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Abstract- The Building-Block Hypothesis suggests that
the genetic algorithm (GA) will perform well when it is
able to identify above-average-fitness low-order
schemata and recombine them to produce higher-order
schemata of higher fitness. We suppose that the
recombinative process continues recursively, combining
schemata of successively higher orders as search
progresses. Historically, attempts to illustrate this
intuitively straight-forward process on abstract test
problems, most notably the Royal Road problems, have
been somewhat perplexing. More recent building-block
test problems have abandoned the multi-level
hierarchical structure of the Royal Roads, and thus
departed from the original recursive aspects of the
hypothesis. This paper defines the concept of
hierarchical consistency, which captures the recursive
nature of problems implied by the Building-Block
Hypothesis. We introduce several variants of problems
that are hierarchically consistent and begin to explore
aspects of problem difficulty with respect to these
models.

1 Introduction

The Building-Block Hypothesis [Holland 1975, Goldberg
1989] suggests that GAs perform well when they are able
to identify above-average-fitness low-order schemata and
recombine them to produce higher-order schemata of
higher fitness. We suppose that this process continues
recursively, combining schemata of successively higher
order as search progresses. More simply, the GA first finds
solutions to small sub-problems and then puts these
together to find solutions to bigger sub-problems, and so on
to find a complete solution. The Royal Road (RR)
problems [Mitchell et al 1992, Forrest & Mitchell 1993]
were an early attempt to illustrate the hierarchical process
of building-block discovery and recombination. However,
it was apparent in the early work on RRs that there was
something amiss [Forrest & Mitchell 1993b]. The functions
were intended to exemplify the class of problems that
required the recombinative aspects of the GA. However,
non-recombinative algorithms, such as the Random
Mutation Hill-Climber (RMHC), outperformed the GA on
the Royal Roads. This contributed significantly to the
controversy surrounding the Building-Block Hypothesis
and the utility of recombination [Horn & Goldberg 1994,
Mitchell et al 1995, Altenberg 1995, Jones 1995].

We argue that the reason these models fail to exemplify

the benefit of recombination is because they fail to follow-
through with the recursive implication of the Building-
Block Hypothesis - at least, they do not follow-through
consistently. This paper builds upon the work presented in
[Watson et al 1998] and the hierarchically consistent test
problem, H-IFF, introduced therein. We review the
definition of H-IFF and define the concept of hierarchical
consistency.

Following on from the work of Forrest and Mitchell
[1993b], we address the question, “What makes a
hierarchically consistent problem hard for a GA?” We
expand the canonical form of H-IFF into other
hierarchically consistent functions, and more general cases,
that allow us to vary the difficulty of the problem.

2 Background

The primary suspect for the failure of the Royal Roads was
their lack of deception. Deception comes in more than one
variety [Horn & Goldberg 1994] but the general idea is that
“a deceptive function is one in which low-order schema
fitness averages favor a particular local optimum, but the
global optimum is located at that optimum’s complement”
[Goldberg et al 1989].

The Royal Roads do not exhibit any local optima; and,
with the benefit of hindsight, it is not surprising that a
variant of a hill-climber could solve them. Accordingly,
the original Royal Roads have largely been discarded -
their purpose served - as a stepping stone on the way to
better understanding. They have been replaced by building-
block functions which have some degree of deception as
we shall discuss. But, the Royal Roads attempted to
capture a property that other building-block functions have
not addressed - specifically, they included a multi-level
hierarchical structure. In order to regain the hierarchical
aspects of the Building-Block Hypothesis in a test problem
we will re-examine the RRs and compare them to building-
block functions that incorporate deception.

2.1 Hierarchical combinations
The Royal Road functions consist of a set of building-
blocks - above-average-fitness schemata of short defining
length [Holland 1975, Goldberg 1989]. There are eight
blocks of eight bits each. Each block confers a fitness
contribution, and in the second version of the Royal Road
problem, R2 [Mitchell and Forrest, 1993], there are also
bonus fitness contributions for particular combinations of
blocks in a pairwise hierarchical fashion. Unfortunately,
although this sounds like the right idea for a hierarchical
building-block problem, its implementation was flawed.



The solution to each block is defined by a particular
combination of bits and the number of possible
combinations of 8 bits is 256. This defines the problem at
the first level. The problem at the next level concerns
combinations of blocks. There are eight blocks in the
second level (of the R1 variant) just as there are eight bits
in the first level - so far, the problem is consistent.
However, since the fitness contributions of the first level
identify the correct configuration of bits in a block
uniquely there is no work to be done at the next level.
Whereas there are 256 combinations of the bits in any
block there is only one way to combine the 8 blocks since
(unlike the bits) each block only has one setting. To put it
another way, it is not possible to define any
interdependency between blocks when the solution to each
block is identified uniquely [Watson et al 1998]. That is,
the blocks are separable - meaning that the optimal settings
for the bits of a block are not dependent on the settings of
bits in any other block.1

2.2 Competing schemata
Building-block problems that incorporate deception, for
example the concatenated trap functions [Goldberg et al
1989], do reward more than one combination of bits within
each block. Specifically, the deceptive schemata are the
complement of the schemata that contain the global
optima. However, they fail to follow-through with the
recursive implications of the Building-Block Hypothesis.
Rather than define interactions between the blocks using
the two possible kinds of block (in a manner similar to that
used to define the interdependency between the bits), the
whole problem is simply a concatenation of many of the
base deceptive functions.

2.3 Competing-schemata and hierarchy
To resolve these issues we can combine the competing
schemata found in the base level of the concatenated trap
functions with the hierarchical aspect of the Royal Roads.
The Hierarchical-if-and-only-if (H-IFF) problem
introduced by Watson et al [1998], has a hierarchical
building-block structure not unlike R2. However, H-IFF
defines two above-average-fitness configurations for each
block - analogous to the competing schemata in the
deceptive traps. Then fitness contributions at the next level
in the hierarchy are defined via combinations of these two
kinds of block. In this manner the interdependency
between blocks can be defined in exactly the same manner
as the interdependency between bits. H-IFF is the first
example of a building-block test problem which is
hierarchically consistent.

                                                       
1 This observation does not contradict the fact that the fitness
contribution of a block may vary as a non-linear function of the
settings of bits in other blocks [Whitley et al 1995].

3 Hierarchical Consistency

Before defining hierarchical consistency it will assist us to
review our canonical example: Hierarchical-if-and-only-if.

3.1 Hierarchical-if-and-only-if (H-IFF)
We may view H-IFF as a problem defined over successive
levels of building-blocks. Briefly, at the bottom level each
non-overlapping adjacent pair of bits constitutes a block
and has two solutions. Specifically, the block confers a
fitness contribution if the bits are either both zero or both
one. Similarly, at the second level in the hierarchy, pairs of
blocks from the first level confer additional fitness if they
are equal i.e. all 4 bits are zeros or all 4 are ones. Blocks of
8, 16 etc. are rewarded over subsequent levels up to the
complete string. The fitness contribution for a block of one
bit is 1, and the fitness contributions double at each level,
keeping lock-step with the size of the block. More
formally, the fitness of a string using H-IFF can be defined
using the recursive function, given below. This function
interprets a string as a binary tree and recursively
decomposes the string into left and right halves. In this
manner, a string is evaluated by summing the fitness
contributions of all sub-blocks at all levels.

f(B)=






1,
|B| + f(BL) + f(BR),
f(BL) + f(BR),

if |B|=1,
if (|B|>1) and (∀i{b i=0} or ∀i{b i=1}),
otherwise.

where B is a block of bits, {b1,b2,...bn}, |B| is the
size of the block=n, bi is the ith element of B, and
BL and BR are the left and right halves of B (i.e.
BL={b1,...bn/2}, BR={bn/2+1,...bn}). n must be an
integer power of 2.

Some features of this apparently simple function should
be highlighted. The structure of H-IFF is very close to the
structure of R2 in some respects, but importantly, in R2
there is only one solution to each block, whereas in H-IFF
there are two competing high-fitness schemata for each
block at each level. Local optima in H-IFF occur when
incompatible building-blocks are brought together. For
example, consider  “11110000”; viewed as two blocks
from the previous level (i.e. size 4) both blocks are good -
each contains one of the two global optima - but when
these incompatible blocks are put together they create a
sub-optimal string that is maximally distant from the next
best strings i.e. “11111111” and “00000000”.

Deception in H-IFF is more to do with incompatibility
with context than incompatibility with a global optima as it
is usually defined. Note that although local optima and
global optima are distant in Hamming space they are close
in recombination space [Jones 1995]. Thus H-IFF
exemplifies the class of problems for which recombinative
algorithms are well-suited.

Our previous work showed that H-IFF is easy for a GA
to solve given that diversity in the population is maintained
and genetic linkage is tight. We shall address diversity
maintenance methods in the experiments of this paper.
Algorithms to address poor linkage are addressed in
[Watson & Pollack, 1999].



3.2 Defining hierarchical consistency
In our previous work a hierarchically consistent problem
was described as a problem where “the nature of the
problem is the same at all levels in the hierarchy.” Here we
state this more precisely. First, let us note that a problem
can only be defined with reference to a set of variables. We
usually consider the variables of GA problems to
correspond directly to the genes and this is the case for the
first level, level 0, in a hierarchical problem. The problem
at level 0 will be to find good combinations of bits - above-
average-fitness low-order schemata. However, at the next
level, the problem is not to find good combinations of bits,
but to find good combinations of schemata from level 0.
The key to hierarchical consistency is to recognize that the
variables over which a problem is defined scale-up as we
ascend levels. Using this concept, we now formally define
hierarchical consistency as follows:

Definition : A problem is hierarchically consistent
if for some K, the problem of finding good
schemata of length L, given good schemata of
length L/K, is of the same class for all L.

For discussion of H-IFF we will permit the limitation
that L is an integer power of K, and naturally, L ≤ N, the
total size of the problem. The definition does not dictate
which class of problem is involved at each level. It will
likely include some kind of interdependency between
variables assuming we want the problem to be non-trivial,
but other properties may be varied. For example: the
partitions of subproblems may be neat or overlapping; it
may include linkage difficulties; and it may be real-valued
or discrete. There need not even be distinct hierarchical
levels since the restriction that L is a power of K can be
relaxed. The definition is merely concerned with the
consistency of the problem at different scales of resolution.

In H-IFF there are two varieties of solution to level-1
blocks, the 0 kind and the 1 kind, i.e. “00” and “11”. This
is analogous to the two varieties of bits at level-0. So, we
can define the fitness contribution for level-2 blocks (size
4) using specific combinations of level-1 blocks in exactly
the same way as we did with the bits level-0 - i.e. the
solution for a level-2 block is that it contains two level-1
blocks of the same kind. This consistency is maintained
through all levels.

R2 cannot be hierarchically consistent since there is
only one variety of solution to each block (i.e. all ones)
whereas there are two varieties of bits. The concatenated
trap functions do, in fact, have two notable above-average-
fitness schemata for each block - and, just like H-IFF, these
are all-1s and all-0s. But the 0s schemata are not
considered to be ‘solutions’ - they are of no use to the next
level of building-blocks - they are merely traps
incorporated to foil hill-climbers. Thus the concatenated
trap functions are also not hierarchically consistent.

3.3 Constructing Hierarchically Consistent Problems
In the previous discussion it will be clear that we are
interested not only in the fitness contribution of a
subsolution but also in which solution it is. In H-IFF, for
example, there are two kinds of solutions - the all-1s kind

and the all-0s kind - and we cannot distinguish them by
their fitness. So it is clear we cannot define the
interdependency of blocks as a function of their fitness - it
must be a function of their kind. Notice that although there
are four possible assignments of bits for a two-bit block
only two of these are of concern - i.e. the two kinds of
solution. This constitutes dimensional reduction.

Without the insight of dimensional reduction, H-IFF is
a seemingly impossible problem. Since the optimal setting
for each block, at any level, including the top level, is
dependent on the setting of all other blocks (i.e. they have
to be the same kind to confer the optimal fitness), the
optimal setting for each bit in the whole problem is
dependent on the setting of every other bit. But the feature
of dimensional reduction enables an algorithm to get
purchase on these problems. Although every bit is
dependent on every other, we need not consider all
possible combinations of bits. For example, in H-IFF, at
the top level we need only consider the four possible
combinations of the length N/2 blocks. The Building-Block
Hypothesis describes exactly this kind of dimensional
reduction when it refers to combinations of schemata that
supersede combinations of bits.

These considerations lead us to construct hierarchically
consistent problems using two functions - one defining the
fitness contributions of blocks and the other defining the
kind or variety of blocks. We shall call the latter the
‘transform’ function since it defines which kind of block a
collection of bits is transformed into for the next level in
the hierarchy. The transform function defines the
dimensional reduction - it transforms a block of symbols
into a single symbol of the same alphabet and thus, as it is
applied over successive levels, incrementally reduces the
dimensionality of the problem.

For example the transform function for H-IFF is defined
to reduce two symbols to one symbol as follows:

t(a,b)=






0, if a=0 and b=0,
1, if a=1 and b=1,
null, otherwise.

Notice that t defines a non-solution, null, as well as the
two solutions, 0 and 1. Importantly, to allow recursion, the
definition of t holds for all a and b from the ternary
alphabet {0, 1, null}. The fitness contributions are then
defined over this alphabet as follows:

f(a)=



1, if a=1 or a=0,
0, otherwise.

It is the job of the fitness function to direct search
toward the useful schemata for the next level. Accordingly
H-IFF rewards the 0 kind and the 1 kind of block but does
not reward the null, or non-solution blocks. These two base
functions, f and t, are utilized by two corresponding
recursive functions, F and T,  that define the fitness of a
whole string and the transform of a whole string
respectively. F and T, defined below, decompose a string
into its constituent blocks, and sum the fitness
contributions from every block at every level. The fitness
contributions are scaled according to their size.
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where f is a base function, f:α→ℜ, giving the fitness
of a single symbol, t is a base function, t:αk→α, that
defines the resultant symbol from a block of k
symbols, |B| is the number of symbols in B, and Bi is
the ith sub-block of B i.e.{ b( i −1)d+1 ,..., bid }  (d=|B|/k).

4 Hierarchically Consistent Variations

Separating the recursive structure (F and T) from the
specifics of the problem (f and t) in the above manner
enables us to generalize from H-IFF to other hierarchically
consistent problems. This section defines alternate base
functions, f and t, and discusses the features they produce
in the overall problem. In all cases the recursive
construction functions, F and T, are used unchanged
together with these base functions to complete the
definition of each variant problem. F and T, ensure that the
resultant overall problem is hierarchically consistent.

Our intent is to begin to dimensionalize the difficulty of
hierarchically consistent problems and gain some
understanding of what makes a problem hard for a GA - as
was the original goal of the Royal Road problems. Existing
measures of problem difficulty cannot be directly
transferred to hierarchically consistent problems. For
example, the concept of order-k delineation formalizes the
belief that there is an upper bound on the order of
interdependencies in a problem - k, in this concept is “the
highest order deceptive nonlinearity suspected in the
subject problem” [Goldberg et al 1989]. Hierarchically
consistent problems cannot be delineated into separable
sub-problems.

Candidates for varying difficulty in hierarchically
consistent problems, addressed below, include: varying the
difficulty of the base function by changing the alphabet
size or the number of symbols per block; changing the
fitness contributions of competing schemata; and changing
the nature of the interaction of blocks from one level to the
next. There are many other ways in which hierarchically
consistent problems could be varied including real-valued
models, and models with less strict partitioning between
blocks. Here we are just beginning to explore some simple
variations.

4.1 Cross-Sections
To help us obtain an intuitive feel for the variations we are
about to introduce, we will employ cross-sections through
the fitness landscapes they define. In particular, we choose
a section from all zeros to all ones. For example, see the

curve labeled ‘hequal-2’ in Figure 1c - (this curve, as we
shall explain, is identical to that for H-IFF). The first point
on this cross-section is the fitness of the all zeros string for
a 64-bit problem; the second point is the fitness of a string
starting with a single 1 and followed by 63 zeros; the third,
2 leading ones and the remainder zeros, and so on. Note
that in the original H-IFF the two ends of this section (i.e.
all ones and all zeros) are the global optima, and that the
best local optima are at half ones followed by half zeros or
vice versa. A point with this second-best fitness therefore
appears in the middle of the section. The recursive aspect
of the functions are clear in these sections; each half
section is to the whole section as each quarter section is to
the half section. Although illuminating, we must be
cautious in the use of these sections. We are showing only
65 points out of a total 264, and only 33 local optima are
evident out of a total 232.2

4.2 H-Equal
Logical if-and-only-if, on which H-IFF is based is a special
case of equality. A simple generalization of the base
functions to H-IFF, enables the definition of H-Equal -
Hierarchical-Equality.

t-equal({s1, s2,...sk})  =






s,     if for all i, si=s,
null, otherwise.

f-equal (s) =






1,     if s≠null,
0,     otherwise

Firstly, t-equal is defined for any size alphabet (and null),
rather than the binary case of t. Secondly, t-equal enables
us to extend the definition of H-IFF to a larger number of
sub-blocks per block. H-IFF is simply the special case of
H-Equal where K=2 and S=2. (The size of the alphabet, S,
as we use it here - means that there are S symbols in
addition to null).

The sections for H-Equal shown in Figure 1c include
the section through H-IFF, K=2, as well as K=4 and K=8
for a 64-bit problem. S and K give us two parameters for
varying the difficulty of each sub-problem in the overall
problem. Of course, we can also vary the overall size of the
problem, N (N must be an integer power of K).

The number of solutions to each block in H-Equal is S.
And the number of possible combinations of symbols in
each block is SK. We will expect therefore that the
difficulty of a problem will increase as S or K increase as
in either case the ratio of solutions to possible
combinations decreases. All other things being the same,
an increase in the difficulty of the base problems will
increase the difficulty of the overall problem. However, if
we keep N fixed then varying K has a side-effect.
Specifically, the number of hierarchical levels in the
problem decreases. We will expect that the difficulty of the
                                                       
2 Any string with a “01” or “10” block in H-IFF is not a local
optima as it can be mutated to “00” or “11”, which confers
higher fitness, in one bit-flip. However, any string consisting of
concatenations of equal pairs (“00”s and “11”s in any order) are
local optima since all one-bit mutations decrease fitness. There
are 32 bit-pairs in a 64 bit problem, and two kinds of pair,
therefore there are 232 local optima.



overall problem will increase with the number of
hierarchical levels. Thus the effect of increasing K,
although it surely increases the difficulty of each sub-
problem, decreases the levels of recursion, assuming N is
constant. S, on the other hand, provides a more clear-cut
increase in difficulty, as our experimental results will
show.

4.3 Bias
H-IFF uses competing schemata, like those found in
deceptive functions, in a hierarchically consistent fashion.
Following the lead provided by deceptive functions we
may bias one of the two competing schema, that is, define
one to have a lower fitness contribution than the other. Deb
and Goldberg [1992] analyze deception in a trap function
in terms of the ratio of fitness contributions for the desired
schema and the competing schema. Their analysis concerns
only a single trap function rather than a hierarchical
structure, and it is assumed that only one of the two
competing schemata is the real solution, the other is
merely a distraction. However, we can still investigate the
effect of this ratio in H-IFF. f-bias, given below, operates
on a binary alphabet and K=2, as per the original H-IFF,
but unlike the canonical H-IFF the two competing solutions
for each block are not rewarded equally. Without loss of
generality, we will keep the fitness of the ones blocks at 1,
and decrease the fitness of the zeros blocks to some value
B, [0, 1]. This will have the effect of making one of the
previous two global optima into a unique optimum and
depressing the other. We shall refer to this depressed point
as the global complement since it is the bit-wise
complement of the global optimum. Hierarchical
consistency will dictate that the ratio of the fitness of the
global complement to the fitness of the global optimum
will be the same as the ratio of the competing and preferred
solutions to each block - i.e. B (this is seen in the
landscape sections that follow). Thus we will also refer to
the bias value, B, as the competition ratio.

f-bias(a)=






1, if a=1,
B, if a=0,
0, otherwise.

Since the preference for schemata that contain the
global optima is expressed at all levels we expect that
biasing will make the problem easier. Figure 2a shows
sections through the H-IFF landscape for various values of
B. We see that as the competition ratio approaches 0,
where there are no competing schemata, the problem
shows no local optima. This case is similar to the Royal
Roads problem mentioned earlier, R2, where only one
variety of block is rewarded but there are bonuses for pairs
and additional bonuses for fours, etc. Intermediate values
of B indicate that, because ones are favored consistently
throughout all levels, the fitness landscape is merely tilted
toward all ones.

4.4 H-XOR and biased H-XOR
When exploring the space of hierarchically consistent
problems, it is important to ensure that the transform of a
block is a non-separable function of its arguments. If this

were relaxed then, since the functions are hierarchically
consistent, the entire problem would be separable. Logical
if-and-only-if, the base function of H-IFF, is one of only
two non-separable functions of two bits that returns a value
in the same alphabet. The other is logical exclusive-or,
XOR. Other functions have either only one solution or are
dependent on only one variable. XOR is the exact negation
of IFF, and as such, substituting a transform function based
on XOR instead of IFF, to produce H-XOR, yields nothing
interesting, in itself. H-XOR, resulting from t-XOR defined
below, has exactly the same properties as H-IFF except the
solutions are recursively dissimilar at all scales instead of
similar at all scales. For example, solutions for an 8-bit H-
XOR are “10010110” and “01101001”.

t-XOR(a,b)=






1, if a=1 and b=0,
0, if a=0 and b=1,
null, otherwise.

However, t-XOR is more interesting when combined
with f-bias. The combination produces a problem where 1s
are favored over 0s but, since 0s are also required, the GA
cannot be permitted to converge on just 1s. The result of
varying the competition ratio in H-XOR is indicated in
Figure 2c.3 We see that although B=1 in H-XOR is the
same as B=1 in H-IFF the affect of competition ratios less
than one is quite different. One interesting feature is that
the fitness of the global-complement for B=0 is not zero, as
it is in H-IFF, but approximates an average value of the
section. Also, there are certainly still local optima.

5 Experimental Results

We shall now begin an experimental exploration of the
variants defined above. We have identified the following
parameters for affecting the difficulty of hierarchically
consistent problems:

N, size of the problem, i.e. number of bits (or symbols).
S, alphabet size.
K , number of sub-blocks per block.
B, bias, or competition ratio (ratio of fitness contributions of

competing schema and preferred schema).

We have also defined the variation H-XOR where the
effect of bias is not likely to make the problem easy in the
same way as it does in H-IFF.

5.1 Algorithms
The basic GA we employ is the same in all cases (and the
same as that used in [Watson et al 1998]): A generational
GA with a population of 1000; exponentially scaled rank-
based selection (scaling factor p=0.01); elitism of 10%
(best 10% are transferred to the next generation
unchanged); two-point crossover applied with a probability
of 0.3; bit-wise mutation with a probability of 2/64 of
assigning a new random value to each gene.
                                                       
3 Since the global optima for H-XOR are the recursively
dissimilar strings mentioned above, the sections in Figure 2c
substitute the beginning of the global-complement
“10010110...” into its global optimum “01101001...”.



In our earlier work we demonstrated that a regular GA
succeeds easily on H-IFF with the proviso that diversity in
the population is maintained. Here, in addition to this basic
GA, we also try three augmentations concerned with
promoting diversity.

One method used is to share fitness throughout the
population according to bit-wise similarity i.e. promoting
coverage of both alleles at each locus. This is similar to
fitness sharing as defined by Deb & Goldberg [1989] but it
is implemented using a resource-depletion model. This
model was introduced by Watson et al [1998] but in that
work, as in the second variant utilized here, a resource is
associated with each solution to every block at every level
in the hierarchy rather than only to each bit. The resource
model is a form of implicit fitness sharing - rather than
limit available fitness to the best individual (in a sample of
the population) for each sub-problem, the resource model
gives most fitness to the first individual to solve a sub-
problem and less to the second, etc. This is a more suitable
form of fitness sharing for problems where the sub-
problems do not have ‘degrees’ of solution.  The last
variant is a coevolutionary model. Here each individual is
rewarded only for those blocks it solves that a co-evaluated
individual does not solve.

Both of the latter two methods use domain knowledge
in their evaluation and they are not intended as general
methods of fitness sharing. However, they are illuminating
in examining the operation of the GA and in particular the
requirement for diversity in the population. In summary,
the algorithms implemented are as follows:

“none” - Basic GA as above with no fitness sharing.

“min” - GA with resource-based fitness sharing
only at the bit level.

“all” - GA with resource-based fitness sharing for
all blocks at all levels.

“coev” - GA with co-evaluation of individuals.

In all cases the algorithms are run for 300 generations and
we examine the best string in the last generation. Since the
fitness of strings changes in the different variants of the
problem it is not meaningful to compare fitnesses. Instead
we shall compare the sizes of the biggest all-ones block
discovered. In the case where we vary N, we shall show the
size of the largest block discovered as a proportion of the
largest possible block i.e. size/N. And in the case where we
vary the alphabet size S, we will show the size of the
biggest block of all the same symbol.
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a) performance vs. N, size of problem in bits, (S=2, k=2). b) performance vs. S, size of alphabet,       (N=64, k=2).
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Figure 1: Varying N, problem size (in bits), S alphabet size, K number of sub-blocks per block. See text for details.



5.2 Results
Figure 1 shows the performance of the four algorithms
on various N, S and K, (in addition to the sections
through various K, mentioned earlier.) Figure 1a shows
performance on H-IFF for N=16, 32, 64, 128 and 256,
(K=2, S=2). The first observation is that there is a
general decline in performance with increasing N, as
expected. Also not surprising is that the algorithm with
the strongest fitness sharing performs best. In fact, it
succeeds for N up to 128. However, the other algorithms
fair poorly; they only succeed reliably for N=16. We
shall have to make the problem easier than the canonical
H-IFF to see adequate performance in these algorithms
that have weaker diversity maintenance. Figure 1b shows
performance on H-Equal for S=2, 4 and 8 (N=64, K=2).
Again it is not surprising that increasing S decreases
performance. Again we see that “all” resources performs
best. Figure 1d, performance on H-Equal for various K
(S=2, N=64), is more interesting. It shows that when
diversity in the population is maintained, increasing K
up to 8 does not prevent the GA from finding the global
optimum. However, when diversity is not maintained

increasing K seems to increase problem difficulty -
though the other algorithms performed poorly in any
case.

Figure 2 shows the sections and the performance of
H-IFF and H-XOR for various competition ratios, B=0.0,
0.33, 0.66 and 1.0. Figure 2b shows the performance on
biased H-IFF. Recall that B=1 is the same as the original
H-IFF and B=0 means that there are no competing
schema. Figure 2b shows that the problem is indeed
easier at low values of B; even the GA with no fitness
sharing succeeds for low values of the competition ratio.
Only as B approaches one and the competing schemata
confer equal fitness contributions does the
interdependency in H-IFF make the problem hard for the
GA, and resolve the abilities of the four GA types.
Figure 2d shows the performance on H-XOR with
various competition ratios. We see that the effect of
changing B in H-XOR is quite different from the effect
of changing B in H-IFF. Specifically, even B=0 does not
make the problem easier for algorithms that do not
maintain diversity - though the results are somewhat
erratic with the data collected to date.
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Figure 2. Varying the competitive ratio, or Bias, in H-IFF and H-XOR landscapes. See text for details.



These experiments indicate that the basic GA without
diversity-maintenance can succeed on hierarchically
consistent problems in the case where simple biasing
means that only one type of block is required. However,
in the limit where there are no competing schemata, there
are also no local optima and therefore this class of
problem can also be solved by a hill-climber. As
competing schemata become more significant, some form
of diversity maintenance mechanism is required to
prevent premature convergence.

Hierarchically consistent problems are not delineable
into separable functions so we cannot bound their
difficulty in the simple way that we can for concatenated
trap functions. However, the number of sub-blocks per
block, K, provides an alternate measure of problem
difficulty. K and S, together with N, assist us in
parameterizing hierarchically consistent problems.

We have also seen that varying the ratio of the fitness
contributions of the optima affects problem difficulty.
But, the effect of this biasing on the whole problem is
dependent on the way in which solutions from one level
transfer to solutions at the next. In H-IFF, as in the trap
functions, when the value of competing schemata is
depressed the whole problem becomes easier. However,
in H-XOR, we treat both of the competing schemata as
required parts of the solution (instead of treating one as a
simple distraction as in trap functions). In this case we
find that changing the competition ratio does not affect
the overall problem in the same way.

It seems likely that a treatment analogous to that
provided by Deb and Goldberg [1992b] may yield a
critical ratio of bias in H-IFF and H-XOR, and more
illumination than these preliminary explorations.

6 Conclusions

Unless we have a good reason to suppose that a problem
is different in kind at different scales of resolution, the
most parsimonious assumption is that it is the same class
at all scales. This paper has defined the concept of
hierarchical consistency and we have discussed the
shortcomings of existing building-block style test
functions in light of this concept. We have introduced
several alternative problems which offer various features
of difficulty in a hierarchically consistent manner and
begun to “re-dimensionalize” problem difficulty for the
hierarchically-consistent framework.
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