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Abstract. Recently, a minimal domain dubbed the numbers game has been pro-
posed to illustrate well-known issues in co-evolutionary dynamics. The domain
permits controlled introduction of features like intransitivity, allowing researchers
to understand failings of a co-evolutionary algorithm in terms of the domain.
In this paper, we show theoretically that a large class of co-evolution problems
closely resemble this minimal domain. In particular, all the problems in this class
can be embedded into an ordered, n-dimensional Euclidean space, and so can be
construed as greater-than games. Thus, conclusions derived using the numbers
game are more widely applicable than might be presumed. In light of this ob-
servation, we present a simple algorithm aimed at remedying focusing problems
and relativism in the numbers game. With it we show empirically that, contrary
to expectations, focusing in transitive games can be more troublesome for co-
evolutionary algorithms than intransitivity. Practitioners should therefore be just
as wary of focusing issues in application domains.

1 Introduction

[1] discusses a minimal substrate which can be used to illustrate several issues plaguing
co-evolutionary dynamics. Individuals in this substrate are simply tuples of numbers.
Because of the simplicity of the individuals, we are able to see more clearly what goes
wrong when an algorithm fails to work as hoped. The authors explored two variants of
the numbers game, a transitive and an intransitive one. The intransitive numbers game
proved problematic for a conventional, fitness proportionate co-evolutionary algorithm.
One issue which arose in the numbers game experiments which is of particular inter-
est to us is the problem of overspecialization. Individuals had multiple dimensions on
which they could vary. It was observed that some individuals would focus on one di-
mension at the expense of another. We will refer to this issue as the focusing problem.
A detailed discussion of this problem can be found in [2].

In this paper, we will show that a large class of co-evolutionary domains, even in-
transitive ones, can be viewed as n-dimensional, transitive numbers games, for some
unknown dimension n. This observation raises an important question: where have the
intransitivities of the original domain gone? As we will see, the mathematics of Pareto
co-evolution [3],[4] turns intransitive cycles into sets of non-dominated individuals [5];
what remains then are the transitive relations among individuals.
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Our main mathematical tool will be the partial order decomposition theorem. This
theorem states that any finite partially ordered set (poset) can be decomposed into an
intersection of n linear orders, for some number n called the partial order dimension.
This dimension n is meaningful geometrically: one corollary of the theorem is that an
n-dimensional poset can be embedded monotonically into IRn. As shown in [5], co-
evolution problems expressible with a payoff function p : S � T � R (R preordered) can
be regarded as preorderings on the set S of candidate solutions. Modulo technicalities
caused by preordering, such co-evolution problems can therefore also be viewed as
suborders of IRn. Or, to put it simply: as n-dimensional transitive numbers games.

While this result is purely theoretical, our empirical results suggest that we may
reasonably approximate the mathematics in algorithms, at least for the problems we
have tried. In other words, a naı̈ve implementation of Pareto co-evolution can effectively
solve intransitive problems.

Surprisingly, we also find that a co-evolutionary algorithm with a diversity main-
tenance mechanism can tackle the intransitive numbers game, similarly calling into
question the importance of intransitivity in assessing co-evolutionary algorithm failure.
Indeed, with a transitive variant of the numbers game designed to emphasize the focus-
ing problem, co-evolution with diversity maintenance fails, and the full power of Pareto
co-evolution is required to solve the problem. The conclusion we draw from these re-
sults is that focusing, rather than intransitivity, is the more important domain feature to
consider in some applications.

We will be considering co-evolution problems which can be expressed with a payoff
function of form p : S � T � R, where R is assumed to be partially ordered. For sim-
plicity we will assume S, T and R are finite sets; though this assumption is not strictly
necessary, it does simplify arguments.1 We make no further assumptions about structure
on R. This set might consist of numbers, or it might contain symbolic values like lose
and win.

This paper is organized as follows. In section 2, we set up and state the partial or-
der decomposition theorem. Making use of the mathematical notation and terminology
established in [5], we apply this theorem to co-evolution problems and prove and im-
portant corollary, the preorder decomposition theorem, which makes up the backbone
of our claim that co-evolution problems have significant geometric aspects. In section 3
we describe our experiments.

2 Orders and Co-evolution

In this section we set up and state the poset decomposition theorem. Our presentation
borrows from [6], which should be consulted for details and proofs. We next prove
a corollary which we call the preorder decomposition theorem. Finally, we apply our
results to co-evolution problems of form p : S � T � R, showing that any such problem
can be embedded into Euclidean n-space for some unknown n. Finally, we work through
an example to illustrate the concepts.

1 What we really need for most results is that the induced preorder on S be finite-dimensional,
which is true of many infinite preorders too.



2.1 Poset Decomposition

We will write � for orders. We may subscript like � R to emphasize we are in the poset
R. Recall that a monotone function between two posets Q and R is a function f : Q � R
such that whenever q1 � Q q2, then f � q1 � � R f � q2 � . Such a function thus preserves order
relations. Recall also that f is injective if, whenever q1 �	 q2 then f � q1 � �	 f � q2 � . f is an
embedding of Q into R if it is both monotone and injective. An embedding f essentially
realizes Q as being part of R.

In this section, assume all posets are finite. We begin with the notion of linear ex-
tension:

Definition 1 (Linear Extension). A linear extension of R is a total ordering L of the
elements of R which is consistent with R’s order. In other words, if S is the underlying
set of both R and L, the identity function 1S : S � S is monotone with respect to R in the
domain and L in the range.

Example 2. Let R have elements 
 a � b � c � and relations a � c, b � c (i.e., a and b are
incomparable). Then one linear extension of R puts these elements in order a � b � c;
call it L1. R has a second linear extension L2 putting the elements in order b � a � c. In
light of this example, we have the following:

Definition 3 (Linear Realizer). A linear realizer of a (finite) poset R is a set 
 L1 ������ Ln �
of linear extensions of R such that

n�
i � 1

Li
	 R. The intersection means that the only com-

parisons in
n�

i � 1
Li are the ones which are in all the Li; all other pairs of elements are

incomparable.

Example 4. In example 2, L1 and L2 constitute a linear realizer 
 L1 � L2 � of R. To see
this, notice that a � c and b � c in both L1 and L2, whereas a � b in L1 while b � a in
L2. Thus, in L1

�
L2, a � c and b � c whereas a and b are incomparable. These relations

are exactly the ones in R; hence, R 	 L1
�

L2.

We have been leading up to the following fundamental fact about posets which we
state without proof.2

Theorem 5 (Poset Decomposition Theorem). Every finite poset has a minimal real-
izer.

The “minimal” in the name “minimal realizer” means the linear realizer contains a
minimum number of linear extensions. This minimum, call it n, is the dimension of R;
alternately, R is called an n-dimensional poset. For instance, the poset in examples 2
and 4 is two-dimensional. The justification for using the word “dimension” is via the
following two lemmas:

Lemma 6. Every linear extension L of R gives rise to an embedding x : R � IN.

2 See [6] for details. The crux of the proof is to show that R has at least one finite linear realizer.



Proof. A linear extension of R is essentially a choice for putting the elements of R
into a list. If R 	 
 s1 ������ sm � , then L will be sσ � 1 � � sσ � 2 � ��������� sσ � m � , σ being some
permutation of 1 ������ m. Let us reindex R by defining ti

	 sσ � i � . Then, the mapping
x : R � IN defined by ti �� i, is monotonic by construction. It is also injective, since we
only index distinct elements of R. ��
Lemma 7 (Embedding Lemma). Every linear realizer 
 L1 ������ Ln � of R gives rise to
an embedding φ : R � INn.

Proof. By lemma 6, each Li gives rise to an injective, monotone function xi : R � IN.
These functions define a sort of coordinate system for R. Define the map φ : R � INn by
s ���� x1 � s � ������ xn � s ��� for all s � R. Each coordinate xi of φ is injective and monotone;
thus φ itself is too. ��
Remark 8. In particular, if R is an n-dimensional poset, it has a minimal realizer 
 L1 ������ Ln � .
By lemma 7, there is thus an embedding φ : R � INn. INn embeds into IRn, and so we see
that φ can be regarded as embedding R into ordered, n-dimensional Euclidean space. n
is minimal in this case, so R cannot be embedded into m-dimensional space for some
smaller m. Thus the name “n-dimensional poset.”

2.2 Applications to Co-evolution

To complete the picture, we need to see how to apply the results of the previous section
to co-evolution problems. First, let us recall some important definitions and notation
from [5]. For any function f : S � T � R, where S is a set and R is a poset, write S f

for the preordering induced on S by pullback, and write the order on S f as � f . This
definition means that s1 � f s2 exactly when f � s1 � � R f � s2 � .3

Any function of form S � T � R can be curried to a function of form S ��� T � R � ,
where � T � R � stands for the set of all functions from T to R. If p : S � T � R, write
λt  p for the corresponding curried function.

Consequently, starting from a co-evolution problem p : S � T � R, with R a poset,
there is a corresponding preorder structure on the set S, namely Sλt  p. The basic idea is
that two candidate solutions s1 and s2 lie in the relation s1 � λt  p s2 exactly when s2’s
array of outcomes covers s1’s. In other words, s2 does at least as well as s1 does against
every possible opponent. We refer the reader to [5] for details and examples.

The poset decomposition theorem applies to partial orders, not preorders, so we
need to adjust it slightly. Our approach is to observe that every preorder R comes with
an equivalence relation defined: s1 ! s2 if and only if s1 � R s2 and s2 � R s1. One way
to think about this relation is in the context of an objective function f : S � IR. s1 !
s2 exactly when the individuals s1 and s2 have the same fitness. In a multi-objective
context, s1 ! s2 when s1 and s2 have the same objective vector. Given this equivalence
relation, we can then prove the following:

Lemma 9. Let R be a (finite) preorder. There is a canonical partial order Q 	 R " !
and a surjective, monotone function π : R � Q (called the projection) such that π � s1 � 	
π � s2 � if and only if s1 ! s2, for all s1 � s2 � R. Q is called the quotient of R.

3 We can interpret this definition in terms of fitness functions: s1 # f s2 if s2’s fitness is at least
as high as s1’s.



Proof. The proof that Q is a well-defined partial order can be found in [5]. Let us show
that π is surjective and monotone. Define π : R � Q by π � s � 	 � s � for all s � R, where � s �
is the equivalence class of s under ! . π is surjective trivially, since the only equivalence
classes in Q are of form � s � for some s � R. To see π is monotone, observe the order on
Q is � s1 �$� Q � s2 � if and only if s1 � R s2. An equivalent way to state this definition is:
π � s1 � � Q π � s2 � if and only if s1 � R s2 (this is just rewriting � si � as π � si � ). The “if” part
proves the monotonicity of π. ��

Lemma 9 permits us to adapt the poset decomposition theorem (theorem 5) to pre-
orders. If R is a preorder, form the quotient Q 	 R " ! , which will be a partial order.
Apply the embedding lemma (lemma 7) to yield an embedding φ : Q � INn of Q in INn.
Composing φ with the projection π gives a monotone function φ % π : R � INn which
we call a pseudo-embedding of R into INn. By this we mean the following. Write ψ
for φ % π. ψ is such that ψ � s1 � 	 ψ � s2 � exactly when s1 ! s2. Consequently, ψ behaves
like an embedding, except that it sends equivalent individuals in R to the same point in
INn. Otherwise, it sends non-equivalent elements in R to different points in INn while
preserving the order relations between them. Let us record these observations as:

Theorem 10 (Preorder Decomposition Theorem). Every finite preorder can be pseudo-
embedded into INn (and thus into IRn). Moreover, every finite preorder has a minimum
n, the dimension of the preorder, for which such pseudo-embedding is possible.

Let us examine an example to help visualize the definitions.

Example 11. Consider the following game:.

p rock stone paper scissors
rock 0 0 & 1 1
stone 0 0 & 1 1
paper 1 1 0 & 1

scissors & 1 & 1 1 0

This game is rock-paper-scissors with a clone of rock called “stone.” In this case,
S 	 T 	 
 rock � stone � paper� scissors � , and R 	 
'& 1 � 0 � 1 � with & 1 � 0 � 1.

By comparing the rows of this matrix, we can see that none of the strategies domi-
nates any of the others. Every strategy does well against at least one opponent; likewise,
every strategy does poorly against at least one opponent. However, rock ! stone because
their rows are identical. Consequently, the induced preorder on 
 rock � stone � paper� scissors �
contains only the relations rock � stone and stone � rock. We show this preorder in fig-
ure 1.

When we mod out the equivalence relation ! , we arrive at a partial order consisting
of the three equivalence classes 
'� rock �(��� paper �(��� scissors �)� . In this partial order, all
three elements are incomparable to one another. This is, in fact, a 2-dimensional partial
order, with linear realizer L 	

'��� rock �(��� paper �(��� scissors � � ����� scissors �*��� paper �*��� rock � � � Figure 2 shows a plot of the
corresponding pseudo-embedding.



paper

scissorsrock

stone

Fig. 1. The preorder rock-stone-paper-scissors displayed as a graph. An arrow between two indi-
viduals indicates a # relationship; absence of an arrow indicates the individuals are incomparable.
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Fig. 2. The preorder rock-stone-paper-scissors pseudo-embedded into the plane IN2

2.3 Discussion

We began with a co-evolution problem which may have had intransitive cycles and other
pathologies. We ended up with what amounts to an embedding of the problem into INn

for some unknown dimension n. INn is a particularly simple partial order; in particular,
it is transitive. How did we turn a pathological problem into a nice transitive one?

The first point to note is that a pseudo-embedding, while well-defined mathemati-
cally, is not easily computable. Indeed, it is has been known for some time that even
learning the dimension of a poset is NP-complete [7]. Furthermore, in order to compute
a poset decomposition, we need to have all the elements of the poset on hand. While
in many problems it is possible to enumerate all solutions,4 it is typically intractable to
do so. Thus, while pseudo-embeddings exist as mathematical objects, they are at least
as expensive to compute as solving the problem by brute force. This is not surprising;
if we had a pseudo-embedding in hand, we could treat our problem as a greater-than
game and solve it relatively easily. Pseudoembeddings thus encode a lot of information
about the original problem which we have to “pay for” somehow. In essence, what we
have done is reorganize the information in a problem.

A second point is that we can at least hope that the preorder decomposition of a
co-evolution problem can be approximated by a more practical algorithm. In the next
section, we will present a simple algorithm aimed at approximating the preorder de-

4 Exceptions include problems with real-valued parameters.



composition of a problem and show that it works reasonably well on two instances of
the numbers game.

3 Experiments

In this section we present our experimental results. We begin by recalling the numbers
game, from [1]. Next, we describe the algorithms we employ and our implementation
choices. Finally, we present and discuss results.

3.1 The Numbers Game

“The numbers game” [1] actually refers to a class of games. Common among them is
that the set of individuals, call it S, consists of n-tuples of natural numbers. How we
choose to compare individuals, and what choice we make for n, define an instance of
the game. In our experiments, we will be considering two instances. In both, we will
deviate somewhat from the score functions defined in [1]. Instead of returning a score,
we will construct our functions to have form p : S � S �+
 0 � 1 � , where S 	 IN2 is the set
of ordered pairs of natural numbers, and the function p simply says which individual is
bigger (i.e., gets a bigger score or “wins” the game).

In our experiments we only present data for 2-dimensional problems, since the is-
sues we wish to emphasize are already visible at this low dimensionality. For simplicity
of presentation, we define these games for 2 dimensions only.

The Intransitive Game [IG] In this game, we first decide which dimensions of the
individuals are most closely matched, and then we decide which individual is better on
that dimension. The payoff function we use is:

pIG ��� i1 � j1 � ��� i2 � j2 ��� 	
,-. -/ 1 if 0 i1 & i2 02130 j1 & j2 0 and j1 1 j2
1 if 0 j1 & j2 02130 i1 & i2 0 and i1 1 i2
0 otherwise

(1)

This game is intransitive; one cycle is � 1 � 6 � , � 4 � 5 � , � 2 � 4 � [1]. � 1 � 6 � and � 4 � 5 � are closest
on the second dimension, so � 1 � 6 � 14� 4 � 5 � . � 4 � 5 � and � 2 � 4 � are closest on the second
dimension also, so � 4 � 5 � 15� 2 � 4 � . However, � 2 � 4 � and � 1 � 6 � are closest on the first
dimension, meaning � 2 � 4 � 15� 1 � 6 � . Nevertheless, an individual with high values on
both dimensions will tend to beat more individuals than one without, and it seems,
intuitively, that the best solutions to this game are such individuals.

The Focusing Game [FG] In this game, the first and second individuals are treated
asymmetrically. The second individual is scanned to see on which dimension it is high-
est. Then, it is compared to the first individual. The first individual is better if it is higher
on the best dimension of the second individual. As a payoff function:

pFG ��� i1 � j1 � ��� i2 � j2 ��� 	
,-. -/ 1 if i2 1 j2 and i1 1 i2

1 if j2 1 i2 and j1 1 j2
0 otherwise

(2)



Note that this game is transitive. However, the emphasis on one dimension at the ex-
pense of others encourages individuals to race on one of the two and neglect the second.
Nevertheless, an individual which is high on both dimensions will beat more individuals
than one which is focused on a single dimension.

This game is closely related to the COMPARE-ON-ONE game described in [2].5

3.2 Algorithms and Setup

We will compare two algorithms, a population based co-evolutionary hillclimber (P-
CHC) and a population based Pareto hillclimber (P-PHC). The P-CHC has a single
population. To assess the fitness of an individual, we sum how it does against all other
individuals according to the game we are testing. The wrinkle is that each individual
produces exactly one offspring, and the offspring can only replace its parent if it is
strictly better. This algorithm uses a subjective fitness measure to assess individuals,
but the constraint that an offspring can only replace its own parent is a simple form of
diversity maintenance resembling deterministic crowding [8].

Our population based Pareto hillclimbing algorithm is similar in spirit to the DEL-
PHI algorithm presented in [2]. Our P-PHC operates as follows. There are two pop-
ulations, candidates and tests. The candidates are assessed by playing against all the
tests. Rather than receiving a summed fitness, they receive an outcome vector, as in
evolutionary multi-objective optimization [9]. The outcome vectors are then compared
using Pareto dominance: candidate a is better than candidate b if a does at least as
well as b does versus all tests, and does better against at least one. The tests are as-
sessed differently, using an approximation of informativeness [10]. Since the outcome
order is 0 6 1, the informativeness measure presented in that paper collapses to simply
counting how many pairs of candidates a test says are equal.6 In other words, each test
has a score f � t � 	 ∑s1 7 s2 8 Si

δ � p � s1 � t � � p � s2 � t ��� , where Si is the current population, and
δ � p � s1 � t � � p � s2 � t ��� returns 1 if p � s1 � t � 	 p � s2 � t � , 0 otherwise. For our experiments, p
will be one of pIG, or pFG. As in the co-evolutionary hillclimber, in the Pareto hill-
climber individuals receive only one offspring, and an offspring can only replace its
parent. However, the climbing is done separately in the two populations.7

In order to focus more closely on domain-specific problems, we do away with a
bitstring genotype. In our experiments, genotype=phenotype. Individuals are simply
pairs of numbers. To create a mutant, we add random noise to each coordinate with
some probability. Notice there is no mutation bias in any particular direction.

We will be using a population size of 100 for all experiments. In the co-evolutionary
hillclimber, the single population will be 100 individuals; in the Pareto hillclimber, there
will be 50 candidates and 50 tests. The mutation rate is 100%; mutation adds +1 or -1
to each dimension. No form of crossover is used. We ran each simulation for 500 time
steps.

5 But note that pFG has range 9 0 : 1 ; and requires strict inequalities for a 1 output, whereas
COMPARE-ON-ONE has range 9=< 1 : 1 ; and does not require strict inequalities.

6 Strictly speaking, this statement is not true; however, two tests which give different counts of
equal candidate pairs are incomparable; thus we use it as a heuristic.

7 We should remark that neither of these algorithms was intended to be practical; rather, they are
intended to test our ideas.



3.3 Results

Figures 3 and 4 show performance versus evolutionary time for both P-CHC and P-
PHC on the payoff functions pIG and pFG. Note that the co-evolutionary hillclimber
out paces the Pareto hillclimber. The Pareto hillclimber must adjust not only its candi-
dates to make an improvement, but also its tests. Updating the tests causes a time lag
which slows down progress. The graphs are intended to be qualitative, however; what
is important is that both algorithms make steady progress.

Note figure 3, the intransitive game. Unlike the algorithm used in [1], P-CHC made
continuous progress on the intransitive game. Since P-CHC essentially adds only a
diversity maintenance mechanism, it seems the diversity is important to the success or
failure of co-evolution on this problem.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400 450 500

P
er

fo
rm

an
ce

 (
su

m
 o

f c
oo

rd
s)

Evolutionary time

Performance of P-CHC and P-PHC on IG, versus Time

P-CHC
P-PHC

Fig. 3. Performance versus time of P-CHC and P-PHC on IG (intransitive game). Plot shows a
single, typical run. Performance is measured as the sum of the coordinates; the plot shows this
value for the best individual of the population at each time step.

At first glance, the Pareto co-evolution mechanism of P-PHC does not seem to be
adding anything. To understand more completely what is happening, we plot in figure 5
the final candidates P-CHC found on a typical run on pFG, together with the final can-
didates and tests which P-PHC found on a typical run. Notice how P-CHC has focused
entirely on the horizontal dimension. While it made great progress there, it neglected
the vertical dimension entirely. By contrast, P-PHC has maintained progress on both di-
mensions equally. While it did not move as far as P-CHC, it did remain balanced. Most
important are the tests P-PHC found. In the plot, the tests appear to be “corralling” the
candidates, keeping them in a tight group near the main diagonal. An animation of a
typical run of P-PHC reveals this is indeed the case. The tests keep step behind the can-
didates. The same configuration of tests and candidates persists, but the group of them
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Fig. 4. Performance of P-CHC and P-PHC on FG (focusing game). Plot shows a single, typical
run. Performance is measured as the sum of the coordinates of the best individual.

move slowly up and to the right, towards the better values of this game. Intuitively, we
imagine the individuals found by P-CHC are brittle specialists, whereas the individuals
found by P-PHC are more robust generalists.

4 Conclusion

To sum up, we have shown mathematically that a wide class of co-evolution problems,
if properly construed, can be looked upon as n-dimensional, transitive, greater-than
games. The trouble is that discovering n is an NP-complete problem in general, let
alone the embedding which would permit us to convert our favorite problem domain
to a nicely-behaved transitive domain. Nevertheless, we feel the mathematical result
changes the face of intransitivity. We examined intransitivity experimentally, using in-
sights gained from our mathematics, and saw that it may not be the demon it has been
made out to be. Some algorithms fail because they are overspecializing on some di-
mensions of a game at the expense of others. While this observation is not new, the
mathematical derivation of it sheds new light on the interpretation of co-evolution and
suggests new algorithms which might overcome both intransitivity and overspecializa-
tion difficulties.
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