiply z by 2 modulo 2" (which only applies when z(i) is 0 or 1), then the recognizer

accepts the balanced parentheses language. In other words, it is just as mathematically

possible to embed an "infinite state machine" in a dynamical recognizer as it is to embed

a finite state machine. I will return to these issues in the conclusion.

To begin to address the question of learnability, I now present and elaborate upon

my earlier work on Cascaded Networks (Pollack, 1987a), which were used in a recurrent

fashion to learn parity and depth-limited parenthesis balancing, and to map between word

sequences and propositional representations (Pollack, 1990).

3. The Model

A Cascaded Network is a well-behaved higher-order (Sigma-Pi) connectionist

architecture to which the back-propagation technique of weight adjustment (Rumelhart et

al., 1986) can be applied. Basically, it consists of two subnetworks in a master-slave rela-

tionship: The function (slave) network is a standard feed-forward network, with or

without hidden layers. However, the weights on the function network are dynamically

computed by the linear context (master) network. A context network has as many out-

puts as there are weights in the function network. Thus the input to the context network is

used to "multiplex" the function computed, a divide and conquer heuristic which can

make learning easier.

--------------------------------

Figure 1 near here

--------------------------------

Figure 1. A Sequential Cascaded Network. The outputs of the master net (left)
are the weights in the slave net (right), and the outputs of the slave net are
recurrent inputs to the master net.

When the outputs of the function network are used as recurrent inputs to the context

network, a system can be built which learns to associate specific outputs for variable

length input sequences. A block diagram of a Sequential Cascaded Network is shown in

Figure 1. Because of the multiplicative connections, each input is, in effect, processed by

a different function. Given an initial context, zk(0) (all .5’s by default), and a sequence

of inputs, yj(t), t = 1...n, the network computes a sequence of output/state vectors,

zi(t), t= 1...n by dynamically changing the set of weights, wij(t). Without hidden units,

the forward-pass computation is:



8 J. B. Pollack

wij(t) =
k
Σ wijk zk(t −1)

zi(t) = g(
j
Σ wij(t) yj(t))

which reduces to:

zi(t) = g(
j
Σ

k
Σ wijk zk(t−1) yj(t)) (1)

where g(v)= 1/1+e −v is the usual sigmoid function used in back-propagation systems.

In previous work, I assumed that a teacher could supply a consistent and generaliz-

able final-output for each member of a set of strings, which turned out to be a significant

overconstraint. In learning a two-state machine like parity, this did not matter, as the 1-

bit state fully determines the output. However, for the case of a higher-dimensional sys-

tem, we may know what the final output of a system should be, but we don’t care what

its final state is.

Jordan (1986) showed how recurrent back-propagation networks could be trained

with "don’t care" conditions. If there is no specific target for an output unit during a par-

ticular training example, simply consider its error gradient to be 0. This will work, as

long as that same unit receives feedback from other examples. When the don’t-cares line

up, the weights to those units will never change. One possible fix, so-called "Back Propa-

gation through time" (Rumelhart et al., 1986), involves a complete unrolling of a

recurrent loop and has had only modest success (Mozer, 1988), probably because of

conflicts arising from equivalence constraints between interdependent layers. My fix

involves a single backspace, unrolling the loop only once. For a particular string, this

leads to the calculation of only one error term for each weight (and thus no conflict) as

follows. After propagating the errors determined on only a subset of the weights from the

"acceptance" unit:

∂waj(n)
∂Ehhhhhhh = (za(n) − da) za(n) (1 − za(n)) yj(n)

∂wajk

∂Ehhhhhh =
∂waj(n)

∂Ehhhhhhh zk(n −1)

The error on the remainder of the weights (
∂wijk

∂Ehhhhh , i ≠ a ) is calculated using values from



Dynamical Recognizers 9

the penultimate time step:

∂zk(n−1)
∂Ehhhhhhhh =

a
Σ

j
Σ ∂wajk

∂Ehhhhhh
∂waj(n)

∂Ehhhhhhh

∂wij(n −1)
∂Ehhhhhhhhh =

∂zi(n −1)
∂Ehhhhhhhh yj(n −1)

∂wijk

∂Ehhhhh =
∂wij(n −1)

∂Ehhhhhhhhh zk(n −2)

--------------------------------

Figure 2 near here

--------------------------------

Figure 2. The Backspace Trick. Only partial information is available for com-
puting error gradients on the weights, so the penultimate configuration is used
to calculate gradients for the remaining weights.

The schematic for this mode of back propagation is shown in figure 2, where the

gradient calculations for the weights are highlighted. The method applies with small vari-

ations whether or not there are hidden units in the function or context network, and

whether or not the system is trained with a single "accept" bit for desired output, or a

larger pattern (representing a tree structure, for example (Pollack, 1990)). The important

point is that the gradients connected to a subset of the outputs are calculated directly, but

the gradients connected to don’t-care recurrent states are calculated one step back in

time. The forward and backward calculations are performed over a corpus of variable-

length input patterns, and then all the weights are updated. As the overall squared sum of

errors approaches 0, the network improves its calculation of final outputs for the set of

strings in the training set. At some threshold, for example, when the network responds

with above .8 for accept strings, and below .2 for reject strings, training is halted. The

network now classifies the training set and can be tested on its generalization to a transfer

set.

Unfortunately, for language work, the generalization must be infinite.

4. Induction as Phase Transition

In my original (1987) studies of learning the simple regular language of odd parity,

I expected the network to merely implement "exclusive or" with a feedback link. It turns

out that this is not quite enough. Because termination of back-propagation is usually



10 J. B. Pollack

defined as a 20% error (e.g. logical "1" is above 0.8), recurrent use of this logic tends to a

limit point. In other words, separation of the finite exemplars is no guarantee that the net-

work can recognize sequential parity in the limit. Nevertheless, this is indeed possible as

illustrated by the figures below.

A small cascaded network composed of a 1-input 3-output function net (with bias

connections, 6 weights for the context net to compute) and a 2-input 6-output context net

(with bias connections, 18 weights) was trained on odd parity of a small set of strings up

to length 5 (table 1). Of the 3 outputs, two were fed back recurrently as state, and the

third was used as the accept unit. At each epoch, the weights in the network were saved

in a file for subsequent study. After being trained for about 200 epochs, the network

tested successfully on much longer strings. But it is important to show that the network is

recognizing parity "in the limit".

--------------------------------

Figure 3 near here

--------------------------------

Figure 3. Three stages in the adaptation of a network learning parity. (a) the
test cases are separated, but there is a limit point for 1* at about 0.6. (b) after
another epoch, the even and odd sequences are slightly separated. (c) after a
little more training, the oscillating cycle is pronounced.

In order to observe the limit behavior of a recognizer at various stages of adaptation,

we can observe its response to either Σ* or to a very long "characteristic string" (which

has the best chance of breaking it). For parity, a good characteristic string is the sequence

of 1’s, which should cause the most state changes. Figure 3 shows three stages in the

adaptation of a network for parity, by testing the response of three intermediate

configurations to the first 100 strings of 1*. In the first figure, despite success at separat-

ing the small training set, a single attractor exists in the limit, so that long strings are

indistinguishable. After another epoch of training, the even and odd strings are slightly

separated, and after still further training, the separation is significant enough to drive a

threshold through.

--------------------------------

Figure 4 near here

--------------------------------



Dynamical Recognizers 11

Figure 4. A bifurcation diagram showing the response of the parity-learner to
the first 25 characteristic strings over 200 epochs of training.

This "phase transition" is shown more completely in figure 4. The vertical axis

represents, again, the network’s accept/reject response to characteristic strings, but the

horizontal axis shows the evolution of this response across all 200 epochs. Each vertical

column contains 25 (overlapping) dots marking the network’s response to the first 25

characteristic strings. Thus, each "horizontal" line in the graph plots the evolution of the

network’s response to one of the 25 strings. Initially, all strings longer than length 1 are

not distinguished. From epoch 60 to epoch 80, the network is improving at separating

finite strings. At epoch 84, the network is still failing in the limit, but at epoch 85, the

network undergoes a "bifurcation," where a small change in weights transforms the

network’s limit behavior from limit point to a limit cycle. This phase transition is so

"adaptive" to the classification task that the network rapidly exploits it.

I want to stress that that this is a new and very interesting form of mechanical

induction. Before the phase transition, the machine is in principle not capable of perform-

ing the serial parity task; after the phase transition it is, and this change in abilities is

rapidly exploited by adaptive search. This kind of learning dynamic may be related to

biological evolution through natural selection as well as to insight problem-solving (the

"aha" phenomenon). The induction is not "one shot" or instantaneous, but more like a

"punctuated equilibria" in evolution, where a "pre-adaptive" capacity enables a popula-

tion some advantage which then drives very rapid change. Metcalfe & Wiebe (1987)

report psychological experiments on insight problems in which human subjects measur-

ably undergo a similar cognitive phase transition, reporting no progress on the problems

until the solution appears.

5. Benchmarking Results

Connectionist and other machine learning algorithms are, unfortunately, very sensi-

tive to the statistical properties of the set of exemplars which make up the learning

environment or data-set. When researchers develop their own learning environments,
hhhhhhhhhhhhhhh
1 For the simple low dimensional dynamical systems usually studied, the "knob" or control
parameter for such a bifurcation diagram is a scalar variable; here the control parameter is the
entire 32-D vector of weights in the network, and back-propagation turns the knob.



12 J. B. Pollack

there is a difficult methodological issue bearing on the status of repetitive data-set

refinement, especially when experimental results bear on psychologically measured

statistics, or the evolution of the data-set is considered too irrelevant to publish. This has

correctly led some researchers to include the learning environment as a variable to mani-

pulate (Plunkett & Marchman, 1989). Besides this complicated path, the other methodo-

logically clean choices are to use "real world" noisy data, to choose data once and never

refine it, or to use someone else’s published training data. For this paper, I chose to use

someone else’s.

Tomita (1982) performed elegant experiments in inducing finite automata from

positive and negative exemplars. He used a genetically inspired two-step hill-climbing

procedure, which manipulated 9-state automata by randomly adding, deleting or moving

transitions, or inverting the acceptability of a state. Starting with a random machine, the

current machine was compared to a mutated machine, and changed only when an

improvement was made in the result of a heuristic evaluation function. The first hill-

climber used an evaluation function which maximized the difference between the number

of positive examples accepted and the number of negative examples accepted. The

second hill-climber used an evaluation function which maintained correctness of the

examples while minimizing the automaton’s description (number of states, then number

of transitions) Tomita did not randomly choose his test cases, but instead, chose them

consistently with seven regular languages he had in mind (see table 3). The difficulty of

these problems lies not in the languages Tomita had in mind, but in the arbitrary and

impoverished data sets he used.

Each training environment was simply defined by two sets of boolean strings, which

are given in Table 4. For uniformity, I ran all seven cases, as given, on a sequential cas-

caded network of a 1-input 4-output function network (with bias connections, making 8

weights for the context net to compute) and a 3-input 8-output context network with bias

connections. The total of 32 context weights are essentially arranged as a 4 by 2 by 4

array. Only three of the outputs of the function net were fed back to the context network,

while the fourth output unit was used as the accept bit. The standard back-propagation

learning rate was set to 0.3 and the momentum to 0.7. All 32 weights were reset to ran-

dom numbers between ±0.5 for each run. Training was halted when all accept strings

returned output bits above 0.8 and reject strings below 0.2.



Dynamical Recognizers 13

Table 3
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SET 1 ACCEPT SET 1 REJECT
1 0
1 1 1 0
1 1 1 0 1
1 1 1 1 0 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SET 2 ACCEPT SET 2 REJECT
1 0 1
1 0 1 0 0
1 0 1 0 1 0 1 1
1 0 1 0 1 0 1 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1

1 0 1
1 0 0
1 0 0 1 0 1 0
1 0 1 1 0
1 1 0 1 0 1 0 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SET 3 ACCEPT SET 3 REJECT
1 1 0
0 1 0 1
0 1 0 1 0
1 1 1 0 1 0
0 0 1 1 1 0
1 0 0 1 0 1 1
1 1 0 1 0 0 0 1
1 1 1 1 1 1 0 1 0
0 0 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 1 1 1 1 0 0 0
1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1
1 1 1 1 0 1 1 0 0 0 1 0 0 1 1 1 0 0 1 1 0 1 1 1 0 0 1 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SET 4 ACCEPT SET 4 REJECT
1 0 0 0
0 1 1 0 0 0
1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 1 1
1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 1 1
0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1
0 1 0 0 1 0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
0 1 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

5.1. Results

Of Tomita’s 7 cases, all but data-sets #2 and #6 converged without a problem in

several hundred epochs. Case 2 would not converge, and kept treating negative case

110101010 as correct; I had to modify the training set (by adding reject strings 110 and



14 J. B. Pollack

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
SET 5 ACCEPT SET 5 REJECT
1 1 0
0 0 1 1 1
1 0 0 1 0 1 1
0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0
1 0 0 0 1 1 1 1 0 1 0 1
1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 0

0 0 0 1
0 1 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SET 6 ACCEPT SET 6 REJECT
1 0 1
0 1 0
1 1 0 0 1 1
1 0 1 0 1 0 0 0
1 1 1 1 0 1
0 0 0 0 0 0 0 1 1
1 0 1 1 1 1 1 0 0 1
0 1 1 1 1 0 1 1 1 1 1 1 1 1
1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 1 1 1
1 0 1 1 1 1 0 1 1 1 1
1 0 0 1 0 0 1 0 0 1iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

SET 7 ACCEPT SET 7 REJECT
1 1 0 1 0
0 0 0 1 1 0 0 1 1 0 0 0
1 0 0 1 0 1 0 1 0 1 0 1
0 1 1 0 1 1 0 1 0
1 1 1 1 1 1 0 1 0 1
0 0 0 0 1 0 1 0 0
0 0 1 1 0 0 1 1 1 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1
0 0 0 0 1 0 0 0 0 1 1 1 1
0 0 1 0 0
0 1 1 1 1 1 0 1 1 1 1 1
0 0iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4

Language # Descriptioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 1*
2 (1 0)*
3 no odd zero strings after odd 1 strings
4 no 000’s
5 pairwise, an even sum of 01’s and 10’s.
6 number of 1’s - number of 0’s = 0 mod 3
7 0*1*0*1*

11010) in order to overcome this problem. Case 6 took several restarts and thousands of

cycles to converge.



Dynamical Recognizers 15

Table 5
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

No. Mutations Avg. Epochs % Convergent
Language (Hill-Climber) (Backprop) (Backprop)iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 98 54 100
2 134 787 20
3 2052 213 70
4 442 251 100
5 1768 637 80
6 277 0
7 206 595 50iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

In the spirit of the machine learning community, I recently ran a series of experi-

ments to make these results more empirical. Table 5 compares Tomita’s stage one

"number of mutations" to my "average number of epochs". Because back-propagation is

sensitive to initial conditions (Kolen & Pollack, 1990), running each problem once does

not give a good indication of its difficulty, and running it many times from different ran-

dom starting weights can result in widely disparate timings. So I ran each problem 10

times, up to 1000 epochs, and averaged only those runs which separated the training sets

(accepts above .6; rejects below .4). The column labeled "% Convergent" shows the per-

cent of the 10 runs for each problem which separated the accept and reject strings within

1000 cycles. Although it is difficult to compare results between completely different

methods, taken together, the averaged epochs and the percent convergent numbers give a

good idea of the difficulty of the Tomita data-sets for my learning architecture.

5.2. Analysis

--------------------------------

Figure 5 near here

--------------------------------

Figure 5. The minimal FSA’s recognizing Tomita’s 7 data sets.
--------------------------------

Figure 6 near here
--------------------------------

Figure 6. Recursive rectangle figures for the 7 induced languages. See text for
detail.

Tomita ran a brute-force enumeration to find the minimal automaton for each

language, and verified that his hill-climber was able to find them. This are displayed in

Figure 5. Unfortunately, I ran into some difficulty trying to figure out exactly which



16 J. B. Pollack

finite state automata (and regular languages) were being induced by my architecture.

For this reason, in figure 6, I present "prefixes" of the languages recognized and

generated by the seven first-run networks. Each rectangle assigns a number, 0 (white) or

1 (black), to all boolean strings up to length 9 (which is the limit of visibility), and thus

indicates, in black, the strings which are accepted by the respective network. Starting at

the top of each rectangle, each row r contains 2r subrectangles for all the strings of length

r in lexical order, so the subrectangle for each string is sitting right below its prefix. The

top left subrectangle shows a number for the string 0, and the top right shows a number

for the string 1. Below the subrectangle for 0 are the subrectangles for the strings 00 and

01, and so on. The training sets (Table 4) are also indicated in these figures, as inverted

"X’s" in the subrectangles corresponding to the training strings.

Note that although the figures display some simple recursive patterns, none of the

ideal minimal automata were induced by the architecture. Even for the first language 1*,

a 0 followed by a long string of 1’s would be accepted by the network. My architecture

generally has the problem of not inducing "trap" or error states. It can be argued that

other FSA inducing methods get around this problem by presupposing rather than learn-

ing the trap states.2

--------------------------------

Figure 7 near here

--------------------------------

Figure 7. The number of states in the 7th machine grew dramatically as ε was
lowered.

If the network is not inducing the smallest consistent FSA, what is it doing? The

physical constraint that an implemented network use finitely specified weights means that

the states and their transitions cannot be arbitrary -- there must be some geometric rela-

tionship among them.

Based upon the studies of parity, my initial hypothesis was that a set of clusters

would be found, organized in some geometric fashion: i.e. an embedding of a finite state

machine into a finite dimensional geometry such that each token’s transitions would
hhhhhhhhhhhhhhh
2 Tomita assumed a trap state which did not mutate, and (Servan-Schreiber et al., 1989) compared
the incoming token to a thresholded set of token predictions, trapping if the token was not
predicted.



Dynamical Recognizers 17

correspond to a simple transformation of space. I wrote a program which examined the

state space of these networks by recursively taking each unexplored state and combining

it with both 0 and 1 inputs. A state here is a 3-dimensional vector, values of the three

recurrently used output units. To remove floating-point noise, the program used a param-

eter ε and only counted states in each ε-cube once. Unfortunately, some of the machines

seemed to grow drastically in size as ε was lowered. In particular, Figure 7 shows the

log-log graph of the number of unique states versus ε for the machine resulting from

training environment 7. Using the method of (Grassberger & Procaccia, 1983) this set

was found to have a correlation dimension of 1.4 - good evidence that it is "fractal".

--------------------------------

Figure 8 near here

--------------------------------

Figure 8. Images of the state spaces for the 7 Tomita training environments.
Each box contains 2048 points, the states corresponding to all boolean strings
up to length 10.

Because the states of the benchmark networks are "in a box" (Anderson et al.,

1977) of low dimension, we can view these machines graphically to gain some under-

standing of how the state space is being arranged. Each 3-d state vector is plotted as a

point in the unit cube. Partial graphs of the state spaces for the first-run networks are

shown in Figure 8. States were computed for all boolean strings up to and including

length 10, so each figure contains 2048 points, often overlapping.

The images (a) and (d) are what I initially expected, clumps of points which closely

map to states of equivalent FSA’s. Images (b) and (e) have limit "ravines" which can

each be considered states as well. However, the state spaces, (c), (f), and (g) of the

dynamical recognizers for Tomita cases 3, 6, and 7, are interesting, because, theoreti-

cally, they are infinite state machines, where the states are not arbitrary or random,

requiring an infinite table of transitions, but are constrained in a powerful way by

mathematical principle.

In thinking about such a principle, consider systems in which extreme observed

complexity emerges from algorithmic simplicity plus computational power. When I first

saw some of the state space graphs (Figure 8), they reminded me of Barnsley’s Iterated

Functional Systems (Barnsley, 1988), where a compactly coded set of affine transforma-

tions is used to iteratively construct displays of fractals, previously described recursively



18 J. B. Pollack

using line-segment rewrite rules (Mandelbrot, 1982). The calculation is simply the

repetitive transformation (and plotting) of a state vector by a sequence of randomly

chosen affine transformations. In the infinite limit of this process, fractal "attractors"

emerge (e.g. the widely reproduced fern).3

By eliminating the sigmoid, commuting the yj and zk terms in Eq. 1:

zi(t) =
k
Σ (

j
Σ wijk yj(t)) zk(t−1)

and treating the yj’s as an infinite random sequence of binary unit vectors (1-in-j codes),

the forward pass calculation for my network can be seen as the same process used in an

Iterated Function System (IFS). Thus, my figures of state-spaces, which emerge from the

projection of Σ* into Z, are fractal attractors, as defined by Barnsley.

6. Related Work

The architecture and learning paradigm I used is also being studied by Lee Giles

and colleagues, and is closely related to the work of Elman and Servan-Schreiber et al on

Simple Recurrent Networks. Both architectures rely on extending Jordan’s recurrent net-

works in a direction which separates visible output states from hidden recurrent states,

without making the unstable "back-propagation through time" assumption. Besides our

choice of language data to model, the two main differences are that:

(1) They use a "predictive" paradigm, where error feedback is provided at every time

step in the computation, and I used a "classification" paradigm, feeding back only at

the end of the given examples. Certainly, the predictive paradigm is more psycho-

logically plausible as a model of positive only presentation (c.f., Culicover &

Wexler, pp 63-65), but the Tomita learning environments are much more impover-

ished.

I have no commitment to negative information; all that is required is some desired

output which discriminates among the input strings in a generalizable way. Positive
hhhhhhhhhhhhhhh
3 Barnsley’s use of the term "attractor" is different than the conventional use of the term given in
the introduction, yet is technically correct in that it refers to the "limit" of a iterative process. It
can be thought of as what happens when you randomly drop an infinite number of microscopic
iron filing "points" onto a piece of paper with a magnetic field lying under it; each point will land
"on" the underlying attractor.



Dynamical Recognizers 19

versus negative evidence is merely the simplest way (with 1 bit) to provide this

discrimination.

(2) They use a single layer (first order) recurrence between states, whereas I use a

higher order (quadratic) recurrence. The multiplicative connections are what enable

my model to have "fractal" dynamics equivalent in the limit to an IFS, and it may be

that the first-order recurrence, besides being too weak for general boolean functions

(Minsky & Papert, 1988) and thus for arbitrary regular languages (such as parity),

also results only in simple steady-state or periodic dynamics.

Besides continued analysis, scaling the network up beyond binary symbol alphabets

and beyond syntax, immediate follow-up work will involve comparing and contrasting

our respective models with the other two possible models, a higher order network trained

on prediction, and a simple recurrent network model trained on classification.

7. Conclusion

--------------------------------

Figure 9 near here

--------------------------------

Figure 9. Slicing through the "fractal" state space of the balanced parenthesis
dynamical recognizer.

If we take a state space picture of the one-dimensional dynamical recognizer for

parenthesis balancing developed earlier, it looks like Figure 9. An infinite state machine

is embedded in a finite geometry using "fractal" self-similarity, and the decision function

is cutting through this set. The emergence of these fractal attractors is interesting

because I believe it bears on the question of how neural-like systems could achieve the

power to handle more than regular languages.

This is a serious question for connectionism to answer, because since the Chomsky

(1956), it has been firmly established that regular languages, recognizable by Markov

chains, finite-state machines, and other simple iterative/associative means, are inadequate

to parsimoniously describe the syntactic structures of natural languages. Certain

phenomena, such as center embedding, are more compactly described by context-free

grammars which are recognized by Push-down Automata, whereas other phenomena,

such as crossed-serial dependencies and agreement, are better described by context-



20 J. B. Pollack

sensitive grammars, recognized by Linear Bounded Automata.

On the one hand, it is quite clear that human languages are not formal, and thus are

only analogically related to these mathematical syntactic structures. This might lead con-

nectionists to erroneously claim that recursive computational power is not of the "essence

of human computation."4 It is also quite clear that without understanding these complex-

ity issues, connectionists can stumble again and again into the trap of making strong

claims for their models, easy to attack for not offering an adequate replacement for esta-

blished theory. (Fodor & Pylyshyn, 1988; Pinker & Prince, 1988). But it is only because

of "long-term lack of competition" that descriptive theories involving rules and represen-

tations can be defended as explanatory theories. Here is an alternative hypothesis for

complex syntactic structure:

The state-space limit of a dynamical recognizer, as Σ*→Σ∞ , is an Attractor,
which is cut by a threshold (or similar decision) function. The complexity of
the generated language is regular if the cut falls between disjoint limit points
or cycles, context-free if it cuts a "self-similar" (recursive) region, and
context-sensitive if it cuts a "chaotic" (pseudo-random) region.

There is certainly substantial need for work on the theoretical front to more

thoroughly formalize and prove or disprove the six main theorems implied by my

hypothesis. I do not expect the full range of context-free or context sensitive systems to

be covered by conventional quasi-linear processing constraints, and the question remains

wide open as to whether the syntactic systems which can be described by neural dynami-

cal recognizers have any convergence with the needs of natural language systems.

Because information processing provides the "essence" of complex forms of cogni-

tion, like language, it is important to understand the relationship between complex emer-

gent behaviors of dynamical systems (including neural systems) and traditional notions

of computational complexity, including the Chomsky hierarchy as well as algorithmic

information theory (Chaitin, 1966), but the study of this relationship is still in its infancy.

In (Pollack, 1987b), I constructed a Turing Machine out of connectionist parts, and

essentially showed that rational values, constants, precise thresholds, and multiplicative

connections (all used in the sequential cascaded network architecture) were sufficient

primitives for computationally universal recurrent neural networks.
hhhhhhhhhhhhhhh
4 (Rumelhart & McClelland, 1986), p. 119.



Dynamical Recognizers 21

Cellular Automata, which we might view as a kind of low-density, synchronous,

uniform, digital restriction of neural networks, have been studied as dynamical systems

(Wolfram, 1984) and proven to be as powerful as universal Turing Machines, e.g.

(Lindgren & Nordahl, 1990). Furthermore, (Moore, 1990) has shown that there are sim-

ple mathematical models for dynamical systems which are also universal, and it follows

directly that determination of the behavior of such dynamical systems in the limit is

undecidable and unpredictable, even with precise initial conditions. In stronger terms, the

theoretical foundations of computer and information science may be in accord with the

lack of predictability in the universe.

Finally, Crutchfield and Young have studied the computational complexity of

dynamical systems reaching the onset of chaos via period-doubling. They have shown

that these systems are not regular, but are finitely described by Indexed Context-Free

Grammars. It may, of course, be just be a coincidence that several modern computational

linguistic grammatical theories also fall in this class (Joshi, 1985; Joshi et al., 1989; Pol-

lard, 1984).

In conclusion, I have merely illuminated the possibility of the existence of a natur-

alistic alternative to explicit recursive rules as a description for the complexity of

language. Such a mathematical description would be compact, "parsimonious" in fact,

since the infinite state machine does not require infinite description, but only a finitely

described set of weights. It was shown to be feasible to learn this type of description from

a finite set of examples using pseudo-continuous hill-climbing parameter-adaptation (in

other words, back-propagation). However, performance in the limit appears to jump in

discrete steps, inductive phase transitions which might correspond to psychological

"stages" of acquisition. Finally, the languages so described can be recognized and gen-

erated efficiently by neural computation systems.

8. Acknowledgments

This work has been partially sponsored by the Office of Naval Research under grant

N00014-89-J-1200. Thanks to the numerous colleagues who have discussed and/or criti-

cized various aspects of this work or my presentation of it, including: T. Bylander, B.

Chandrasekaran, J. Crutchfield, L. Giles, E. Gurari, S. Hanson, R. Kasper, J. Kolen, W.

Ogden, T. Patten, R. Port, K. Supowit, P. Smolensky, D. S. Touretzky, and A. Zwicky.



22 J. B. Pollack

9. References

Anderson, J. A., Silverstein, J. W., Ritz, S. A. & Jones, R. S. (1977). Distinctive

Features, Categorical Perception, and Probability Learning: Some Applications of a

Neural Model. Psychological Review, 84, 413-451.

Angluin, D. (1978). On the complexity of minimum inference of regular sets.

Information and Control, 39, 337-350.

Angluin, D. & Smith, C. H. (1983). Inductive Inference: Theory and Methods.

Computing Surveys, 15, 237-269.

Barnsley, M. F. (1988). Fractals Everywhere. San Diego: Academic Press.

Berwick, R. (1985). The Acquisition of Syntactic Knowledge. Cambridge: MIT Press.

Chaitin, G. J. (1966). On the length of programs for computing finite binary sequences.

Journal of the AM, 13, 547-569.

Chomsky, N. (1956). Three Models for the Description of Language. IRE Transactions

on Information Theory, IT-2, 113-124.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Crutchfield, J. P., Farmer, J. D., Packard, N, H. & Shaw, R. S. (1986). Chaos. Scientific

American, 255, 46-57.

Crutchfield, J. P & Young, K. (1989). Computation at the Onset of Chaos. In W. Zurek,

(Ed.), Complexity, Entropy and the Physics of INformation. Reading, MA:

Addison-Wesley.

Derrida, B. & Meir, R. (1988). Chaotic behavior of a layered neural network. Phys.

Rev. A, 38.

Devaney, R. L. (1987). An introduction to chaotic dynamical systems. Reading, MA:

Addison-Wesley.

Elman, J. L. (1990). Finding Structure in Time. Cognitive Science, 14, 179-212.

Feldman, J. A. (1972). Some Decidability Results in grammatical Inference.

Information & Control, 20, 244-462.

Fodor, J. & Pylyshyn, A. (1988). Connectionism and Cognitive Architecture: A Critical

Analysis. Cognition, 28, 3-71.



Dynamical Recognizers 23

Giles, C. L., Sun, G. Z., Chen, H. H., Lee, Y. C. & Chen, D. (1990). Higher Order

Recurrent Networks and Grammatical Inference. In D. S. Touretzky, (Ed.),

Advances in Neural Information Processing Systems. Los Gatos, CA: Morgan

Kaufman.

Gleick, J. (1987). Chaos: Making a new science. New York: Viking.

Gold, E. M. (1967). Language Identification in the Limit. Information & Control, 10,

447-474.

Gold, E. M. (1978). Complexity of automaton identification from given data.

Information and Control, 37, 302-320.

Grassberger, P. & Procaccia, I. (1983). Measuring the Strangeness of Strange

Attractors. Physica, 9D, 189-208.

Grebogi, C., Ott, E. & Yorke, J. A. (1987). Chaos, Strange Attractors, and Fractal Basin

Boundaries in Nonlinear Dynamics. Science, 238, 632-638.

Hendin, O., Horn, D. & Usher, M. (1991). Chaotic Behavior of a neural network with

dynamical thresholds. Int. Journal of Neural Systems, To appear.

Hopfield, J. J. (1982). Neural Networks and physical systems with emergent collective

computational abilities. Proceedings of the National Academy of Sciences USA, 79,

2554-2558.

Hornik, K., Stinchcombe, M. & White, H. (1990). Multi-layer Feedforward Networks

are Universal Approximators. Neural Networks, 3.

Huberman, B. A. & Hogg, T. (1987). Phase Transitions in Artificial Intelligence

Systems. Artificial Intelligence, 33, 155-172.

Joshi, A. K. (1985). Tree Adjoining Grammars: How much context-sensitivity is

required to provide reasonable structural descriptions?. In D. R. Dowty, L.

Karttunen & A. M. Zwicky, (Eds.), Natural Language Parsing. Cambridge:

Cambridge University Press.

Joshi, A. K., Vijay-shanker, K. & Weir, D. J. (1989). Convergence of mildly context-

sensitive grammar formalism.. In T. Wasow & P. Sells, (Eds.), The Processing of

Linguistic Structure. Cambridge: MIT Press.

Kolen, J. F. & Pollack, J. B. (1990). Backpropagation is Sensitive to Initial Conditions.

Complex Systems, 4, 269-280.



24 J. B. Pollack

Kurten, K. E. (1987). Phase transitions in quasirandom neural networks. In Institute of

Electrical and Electronics Engineers First International Conference on Neural

Networks. San Diego, II-197-20.

Lapedes, A. S. & Farber, R. M. (1988). How Neural Nets Work. LAUR-88-418: Los

Alamos.

Lieberman, P. (1984). The Biology and Evolution of Language. Cambridge: Harvard

University Press.

Lindgren, K. & Nordahl, M. G. (1990). Universal Computation in simple one-

dimensional cellular automata. Complex Systems, 4, 299-318.

Lippman, R. P. (1987). An introduction to computing with neural networks. Institute of

Electrical and Electronics Engineers ASSP Magazine, April, 4-22.

MacLennan, B. J. (1989). Continous Computation. CS-89-83, Knoxville: Computer

Science Dept, University of Tennessee.

MacWhinney, B. (1987). Mechanisms of Language Acquisition. Hillsdale: Lawrence

Erlbaum Associates.

Mandelbrot, B. (1982). The Fractal Geometry of Nature. San Francisco: Freeman.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Mealy, G. H. (1955). A method for synthesizing sequential circuits. Bell System

Technical Journal, 43, 1045-1079.

Metcalfe, J. & Wiebe, D. (1987). Intuition in insight and noninsight problem solving.

Memory and Cognition, 15, 238-246.

Minsky, M. (1972). Computation: Finite and Infinite Machines. Cambridge, MA: MIT

Press.

Minsky, M. & Papert, S. (1988). Perceptrons. Cambridge, MA: MIT Press.

Moore, C. (1990). Unpredictability and undecidability in dynamical systems. Physical

Review Letters, 62, 2354-2357.

Mozer, M. (1988). A focused Back-propagation Algorithm for Temporal Pattern

Recognition. CRG-Technical Report-88-3: University of Toronto.



Dynamical Recognizers 25

Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks.

Neural Computation, 1, 263-269.

Pineda, F. J. (1987). Generalization of Back-Propagation to Recurrent Neural Networks.

Physical Review Letters, 59, 2229-2232.

Pinker, S. (1984). Language Learnability and Language Development. Cambridge:

Harvard University Press.

Pinker, S. & Prince, A. (1988). On Language and Connectionism: Analysis of a parallel

distributed processing model of language inquisition.. Cognition, 28, 73-193.

Pinker, S. & Bloom, P. (1990). Natural Language and Natural Selection. Brain and

Behavioral Sciences, 12, 707-784.

Plunkett, K. & Marchman, V. (1989). Pattern Association in a Back-propagation

Network: Implications for Child Language Acquisition. Technical Report 8902,

San Diego: UCSD Center for Research in Languge.

Pollack, J. B. (1987). Cascaded Back Propagation on Dynamic Connectionist Networks.

In Proceedings of the Ninth Conference of the Cognitive Science Society. Seattle,

391-404.

Pollack, J. B. (1987). On Connectionist Models of Natural Language Processing. Ph.D.

Thesis, Urbana: Computer Science Department, University of Illinois. (Available

as MCCS-87-100, Computing Research Laboratory, Las Cruces, NM)

Pollack, J. B. (1989). Implications of Recursive Distributed Representations. In D. S.

Touretzky, (Ed.), Advances in Neural Information Processing Systems. Los Gatos,

CA: Morgan Kaufman.

Pollack, J. B. (1990). Recursive Distributed Representation. Artificial Intelligence, 46,

77-105.

Pollard, C. (1984). Generalized Context-Free Grammars, Head Grammars and Natural

Language.. Doctoral Dissertation, Palo Alto: Dept of Linguistics, Stanford

University.

Rivest, R. L. & Schapire, R. E. (1987). A new approach to unsupervised learning in

deterministic environments. In Proceedings of the Fourth International Workshop

on Machine Learning. Irvine, 364-475.



26 J. B. Pollack

Rumelhart, D. E. & McClelland, J. L. (1986). PDP Models and General Issues in

Cognitive Science. In D. E. Rumelhart, J. L. McClelland & the PDP research

Group, (Eds.), Parallel Distributed Processing: Experiments in the Microstructure

of Cognition, Vol. 1. Cambridge: MIT Press.

Rumelhart, D. E., Hinton, G. & Williams, R. (1986). Learning Internal Representations

through Error Propagation. In D. E. Rumelhart, J. L. McClelland & the PDP

research Group, (Eds.), Parallel Distributed Processing: Experiments in the

Microstructure of Cognition, Vol. 1. Cambridge: MIT Press.

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L (1989). Encoding Sequential

Structure in Simple Recurrent Networks. In D. S. Touretzky, (Ed.), Advances in

Neural Information Processing Systems. Los Gatos, CA: Morgan Kaufman.

Skarda, C. A. & Freeman, W. J. (1987). How brains make chaos. Brain & Behavioral

Science, 10.

Smolensky, P. (1986). Information Processing in Dynamical Systems: Foundations of

Harmony Theory. In D. E. Rumelhart, J. L. McClelland & the PDP research Group,

(Eds.), Parallel Distributed Processing: Experiments in the Microstructure of

Cognition, Vol. 1. Cambridge: MIT Press.

Tomita, M. (1982). Dynamic construction of finite-state automata from examples using

hill-climbing. In Proceedings of the Fourth Annual Cognitive Science Conference.

Ann Arbor, MI, 105-108.

Touretzky, D. S. & Geva, S. (1987). A distributed connectionist representation for

concept structures. In Proceedings of the Ninth Annual Conference of the Cognitive

Science Society. Seattle, 155-164.

van der Maas, H., Verschure, P. & Molenaar, P. (1990). A note on chaotic behavior in

simple neural networks. In Neural Networks. 3, 119-122.

Wexler, K. & Culicover, P. W. (1980). Formal Principles of Language Acquisition.

Cambridge: MIT Press.

Wolfram, S. (1984). Universality and Complexity in Cellular Automata. Physica, 10D,

1-35.



W
ijk

Z
k (t-1)

Y
j

W
ij

Z
i (t)

(t)

(t)

IN
P

U
T

 S
E

Q
U

E
N

C
E

S
T

A
T

E

O
U

T
P

U
T

pollack’s figure 1



W
ijk

W
ij (n)

Y
j (n)

Z
i (n)

W
ijk

Z
k (n-2)

W
ij (n-1)

Y
j (n-1)

Z
i (n-1)

Za (n)

d
a

P
ollack’s F

igure 2



0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

A)

B)

C)

Pollack’s Figure 3

Length of String

A
cc

ep
t/R

ej
ec

t R
es

po
ns

e



50 100 150 200

0.2

0.4

0.6

0.8





A)

B)

C)

D)



E)

F)

G)

Pollack’s Figure 6)



0.0050.010.020.050.10.20.51
1

10

100

1,000

10,000

100,000

Round-off distance

N
um

be
r 

of
 s

ta
te

s

Pollack’s Figure 7



A) B)

C) D)



E) F)

G)

Pollack’s Figure 8



P
ollack’s figure 9

LR

0
1

D
ecision

T
hreshold


