
Emergent Geometric Organization and

Informative Dimensions in Coevolutionary

Algorithms

A Dissertation

Presented to

The Faculty of the Graduate School of Arts and Sciences

Brandeis University

Michtom School of Computer Science

Jordan B. Pollack, Advisor

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Anthony Bucci

Aug, 2007



This dissertation, directed and approved by Anthony Bucci’s committee, has

been accepted and approved by the Graduate Faculty of Brandeis University

in partial fulfillment of the requirements for the degree of:

DOCTOR OF PHILOSOPHY

Adam B. Jaffe, Dean of Arts and Sciences

Dissertation Committee:

Jordan B. Pollack, Chair

Timothy J. Hickey

Marc Toussaint



c©Copyright by

Anthony Bucci

2007



To my parents, who gifted me with curiosity

and the stubbornness to follow where it leads.



Acknowledgments

It almost goes without saying that a piece of work this size could not have

been finished without the help of innumerable people. I wanted to extend my

gratitude to those who had the greatest impact on my thinking and writing

over the past eight years.

First, to my advisor Jordan Pollack. Jordan’s visionary quest for “mindless

intelligence,” a search for artificial intelligence without modeling the human

brain or mind, kept me engaged with a set of ideas and a set of people I would

otherwise never have encountered. Jordan’s enthusiasm and deep understand-

ing, not to mention his uncanny ability to direct attention to fertile areas of

research, are truly contagious and inspiring.

To Timothy Hickey and Marc Toussaint, who sat on my dissertation ex-

amining committee. Tim’s careful scrutiny uncovered what would have been

an embarrassing error. Marc, who has been interested in my work for several

years, painstakingly scoured the entirety of this dissertation, offering a myriad

small and large improvements along with suggestive interpretations of these

ideas from perspectives I had not considered.

v



vi

To past and present members of Jordan’s DEMO lab, including Ari Bader-

Natal, Keki Burjorjee, Edwin de Jong, Sevan Ficici, Simon Levy, Hod Lipson,

John Rieffel, Shiva Viswanathan, and Richard Watson. DEMO lab is a fecund

and stimulating research environment which contributed immeasurably to any

decent idea I had while there. Edwin, Sevan, Richard, and Shiva deserve spe-

cial mention. Edwin, whose unparalleled ability to implement complicated

algorithms and experiments have advanced the frontier of coevolutionary al-

gorithms research; I feel lucky to have had the opportunity to collaborate on

some of those efforts. Sevan, whose rigorous, careful thinking and understand-

ing of coevolutionary algorithms have served as a model for my own endeavors.

Shiva, for his thorough scholarship and for patient, thought-provoking discus-

sions. And Richard, whose infectious interest in Pareto coevolution, coupled

with a healthy disdain for unnecessary mathematics, both set me down this

path and kept my theorizing in check.

To friends and colleagues in the coevolutionary algorithms research com-

munity. I owe part of whatever meager knowledge I have of coevolutionary

algorithms to numerous conversations with Jeff Horn, Anthony Liekens, Liviu

Panait, Elena Popovici, Kenneth Stanley, and R. Paul Wiegand.

To the broader evolutionary computation community and those interested

in EC. I owe thanks to Ken De Jong, Sean Luke, Jon Rowe, Michael Vose, and

Abel Wolman, all of whom at one point or another graciously offered insights,

interest, or support for this work.

Finally, to Laura Chinchilla, whose light and faith guided me through some



vii

of my darkest moments. What would I have done without you?



Abstract

Emergent Geometric Organization and Informative
Dimensions in Coevolutionary Algorithms

A dissertation presented to the Faculty of
the Graduate School of Arts and Sciences of
Brandeis University, Waltham, Massachusetts

by Anthony Bucci

Coevolutionary algorithms vary entities which can play two or more distinct,

interacting roles, with the hope of producing raw material from which a highly-

capable composition can be constructed. Ranging in complexity from auto-

didactic checkers-learning systems to the evolution of competing agents in

3-d simulated physics, applications of these algorithms have proved both mo-

tivating and perplexing. Successful applications inspire further application,

supporting the belief that a correctly implemented form of evolution by nat-

ural selection can produce highly-capable entities with minimal human input

or intervention. However, the successes to date have generated limited insight

into how to transfer success to other domains. On the other hand, failed ap-

plications leave behind a frustratingly opaque trace of misbehavior. In either

case, the question of what worked or what went wrong is often left open.

One impediment to understanding the dynamics of coevolutionary algo-

rithms is that the interactive domains explored by these algorithms typically

lack an explicit objective function. Such a function is a clear guide for judg-

ing the progress or regress of an algorithm. However, in the absence of an

viii
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explicit yardstick to judge the value of coevolving entities, how should they be

measured?

To begin addressing this question, we start with the observation that in any

interaction, an entity is not only performing a task, it is also informing about

the capabilities of its interactants. In other words, an interaction can provide a

measurement. Entities themselves can therefore be treated as measuring rods,

here dubbed informative dimensions, against which other entities are incented

to improve. It is argued that when entities are only incented to perform well,

and adaptation of the function of measurement is neglected, algorithms tend

not to keep informative dimensions and thus fail to produce high-performing

entities.

It is demonstrated empirically that algorithms which are sensitized to these

yardsticks through an informativeness mechanism have better dynamic be-

havior; in particular, known pathologies such as overspecialization, cycling,

or relative overgeneralization are mitigated. We argue that in these cases an

emergent geometric organization of the population implicitly maintains infor-

mative dimensions, providing a direction to the evolving population and so

permitting continued improvement.
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Chapter 1

Introduction

This dissertation is concerned with a hope expressed by Arthur Samuel in his

influential work on machine learning. Samuel writes:

We have at our command computers with adequate data-handling

ability and with sufficient computational speed to make use of

machine-learning techniques, but our knowledge of the basic prin-

ciples of these techniques is still rudimentary. Lacking such knowl-

edge, it is necessary to specify methods of problem solution in

minute and exact detail, a time consuming and costly procedure.

Programming computers to learn from experience should eventu-

ally eliminate the need for much of this detailed programming effort

[93].

Recall that Samuel’s procedure learned an evaluation function for check-

ers board configurations which could then be used as a checkers player using

1
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lookahead search. The evaluation function was represented as a weighted sum

of hand-constructed board features. The learning procedure learned which

terms should be present in the function as well as the weights of each term.

The self-play procedure kept a learner, Alpha, and played it against a test op-

ponent Beta. After some number of steps training Alpha, during which Beta

remained frozen, Alpha was copied to Beta and learning repeated. Thus the

test opponent Beta was always a frozen copy of the learner. The procedure

produced checkers players which were better than the average human player

[93].

Samuel’s method for learning checkers by self-play can be interpreted as

a simple coevolutionary algorithm. The Alpha player, which is changing with

experience, is pitted against the Beta player, which is frozen and used as a

measurement of Alpha’s abilities:

At the end of each self-play game a determination is made of the

relative playing ability of Alpha, as compared with Beta, by a

neutral portion of the program [93].

To elaborate the analogy with evolutionary computation, Samuel’s proce-

dure can be called a coevolutionary algorithm with two populations of size

1, asynchronous population updates, and domain-specific, deterministic vari-

ation operators. If this analogy between learning by self-play and coevolu-

tionary algorithms is taken seriously, Samuel’s enthusiasm for self-play pre-

figures the expressed belief that a properly configured coevolutionary pro-
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cess can produce highly capable and complex entities in interactive domains

[96, 87, 69, 82, 45, 40, 39, 97, 99] without the need for “detailed programming

effort” beyond setting up the evolutionary algorithm itself.

Our aim in this chapter is to assess that hope in light of prior work. We will

conclude that while the hope is alive, existing methods are far from achieving

the general-purpose coevolutionary arms race which, until now, has been taken

as a guiding conception of a successful coevolutionary process. We ask: why

not? We hypothesize that the reason arms races have been difficult to induce

rests on two general trends in previous work:

1. The use of a single, numerical fitness value to compare entities;

2. The derivation of fitness from interactions with a pool of entities which

were incented to perform at a task, rather than to inform about the

abilities of other entities.

This dissertation argues that changing fitness values to be multi-objective

rather than single numerical values, and explicitly incenting individuals to

inform, can remedy two known impediments to inducing arms races, namely

overspecialization and cycling. The same move impacts and mitigates a pathol-

ogy in so-called cooperative coevolutionary algorithms where the arms race

conception has not been influential but nevertheless appears in a slightly al-

tered form. Taken together, these observations suggest that the conventional

view of arms races, broadly interpreted to encompass cooperative coevolution-

ary algorithms, may indeed be to blame for unsatisfactory algorithm perfor-
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mance. To further bolster that claim, we prove theoretically that a wide class

of interactive domains possess implicit informative dimensions which func-

tion as measurements or objectives for performing entities. Generally there

is more than one such dimension (again yielding a multi-dimensional notion

of value), and they are unknown to a coevolutionary algorithm a priori. We

observe empirically that explicitly incenting certain entities to inform leads to

an emergent geometric organization of the informing entities into a represen-

tation of informative dimensions, thereby ensuring increases in performance

by providing the information backdrop against which such increases can be

measured. Failure to maintain informative dimensions can, and does, lead to

algorithm misbehavior. Thus, we propose an alternate conception of the aim

of a coevolutionary algorithm: instead of creating and sustaining an arms race,

an algorithm should simultaneously discover and ascend informative dimen-

sions.

The following sections motivate the need for work on this topic, detail the

conceptual background of these claims and give an overview of the argument.

1.1 Performing and Informing

Samuel exposes a split in roles which will be the central concept of this disser-

tation. The Alpha player, which is in a learning mode, is incented to perform

well at playing checkers. By contrast, the frozen Beta player, by functioning

as a measurement of Alpha’s play, is intended to inform well about Alpha’s
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performance. The two roles are treated differently in Samuel’s learning algo-

rithm, with good reason: one would expect that even the strongest learning

algorithm will fail without a “trustworthy criteria for measuring performance”

[93].

While Samuel’s work describes learning against a measurement function in

detail, it does not aim to directly address the simultaneous adaptation of the

function of measurement. Rather than arising from a similarly complicated

assessment procedure, the Beta player is simply a copy of Alpha, frozen after

one cycle of learning and used as a fixed measurement in the next cycle. The

mechanism hinges on the conceit that as Alpha’s play improves, it also becomes

a better and better measurement of checkers play such that a copy of it suffices

to test future variations arising during learning. Similar mechanisms have been

employed in learning backgammon strategies [100, 82] as well as evolving the

morphology and behavior of 3-d simulated creatures [96].

A similar conceit has seen expression in the notion of a coevolutionary

arms race [28, 39, 72] in which two types of entity are locked in an escalating

struggle for dominance. The theory goes that as one type of entity improves,

the other type must simultaneously improve as well to avoid extinction or

stagnation. This algorithmic analog of the Red Queen Effect [101] is envisioned

as the hallmark of an ideal coevolutionary process. One may well believe

that if algorithms could be designed to maintain arms races, then they would

eventually, if not quickly, produce the entities best adapted to do well in the

interactive domain to which they are applied.
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1.2 A Critique of Arms Races

Unfortunately, the arms race conception does not hold up to harder scrutiny,

for the simple reason that performing is not the same as informing. The

distinction between these two roles will be explored more carefully in chapter

3, section 3.2.1, which argues that these two roles can be quite different some

domains; and again in chapter 4, section 4.3.2, which argues that in other

domains, the two roles may indeed coincide to some degree. Here, consider a

criticism from the domain of learning games of strategy. Susan Epstein argues

that

Teaching a program by leading it repeatedly through the same

restricted paths, albeit high quality ones, is overly narrow prepa-

ration for the variations that appear in real-world experience. A

program that directs its own training may overlook important sit-

uations [37].

Epstein points out that a näıve application learning by self-play to game

strategy domains can lead to brittle strategies because the procedure has a

tendency to ignore large swathes of the game’s configuration space. Her ob-

servation hearkens back to Donald Michie’s experience with the MENACE

Tic-Tac-Toe learning procedure that training against a perfect Tic-Tac-Toe

player did not lead MENACE to a strong Tic-Tac-Toe strategy [65]. A re-

lated observation about the strength of coevolved Tic-Tac-Toe players has

also been made: evolving against a fixed strategy tends to produce brittle
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strategies, a shortcoming which a coevolutionary algorithm can alleviate [2].

These works suggest that carefully selecting the opponents against which a

strategy is tested, in other words controlling how informing is done, has a

significant impact on the quality of the learned strategy.

Therefore, Samuel’s mechanism of using a copy of Alpha as a measure-

ment of Alpha’s later progress, while successful in learning checkers players,

backgammon strategies, or creature behavior, is not of general applicability.

Nevertheless, a variety of coevolutionary algorithms use a mechanism essen-

tially like Samuel’s to provide fitness information during evolution. In a typical

two-population coevolutionary algorithm, entities in one population are eval-

uated by interacting with entities from the other. They are then assigned a

fitness value intended to reflect their performance. Since entities are selected

on the basis of their fitness, the pool of entities which can be used as fitness

measurements via interaction has arisen from an incentive to perform well. If

both populations are adapting to performing the same task, as in [96, 100, 82],

then we have a mechanism much like Samuel’s, but elevated (at least in [96])

to populations of entities rather than individual entities.

1.2.1 Does Competition Help?

What if one set of entities is incented to perform well, while the other is

incented to make that difficult? In other words, instead of having two popu-

lations of entities, each of which is incented to excel at the task, why not have

one set attempt to perform well while the other attempts to stump, beat, or
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otherwise expose shortcomings of the first? This kind of evolutionary zero-sum

game [64, 49] differs from Samuel’s mechanism by attaching different incentive

structures to the two different roles of performing and informing. In coevolu-

tionary algorithms research, this idea has arisen in several forms: for instance,

in coevolving abstract hosts and parasites [51, 40, 74, 81, 23, 4], pursuit and

evasion strategies [89, 66, 26, 72, 54], classifiers and test cases [57, 79, 59], func-

tion regression [75], robotics [73, 72, 45], and of course game strategy learning

[2, 92, 4, 24].

These methods have collectively been referred to as competitive coevolu-

tion [2, 89, 92, 45]. A feature they share is that the assessment of an entity in

one population is summarized in a composite number, the fitness, produced

by integrating over its interaction outcomes with individuals from the other

population. The integration may be by averaging, a weighted average, max-

imization, or more sophisticated methods. Nevertheless, entities are always

given a single numerical fitness which is used to decide which entities are bet-

ter.

Because of its aim to find “the best,” the line of work on competitive co-

evolution is replete with reactions against well-known pathological behavior

which call the lie on the arms race conception. Rather than finding the best

entities, straightforward applications of competitive coevolutionary techniques

frequently produce poor individuals and confusing dynamics. Behaviors such

as disengagement, cycling, overspecialization/focusing, and evolutionary for-
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getting1 have all arisen often enough in applications that specific remedies

have been proposed for each.

Pathologies

To cite two examples of well-known pathologies:

Disengagement occurs when one population of entities provide no informa-

tion about the quality of the other coevolving entities. Rosin and Belew’s phan-

tom parasite [90], Juill’e and Pollack’s fitness sharing [58], Olsson’s method of

freezing one population until the other has evolved to beat all individuals in it

[74], Paredis’s X method [80], and Cartlidge and Bullock’s modulating para-

site virulence [23] have all been observed to prevent disengagement in certain

special cases.

Cycling, wherein the algorithm revisits the same points over and over again,

sometimes gaining and sometimes losing ground, has received considerable at-

tention. [22], for example, proposes “diffuse” coevolution, which essentially

increases the number of populations, as a remedy to cycling. Hornby and Mir-

tich [54] follows up this work, also using a robotics domain. Rosin and Belew,

by contrast, recommends a competitive fitness sharing mechanism which dis-

counts the fitness given to entity A interacting with B by the fitness all other

entities receive against B [92]. Juill’e and Pollack propose a similar mecha-

nism, where an entity receives a fitness bonus for doing well against opponents

which other entities cannot defeat [57]. Nolfi and Floreano observe that cycling

1See [103] for a survey of these.
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tends to be damped with obstacles and walls are added to the environment of

coevolving pursuing/evading robots [72]. This last work raises the question of

whether arms races really can arise in competitive coevolution.

The identification of these various algorithmic misbehaviors has led to a

considerable amount of work focused on remedying them or monitoring the

progress of an algorithm while it is running, serving the aim of forcing an

arms race to occur. A summary of key work follows.

Remedies

Karl Sims’s best elite opponent technique [96] provides the inspiration for many

subsequent mechanisms. In Sims’s algorithm, simulated robots are pitted

against one another in a duel over a cube. Robots receive fitness boosts for

each moment they spend in contact with the cube while their opponent is not.

Sims uses a fitness metric based on how many opponents a robot beats to de-

cide which were the elites – that is, the best – in a population. At subsequent

generations, individuals are tested against (compete with) the best elite of the

previous generation.

Rosin’s hall of fame mechanism [91] accumulates the best individual from

each generation. Subsequent generations are then tested against a random

sample from the hall of fame. The intuition is that by broadening testing

to include former best individuals, an algorithm can maintain a direction for

coevolution.

In the sphere of monitoring progress, Cliff and Miller’s CIAO (Current
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Individual against Ancestral Opponent) plots [25] are intended to differentiate

between actual progress and stalling or regress.2 An illustration of a CIAO

plot is displayed in figure 1.1. CIAO plots are generated by interacting the

best entity from each generation of one population with the best entities of

all other generations of the other population. A grayscale value is assigned

to the outcome, where dark pixels indicate the elite performed well while

light pixels indicate it performed poorly. The net result is a grayscale image

which visually displays pathologies like cycling and disengagement, as well

as permitting the distinction between progress and regress when Red Queen

dynamics are present.

pu
rs

ue
r 

ge
ne

ra
tio

ns

evader generations

Example Pursuer CIAO Plot

Figure 1.1: CIAO plot illustration. Each pixel represents the outcome of
the best pursuer of some generation pitted against the best evader of some,
potentially different, generation. A dark pixel indicates the pursuer did well,
while a light pixel indicates it did poorly.

2The Red Queen Effect makes progress indistinguishable from regress or stalling. In all
cases, the fitness of an entity relative to the population can remain fixed, giving no clue
about whether the entity and its compatriots all progressed together, all regressed together,
or all remained unchanged.
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The master tournament of Nolfi and Floreano [44] takes the CIAO plot

one step further. After a run of an algorithm, a tournament is run amongst

the best of each population. That is, while CIAO plots compare the elite

pursuers against the elite evaders, the master’s tournament compares all the

elite pursuers against one another (and symmetrically, all the elite evaders

against one another). Thus, in addition to the information about cycling

and disengagement perceivable from a CIAO plot, the master’s tournament

permits one to see at which generation an innovation occurred in the pursuer

behavior. If, for instance, the elite pursuer from generation 100 is able to defeat

the elite pursuers from all previous generations in the master’s tournament,

the pursuer population apparently made some advance in pursuit behavior.

Similar, symmetric remarks apply to the evaders.

Techniques aimed at alleviating cycling behavior include diffusing entities

across multiple populations [22, 54] as well as dispersing them on a spatial

grid [51, 75]. Introducing obstacles [72] to the task domain has been reported

to dampen cycling behavior as well.

Disengagement, by contrast, is often attacked by allowing low-fit individu-

als a chance to survive to future generations. The intuition mirrors Minsky’s

discussion of hillclimbing in [67], which notes the tendency for such algorithms

to become stuck on what he terms mesas 3 or local optima. Algorithms which

keeps sub-par individuals may be able to escape such dead ends. The lesson

is that consolidating too quickly around what presently seem to be the best

3Plateaus in the evolutionary computation parlance.
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individuals can lead to a lack of diversity and thus limited options for escaping

sub-optimal but dynamically-stable solutions. Competitive fitness sharing and

phantom parasites [90], Juillé’s fitness sharing [59], and Cartlidge’s modulating

parasite virulence [23] re-weight the fitness of entities, whereas Olsson’s algo-

rithm [74] and Paredis’ X method [80] alter the rate at which populations are

updated, effectively delaying the time at which low-fit entities are discarded.

What’s in a Number?

It should be emphasized that all the mechanisms thus far surveyed rely on a

single numerical fitness value for entities, elaborating on but otherwise follow-

ing Sims’s best elite opponent conception [96]. In all cases the best individuals

are determined on the basis of this single number.

An exception is Bader-Natal’s all of generation (versus best of generation)

technique [6, 7]. An AOG plot resembles the CIAO plot. Rather than plotting

a pixel representing the outcome of the best entity of one population against

the best entity of the other, the AOG method plots a pixel summarizing the

interactions of entities in one population with those of the other. As with

CIAO, AOG plots can be used to detect cycling and disengagement as well as

to differentiate progress from regress when Red Queen dynamics are at play.

However, they additionally permit distinguishing two dynamics illustrated in

figure 1.2.

Thus, one advantage of an AOG method is that it can predict a potential

collapse in ability: if all but the best entity are decreasing in capability, effects



CHAPTER 1. INTRODUCTION 14

average

best

time

fi
tn

es
s

best

time

fi
tn

es
s

average

Figure 1.2: Two hypothetical dynamics indistinguishable by CIAO plots but
distinguishable by AOG plots. In both examples, the best individual takes the
same, increasing trajectory through fitness space. However, the average fitness
of the population is different, increasing in the left plot while decreasing in the
right one.

like drift or noise might lead to the loss of that best and produce a catastrophic

decrease in the abilities represented in the population.

Summary

After surveying this much work on pathological algorithm behavior and pro-

posed remedies, a natural conclusion is that arms races are the exception

rather than the rule in competitive coevolution. If that is truly the case, then

perhaps another approach is warranted.

Rosin notes:

In competitive coevolution, we have two distinct reasons to save

individuals. One reason is to contribute genetic material to future

generations. Selection serves this purpose. The second reason to

save individuals is for the purposes of testing [91].
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Rosin’s statement suggests the implicit belief that testing well arises nat-

urally from performing well. As with Samuel’s work, the pool of entities from

which tests are drawn, even if they come from a hall of fame, ultimately arises

from incentives to perform well. If this same belief truly lies behind work

identifying and studying coevolutionary pathologies, then perhaps the conceit

that informing is tantamount to performing is to blame. Furthermore, since

the reliance on single numerical fitness values for identifying best elite oppo-

nents is common to all experiments reporting pathological dynamics, perhaps

the reliance on numerical fitnesses should also be questioned.

1.2.2 Does Cooperation Help?

Cooperative coevolution refers to a class of coevolutionary algorithms intended

to optimize functions. Though the ideas of this class of algorithm are present

in [55], the term cooperative coevolution as it is used today is introduced in

[87]. The key idea behind this class of algorithms is to decompose potential

solutions into component parts, then test each component in the context of

an assembly built from other, coevolving parts (see [19], which elaborates this

test-based point of view). Each type of part is ensconced in its own population

and evolved separately using standard evolutionary computation techniques.

However, at the time when a part is to be evaluated, it is coupled with parts,

called collaborators from other populations to produce a working whole which

can be input to the objective function. Typically, parts are coupled with the

best (that is, highest-fitness) entities from the other populations, as well as
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with randomly-selected entities. In general, there is a problem of collaborator

selection: exactly which other entities should be used to assess a given part?

The ultimate fitness given to the part is the maximum or average of the values

it received in the various assemblies in which it was assessed. That fitness is

used to make selection decisions and produce the next population.

Cooperative coevolutionary algorithms (CCEAs) have not typically been

associated with notions of arms race. Arms races are traditionally associated

with competitive coevolutionary algorithms. Yet it can already been seen that

cooperative coevolutionary algorithms share a number of features in common

with their competitive counterparts which make them worth considering from

the same perspective. For instance, CCEAs rely on single numerical fitness

values, the determination of best or elite entities from these numbers, and the

use of composites like maxima or averages to determine the fitness value.

Since the value of such mechanisms was critiqued in section 1.2.1, what are

we to make of their use in cooperative coevolutionary algorithms? Does the

cooperative nature of the evaluation, wherein parts are incented to perform

well with other parts rather than defeat them, make a difference to the argu-

ment of the previous section? Here we suggest it does not by surveying the

debate over collaboration methods and a pathology known as relative over-

generalization. We raise the question of whether the conflicting observations

of which collaboration method is most successful (and why), as well as the

relative overgeneralization phenomenon, can both be explained in terms of

inadequate testing of parts.
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Collaboration Methods

When the objective function used in a cooperative coevolutionary algorithm is

separable in the sense that each component part has a fitness value independent

of the other parts, a coevolutionary algorithm is not necessary. Each type of

part can be independently evolved to a high level of fitness, and then the

highest-fitness entities can be combined into a whole which is guaranteed to

also be high fitness. Consequently, most attention has been paid to domains

which do not possess such a simple objective function. While a full survey of

the discussion over collaboration methods which has appeared in the literature

is beyond the scope of the present endeavor, we will focus on one line of work

regarding cross-population epistasis and several techniques which have been

used to study it.

In more complicated domains, it can happen that a part may appear to

have a high value when it is combined with one collaborator, but then appear

to have a poor value when it is combined with some other collaborator. As a

simple illustration, a charged AA battery has high value in a remote control

which takes AA batteries, but has almost no value in a remote control which

takes AAA batteries. A more formal example of this effect is analyzed in

chapter 4, section 4.3.

The broader observation of cross-population epistasis, of which the AA

battery example is a simple illustration, is the rule rather than the excep-

tion. Intuitively speaking, in the presence of such an effect, one must carefully
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choose which collaborators are utilized to assess a given part. However, the

empirical analysis in [107] brings that intuition into question by demonstrating

that cross-population epistasis alone does not always necessitate complicated

collaboration schemes. [106], also an empirical study, furthers that work to

suggest that contradictory cross-population epistasis, of which the AA illustra-

tion is also a simplified example, has a stronger effect on which collaboration

method leads to successful coevolution.

Popovici and De Jong [83] have constructed a class of test functions which

contradict this conclusion. While all the test functions have contradictory

cross-population epistasis, the single-best collaboration method used in the

tested CCEA performs well in some cases but poorly in others. To explain

this difference, the authors apply two techniques. First is a dynamical systems

analysis technique first presented in [105] which tracks the trajectory of the

best individual of one or more of the populations through time (see also [85]).

The other is a notion of best response curves given in [86] which plots, for

each entity in one population, the entity in the other population with which

the first would receive its highest payoff.4 One conclusion drawn from these

studies is that if the trajectory of the best entity lands at the intersection of the

best response curves, then the algorithm has become stuck. These intersection

points are, in fact, Nash equilibria: since each entity is paired with the entity

with which it does best (hence the name best response curve), no entity has

4The authors note that this information is only available for simple test problems such
as those given in [84]; though the best response curves are not known in advance in hard
problems, and in fact may not even be curves, they demonstrably provide theoretical insight.
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an incentive to change.

It should be stressed that the dynamical systems technique of tracking the

trajectory of the single best entity which runs through this line of work also

relies on a single, numerical fitness value. The best entity is identified by its

fitness, which is computed as an aggregate of its collaborations with entities in

another population. Compare the discussion of AOG plots in section What’s

in a Number, and in particular figure 1.2.

Pathology

Relative overgeneralization, as treated in [105], refers to the tendency of coop-

erative coevolutionary algorithms to prefer parts which perform suboptimally

in a large variety of assemblies, versus preferring parts which are present in

the globally optimal assemblies. The identification of this pathology in test

domains such as the class of maximum of two quadratics functions [105] contra-

dicts the intention expressed in [87] that cooperative coevolutionary algorithms

optimize functions.

A possible remedy to this pathology is proposed in [78]. Rather than

assessing a part only in the context of best or randomly-chosen parts, this

work suggests biasing the part’s assessment towards what it would be in the

context of parts which would appear in the global optima. Naturally, such

information is not available to a running algorithm; if it were, there would be

no need for coevolution.5 Nevertheless, the authors argue that if an estimate

5If we could obtain the optimal assessment of each instance of each type of part, we could
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of the optimal assessment is available, it can be used to bias the evaluation of

parts and thus bias the algorithm towards the globally optimal solutions.

Once again, it cannot be overstressed that the identification of best enti-

ties comes from a single numerical fitness value computed as an aggregate of

interactions with members of other populations.

Summary

In short, the belief implicit in CCEA research has been that when exploring

a domain that involves cooperation, being good in an assembly is the best

way to inform about how good a component is. Credit assignment [70, 67]

to a part is done by testing that part in wholes made with other collabo-

rating parts. Often, the collaborators chosen are the best ones previously

encountered. CCEA work recognizes the shortcoming of this testing mode

by including random collaborators; a continuing debate has questioned which

of several possible collaborator selection methods works best. Furthermore,

if one seeks to optimize a function, as cooperative coevolutionary algorithms

were originally intended to do, the relative overgeneralization phenomenon be-

comes an undesirable algorithm behavior which is to be avoided [105]. Thus

far, the only technique available for avoiding relative overgeneralization has

been to bias the assessment of a part towards what its optimal assessment

would be, information which is generally unavailable to a running algorithm.

independently evolve the parts using this information as the objective. Several independent
evolutionary algorithms would suffice for this task, obviating the need for a coevolutionary
algorithm.
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Notice that the pool of parts from which collaborator choices are made

have been incented to perform well. Further, note that Epstein warns against

using random choices for tests: “variety introduced into training by random

choice is unreliable preparation” [37].

Thus, the issues raised in section 1.2.1 concerning the shortcomings of

single numerical fitness assessments coming from interactions with performers

are just as relevant to cooperative coevolutionary algorithms as they are to

competitive ones, even if cooperative coevolutionary have not traditionally

been regarded as seeking arms races. Could it be that the lack of consensus

on collaboration methods and the relative overgeneralization pathology also

arise from uninformative testing?

1.3 The Problem of Measurement

To sum up where we have come so far, we have seen three broad classes of

testing or measuring methods in use in coevolutionary algorithms. First, we

considered methods like Samuel’s checkers learner, which use best-performing

players as tests of variations of the performing entities. Second, we discussed

competitive coevolutionary methods which inform about performing individu-

als by in some sense attacking their capabilities with other performers. Third,

we surveyed cooperative coevolutionary techniques which assign credit to en-

tities by assembling them into wholes and observing how well the whole does.

We found that in spite of compelling successes in particular domains, in general
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brittleness, cycling and disengagement, or relative overgeneralization, respec-

tively plague the three approaches.

The overarching, motivating question of this dissertation is: could there be

a common cause to all these misbehaviors? Rather than being specific failings

of specific techniques in specific domains, could these failings all be the result

of the consolidation of interaction information into a single numerical fitness

value? Could the information loss entailed by such an integration be the

culprit? Moreover, since virtually all surveyed techniques test with entities

which were previously incented to perform, could it help to truly separate

these two roles and draw tests from entities which were directly incented to

inform? In other words, could there be a universal problem of measurement?

In order to flesh out the problem more fully, the next section gives reasons

to believe that aggregating in general is a poor choice of measurement. The

subsequent section outlines what might be done instead.

Why Are Aggregates Bad Measurements?

Consider the payoff matrix displayed in table 1.1.

t u v w max avg
a 100 0 0 0 100 25
b 0 1 1 1 1 3

4

c 0 0 3 0 3 3
4

Table 1.1: A simple payoff matrix illustrating why averaging or maximizing
payoff can be misleading.

A note about terminology. Let us identify the set S = {a, b, c} as the
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candidate solutions for the problem represented by this payoff matrix. The

intention is to find one or more members of S which are “good” in some sense.

Dually, let us identify the set T = {t, u, v, w} as test entities which provide

information about the candidate entities by interacting with them. Previously

we drew a distinction between performing and informing; that distinction is

instantiated here by asserting the candidate solution role is to perform, while

the test entity role is to inform.

The ranking of the entities S = {a, b, c} entailed by taking their maximum

payoff against T = {t, u, v, w} is a > c > b. The ranking entailed by taking

their average is a > b, a > c, and b = c. The two aggregation methods conflict

in the relative merits of b and c, but both agree that a is the best entity in S.

Now consider a more complicated example, the competitive fitness shar-

ing method described in [92]. Using that method, we derive the competitive

fitnesses show in table 1.2.

t u v w shared fitness
a 100 0 0 0 100

100
= 1

b 0 1 1 1 1 + 1
4

+ 1 = 21
4

c 0 0 3 0 3
4

= 3
4

sum 100 1 4 1

Table 1.2: Rosin’s competitive fitness sharing calculation applied to the matrix
in table 1.1.

Competitive fitness may change the ranking of individuals. Here, the rank-

ing given is b > a > c. In particular, a is no longer considered best; b is.

Further, where before c had at worst an ambiguous position in the ranking,
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here c is definitively the worst entity.

Indeed, a variety of re-weightings of payoff values can and have been imag-

ined. The various weighting methods will often conflict in how they rank

entities, just as max, average, and competitive fitness sharing conflict. We are

assured of that conclusion by Arrow’s impossibility theorem [3].

To see this, think of each of the entities in T as producing a ranking of the

entities in S, a point of view we will explore more fully in chapter 3. In some

sense each test in T is voting on how it believes S should be ranked. Any

aggregate like max or average which produces a single numerical value also

produces a ranking of S. For example, we saw that max produces the ranking

a > c > b. Framed this way, the question of aggregating payoffs is precisely the

question of making social choice from individual values which Arrow’s book

treats. Mapped to the present context, Arrow’s impossibility theorem states

that under conditions when two tests conflict in how they rank entities, any

aggregate of the payoffs which is also a rank will conflict with at least one of

the tests.

Note in table 1.1, for instance, that u, treated as a voter, believes that b

is the best entity in S; it assigns b a 1, while it assigns all other entities a

0. max and average both conflict with u’s ranking, assigning b a secondary

place. Competitive fitness sharing agrees with u, as its rank states that b is

best. However, it conflicts with v, which gives c the highest payoff and hence

believes c is the best entity in S. This example illustrates just how severe the

conflict can be: competitive fitness sharing ranks c worst, even though the
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test v asserts c is best. Arrow’s impossibility theorem, which generalizes to

any number of entities being ranked by any number of tests using any kind of

aggregating function, guarantees that there are always cases where this kind

of conflict can happen.

Another objection to raise regarding aggregating payoff values into a sin-

gle numerical fitness involves the arbitrariness of the precise numerical values

being used as payoff. In a board game like Tic-Tac-Toe, why is a win a 1 and

not 2, or 10, or 100? Why is a loss a -1 and not a 0, or a -1,000,000? The

game itself defines only symbolic, ranked outcomes: win > draw > loss; any

choice of numbers to associate with those three outcomes is arbitrary up to

the ordering.

Cooperative coevolutionary algorithms typically treat objective functions

of form f : X → � .6 Thus, in some sense they already give a numerical

value to components. However, rescaling fitness values is a common technique

in evolutionary computation which naturally presents itself in cooperative co-

evolutionary applications as well. Rescaling the output of f can be done in an

arbitrary way.

In both cases, there are applications in which numerical fitness values are

arbitrarily assigned to interactions. We therefore ramify the problem of mea-

surement: what can we do to alleviate the expected shortcomings of aggregate

measurements like max or average?

6Recall that X is decomposed into components, say as X1×X2, which are independently
varied; then the objective function takes form f : X1 × X2 → � .
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What Can Be Done Instead?

The primary purpose of this dissertation is to argue that the alternative of not

aggregating at all is plausible, useful, and yields insight into both pathological

behavior on the one hand and ideal algorithm dynamics on the other. More

detail on that last statement will be given when we describe Pareto coevolution

in section 1.4.4 and when we overview this work in section 1.5. For now, let

us describe the idea of measurement more closely.

When we considered the shortcomings of aggregating in table 1.1 we saw

that each test entity can be thought of as ranking the other entities. In this

respect, a test entity is also acting as a measurement of those other entities.

The test v in that figure provided a measurement about a, b, and c such that

the ranking c > b > a resulted. Thus we are able to compare the entities with

respect to a single test-entity-as-measurement, independently of the other test

entities or any aggregation of payoffs. Likewise, the tests t, u and w each gave

independent rankings of the entities.

The important insight is to always do apples vs. apples comparisons. That

is, rather than aggregating, which reduces all payoffs to a common currency,

only assert that a > b, for instance, if all tests independently agree that this is

so. If one test says that a > b and another that b > a, a and b are incomparable.

In fact, there is more information: some subset of the tests give the rank a > b

(namely, {t}), while some other subset of the tests give the rank b > a (namely,

{u, v, w}).7

7It is also possible that some tests say these two are equal; for instance, u gives a and c
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Another way to put it is that a > b only in a sense; here, in the sense

that a does better against the test t than b does. Likewise, b > a only in

the sense that b does better against the tests u, v, and w than a does. As

we saw, aggregates like max or averaging wash out this finer-grained sense of

comparison and assert a single ordering like a > b.

As chapter 3 will argue more fully, this discussion also provides a form of

aggregation. However, instead of being a single numerical value, the aggregate

in this case is a vector of outcomes. The apples vs. apples comparison proposed

in the previous paragraphs is the Pareto dominance comparison used in multi-

objective optimization. Using such a mechanism, we can still compare entities

without having to reduce them to the common currency of a single, numerical

fitness value.

One fallout of this point of view which marks the primary contribution of

this dissertation is that tests can be viewed as measuring rods against which the

set of candidate entities can be compared. Once we make that identification,

the question arises: what makes a good measuring rod? In other words, it

becomes unclear whether incenting test entities to perform well at the task

is adequate to produce measuring rods which give good information about

ranking the candidate entities. As we have argued, and will develop more

fully in later chapters, the two roles of performing and informing are not the

same and there is good reason to treat them differently in algorithms.

equal payoffs.
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1.4 Conceptual Background

This work is placed squarely in the context of evolutionary computation, the

study of coevolutionary algorithms, and more specifically a recent conception

known as Pareto coevolution. This section is dedicated to detailing this con-

ceptual backdrop, as well as to reviewing salient work.

1.4.1 Evolutionary Algorithms

The phrase evolutionary algorithm, also evolutionary computation, refers to

a class of algorithms whose mechanisms are inspired by evolution by natu-

ral selection. The class includes genetic algorithms [52, 53, 50], evolution-

ary programming [46], evolution strategies [88, 12], and genetic programming

[60, 61, 62].8 While the various algorithms operate on different data structures9

and employ different mechanisms, attempts to unify the algorithms [8, 36] have

abstracted a basic form which all can be said to have:

• They are given an objective function with which to assess entities;

• They maintain a population (a multiset or distribution) of entities;

• They apply variation operators to the entities in a population to produce

variants;

8This list is not exhaustive; a skim of the Genetic and Evolutionary Computation Con-
ference proceedings reveals a much wider variety of algorithms than list here. Evolutionary
multi-objective algorithms and coevolutionary algorithms will be reviewed shortly.

9Traditionally, symbol strings, finite state machines, real-valued vectors, and program
trees, respectively.
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• They evaluate the entities in the population, usually assigning each a

numerical value called its fitness;

• They apply a selection operator to the population on the basis of the

entities’ fitnesses to produce a new, culled or rescaled population.

The variation and selection operators are generally stochastic. Evolution-

ary algorithms progress through a cycle of variation and selection to generate

a sequence of populations. If all goes well, an algorithm will halt with a pop-

ulation containing highly-capable entities as judged by the objective function

of the problem.

1.4.2 Evolutionary Multi-objective Optimization

Evolutionary Multi-objective Optimization (EMOO) algorithms [47], also called

multi-objective evolutionary algorithms (MOEA), differ from evolutionary al-

gorithms in that rather than using a single objective function, they use mul-

tiple objectives. Evaluation generally assigns a vector of objective values to

each entity rather than a single fitness value, and comparison between entities

takes place using Pareto dominance or Pareto covering. Generally speaking

the algorithms aim to find an approximation of the non-dominated front of

the objectives; namely the set of entities which are maximal (in the sense of

definition 2.1.4) with respect to the objectives.

To state these ideas more precisely, imagine S is some set of entities, and

for each 1 ≤ i ≤ n we have an objective function fi : S → � . An entity
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s2 ∈ S (Pareto) covers another entity s1 ∈ S if, for all i, fi(s1) ≤ fi(s2). s2

(Pareto) dominates s1 if it covers s1 and, additionally, there exists a j such that

fj(s1) < f(s2). That is, s2 is strictly better than s1 on at least one objective

function. s1 and s2 are incomparable, or mutually non-dominated, when there

are i, j such that fi(s1) < fi(s2) and fj(s1) > fj(s2). In words, s1 is better

than s2 on some objective, while s2 is better than s1 on some other. An entity

is in the non-dominated front if no other entity dominates it; it follows that

any pair of entities on the front is either equal or non-dominated. Another

way to put it, and the reason the non-dominated front is a trade off surface,

is that a switch from some s1 on the front to an s2 on the front will either

leave us with all objective values unchanged, or will simultaneously increase

one objective while decreasing some other one (trading a gain in one for a

loss on the other). See [48] or [27] for a survey of evolutionary multi-objective

optimization algorithms. Chapter 2 will detail how Pareto covering, Pareto

dominance, and the non-dominated front ground in the theory of ordered sets.

1.4.3 Coevolutionary Algorithms

Coevolutionary algorithms [10, 11, 5, 51] follow the basic form of an evolution-

ary algorithm but differ in

• The type of objective function used; and,

• The evaluation of entities.
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What About Populations?

Some authors insist an algorithm is not coevolutionary if it maintains only

one population, while others insist that a single-population algorithm can be

coevolutionary. Whichever way the debate on number of populations resolves,

it is clear that a coevolutionary algorithm requires its entities to play at least

two roles. Host/parasite coevolution, for instance, distinguishes between the

host role and the parasite role; similar distinctions are drawn in predator/prey

or pursuit and evasion domains. Game strategy evolution often differentiates

first-player strategies from second-player strategies. Even if a single entity can

play both roles, there are still two.

Interactive Domains

Coevolutionary algorithms typically operate over interactive domains, rather

than an objective function. Here that term is taken to mean a domain con-

sisting of one or more functions of form p : S × T → R where S and T are

sets of entities and R is some ordered set (often � ). Such a function encodes

the outcome of interactions between entities from S and entities from T ; when

s ∈ S and t ∈ T interact, they produce an outcome p(s, t) in the value set

R. p is an observation or measurement about the interaction. The role dis-

tinction shows up here in terms of the two arguments to the function p; S

is interpreted as the entities playing one role while T are the entities playing

the other. Objective functions of the sort typically employed in evolutionary
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algorithms have form f : S → � and do not have such a role distinction. A

function of form p : S × T → R can be interpreted as a payoff matrix where

the s, tth entry is p(s, t). Thus the matrices used in game theory are ready

examples of such functions.

Often, interactive domains give separate outcomes to entities of different

roles. That is, there are two functions pS : S×T → RS and pT : S×T → RT .

If s ∈ S and t ∈ T , then the value pS(s, t) ∈ RS is interpreted as the value

that s receives as a result of its interaction with t. Symmetrically, pT (s, t) is

interpreted as the outcome t receives from its interaction with s. Examples of

domains of this sort arise in game theory [49, 41], where payoffs are assigned

differently depending on which role an entity plays. Games arising in game

theory typically assume numerical payoffs so that RS = RT = � . Thus we

have, for instance, that zero sum games are such that pS = −pT .

Evaluation

The evaluation of an entity is an integration, or aggregate, of the outcomes

it receives from the interactions in which it takes part. The evaluational

mechanism specifies both which interactants an entity will encounter as well

as how its outcomes are integrated into a final evaluation of the entity. We

will put aside the question of how interactants are chosen; though multiple

techniques exist, in the work described here we will use all the entities in the
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other population as interactants.10

If pS is the outcome for S in an interactive domain, pS gives numerical

outcomes, we can give several, and an entity s ∈ S interacts with some subset

T ′ ⊂ T , we can give several common methods of integrating outcome informa-

tion:

• Summed fitness:
∑

t∈T ′ pS(s, t)

• Average fitness: 1
|T ′|

∑
t∈T ′ pS(s, t)

• Maximum fitness: maxt∈T ′ pS(s, t)

When pS does not give numerical outcomes, summed and average fitness

cannot be defined directly. Typically, such outcomes are mapped to a numer-

ical value, which is then summed or averaged.11 Maximum fitness still has a

significance if the outcome set is non-numerical.

Regarding Representation

This dissertation is primarily concerned with the evaluation of entities. Though

representation, particularly the choice of variation operators, plays a large role

in determining the success of an algorithm, we will not be considering such

10Which is not to say the issue of selecting interactants is unimportant, only that we
have chosen to put aside that issue. While no theoretical problems arise when comparing
two s1, s2 ∈ S which interact with the same subset of T , whenever s1 and s2 interact with
different subsets of T , as in tournament selection, we encounter the issue of comparing apples
and oranges.

11For instance, board game domains typically give win/loss outcomes, which are ordered
by loss < win. These are often mapped to 1/-1 or 1/0 outcomes, which can then be summed
or averaged.
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issues here (though see, for example, [99] for a recent commentary on the

importance of representation relative to evaluation; also see chapter 5).

1.4.4 Pareto Coevolution

The ideas behind Pareto coevolution were latent in Juillé’s work [59, 57],

which identifies and discusses issues of testing candidate solutions diversely.

From this basis, Watson and Pollack suggest using multi-objective optimiza-

tion methods, particularly Pareto dominance, when comparing “symbiotic”

combinations of partial individuals into larger ones in the SEAM algorithm

[104]. The idea is that a combination of two partial individuals should be

preferred over each of its components if the combination Pareto dominates

both components with respect to a set of contexts built from other partial

individuals. The aim of the algorithm is then to combine enough partial indi-

viduals in this way that a highly-capable, complete individual is found. Along

similar lines, de Jong and Oates use a mechanism inspired by SEAM to de-

velop higher-level instructions from low-level, atomic instructions in a drawing

task [34]. They also use a form of Pareto dominance to decide when two low-

level drawing instructions can be combined together to form a higher-level,

composite instruction.

Ficici and Pollack discuss an application of evolutionary game theory to

the study of simple coevolutionary algorithms [41]. This work reviews the

notion of dominating strategies and notes the connections with multi-objective

optimization. The authors state:
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Multi-objective optimization techniques may be explicitly applied

to coevolutionary domains without the use of replicators, such that

both strictly as well as weakly dominated strategies are rejected in

favor of Pareto-optimal strategies [41].

The first explicit applications of multi-objective ideas to coevolutionary

algorithms were to the evolution of cellular automata rule sets [42] and to a

simplified form of Texas Hold’em Poker [71]. [71] uses Pareto dominance in a

matrix of outcomes of poker hands to compare candidate players; however, it

is worth pointing out that the players found in this matrix are all explicitly

incented to perform well. In other words, there is no explicit pressure to inform

well in their algorithm. Ficici and Pollack, by contrast, introduce a distinction

between learning and teaching, applying the ideas to the cellular automata

majority function problem [42]. Learners12 are incented to perform well by

following gradient created by the teachers.13 A Pareto dominance comparison

is used for this purpose. The teachers, in their role of creating gradient, are

compared using a Pareto dominance mechanism also. However, instead of

using the outcome matrix as is done in [71], Ficici and Pollack form a new

matrix of distinctions between pairs of learners made by each teacher. The

teachers are then compared using Pareto dominance on the distinction matrix.

The work warns that comparing teachers by Pareto dominance on the original

outcome matrix is “inappropriate” because that comparison does not reveal

12Candidate solutions in the terminology used here
13Tests in the present terminology
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“dimensions of variation” in the problem [42]. Thus, this is an early example

of the recognition in Pareto coevolution of the difference between performing

and informing discussed in section 1.1.

Noble and Watson state that “the idea that players represent dimensions

of the game remains implicit in standard coevolutionary algorithms” and that

“Pareto coevolution makes the concept of ’players as dimensions’ explicit” [71]

To see what this means, consider figure 1.3.

p(s,t’)

p(s,t)

t’

s

t
t

t’

Figure 1.3: An illustration of how outcomes against one set of entities can be
used as objectives for another set, and the resulting non-dominated front. The
figure on the left shows a candidate s plotted against two tests t and t′; s’s
position in the plane is determined by its outcomes against t and t′. The figure
on the right shows the non-dominated front (circled) of candidates against t
and t′.

The subfigure on the left illustrates how the outcomes of a candidate s

against two tests t and t′ can be viewed as embedding s in a plane by its

outcomes p(s, t) and p(s, t′). The figure on the right shows a sample of sev-

eral candidates, with the non-dominated front against t and t′ circled. The
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candidates in the non-dominated front strike a trade off between performance

against t and performance against t′ such that a move from one candidate to

another which improves performance against one test will necessarily degrade

performance against another.14 Rather than aggregating performance values

against tests by max or average and provoking the critique by Arrow’s theorem

given in section 1.3, Pareto coevolutionary algorithms keep some fraction of

the non-dominated front.

Several algorithms utilizing these techniques have arisen in recent years.

We will consider P-PHC, DELPHI, IPCA, LAPCA, pCCEA, and oCCEA.

The population Pareto hillclimber (P-PHC) first discussed in [17] and also

here in chapter 4 maintains two populations of candidates and tests, comparing

a parent candidate against its offspring using Pareto dominance against the

tests. Tests are compared using a weak variant of the informativeness order

discussed in [18].

The DELPHI algorithm [35] is similar to P-PHC, though uses Pareto dom-

inance across the whole candidate population (unlike a hillclimber, which only

compares parent to offspring) and compares tests using the distinction mech-

anism given in [42]. DELPHI differs from P-PHC conceptually as well: while

P-PHC seeks a set of informative tests, DELPHI seeks a complete evaluation

set of tests. While the ideal test set discussed in [18] is also a complete eval-

uation set, complete evaluation can in principle be achieved with sets of tests

which are not ideal in the sense of [18].

14Unless the two possess equal outcomes against both tests.
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The Incremental Pareto Coevolution Archive (IPCA) presented in [30]

maintains an unbounded archive of tests against which Pareto dominance

between the candidates is taken. Newly-generated candidates are compared

against existing ones using Pareto dominance; the algorithm maintains the

non-dominated front of candidates. However, tests are kept in an archive

which is intended to grow to provide accurate evaluation such as what might be

achieved with a complete evaluation set. Tests are added to the archive when

they show a distinction between the existing candidates and newly-generated

ones; this the archive grows to maintain distinctions among all the candidates

in any given generation. In an empirical study, IPCA is shown to alleviate a

shortcoming of DELPHI, which has a tendency to become stalled when useful

candidates are not generated frequently enough. However, IPCA’s unbounded

archive of tests can, and does, increase in an uncontrolled manner.

The Layered Pareto Coevolution Archive (LAPCA) algorithm is intended

to approximate the behavior of IPCA while addressing the issue of IPCA’s

unbounded archive [31]. LAPCA is much like IPCA. except that it only keeps

tests which show distinctions among a tunable number of Pareto layers of

candidates. Layers are formed as follows. The non-dominated front is the first

layer. Then the front is removed and a new non-dominated front is found; this

is the second layer. The process is repeated until no more candidates remain.

IPCA maintains only the first layer, the non-dominated front. LAPCA, by

contrast, has a parameter which controls how many layers of candidates the

algorithm should keep. Its test archive is then structured to maintain dis-
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tinctions among all the layers of candidates. A newly-generated test is added

to the archive if it reveals a distinction which is not shown by the existing

archive. The empirical results in [31] demonstrate that LAPCA can achieve

comparable performance to IPCA while keeping the test archive bounded.

LAPCA has recently been applied to coevolving players in a simplified

version of the Pong video game [68]. The authors utilize Kenneth Stanley’s

NEAT algorithm [98] to develop neural network controllers for Pong players,

performing selection according to the mechanisms in LAPCA. LAPCA com-

pares favorably to Rosin’s hall of fame [91] in this application, though the

authors note that LAPCA uses more evaluations than the hall of fame.

In the realm of cooperative coevolution, the Pareto-based cooperative co-

evolutionary algorithm (pCCEA) presented in [19] and here again in chapter

4 uses Pareto dominance to compare component parts. The tests in this case

are the set of possible collaborators for that part. A distinguishing feature of

pCCEA is that entities in a given population play both roles of performing

and informing: as parts to be assessed, they are treated as performing, but

as collaborators for testing other parts, they are treated as informing. While

that work argues that an explicit informativeness mechanism is not necessary

in the test problems considered, Panait and Luke develop a new cooperative

coevolutionary algorithm, oCCEA, which adds an informativeness mechanism

in order to increase the efficiency of selecting actions in a multi-agent learning

problem [76].
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1.5 Overview

This chapter has thus far been concerned with critiquing the conflation of the

two roles of performing and informing and the incarnation of that conflation

in the use of single, numerical fitness values aggregated from interactions with

entities incented only to perform. We now give an overview of the remainder

of this dissertation, which argues for and makes plausible the possibility that

switching to multi-objective comparison and explicitly incenting test entities

to inform allows an emergent geometric organization of test entities around

informative dimensions which mitigates algorithm misbehavior.

Chapter 2 gives mathematical background information, notation, and ref-

erences on the theory of ordered sets which is used throughout this work.

Chapters 3 and 4 are centered around two conceptual distinctions:

• The static analysis of an interactive domain, versus the observation of a

dynamic, running algorithm in one;

• The selection of a subset of tests as informative, versus the extraction of

higher-order structures which have the same effect as far as measuring

the performance of candidate solutions goes.15

15A distinction analogous to that between feature selection and feature extraction in
machine learning. We will comment further on this connection in chapter 5.
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Chapter 3 argues that in fact the two roles of performing and informing

are quite different. The chapter proposes a measure, there called informative-

ness, which can be used to compare two tests-as-measuring-rods. It shows by

example that the ranking implied by informativeness is not the same as the

one implied by performance; it further argues that intransitivity in the case of

symmetrical interactive domains virtually disappears when using Pareto dom-

inance instead of aggregate fitness, suggesting that aggregating payoffs into a

single numerical fitness value is to blame for observations of intransitivity. The

chapter shows that interactive domains possess informative dimensions, giving

two distinct proposals for what those might be: one a dimension selection, the

other a dimension extraction. The two proposals are both static analyses of

domains.

Section 3.2 introduces the ideal test set, which is a selection of the set of

tests which produces the same ranking of candidate entities as the entire set

of tests. That section gives the informativeness ordering for comparing two

tests to see whether one gives more or “the same” ranking information as

another. An ideal test set can then be seen as the maximal elements of the

informativeness order.

Section 3.3, by contrast, gives a method for static dimension extraction.

It defines a notion of a coordinate system for an interactive domain which is

analogous to a coordinate system or set of basis vectors for a vector space.

The section defines a notion of axis for a coordinate system which is shown

to play the role of an informative dimension, a kind of objective function
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which can be used to measure, or rank, candidate entities. Theoretically,

every interactive domain with binary outcomes is shown to possess at least

one coordinate system. A polynomial-time algorithm is given which can find

one such coordinate system, though it is not guaranteed to find the lowest-

dimensional one. A small validation experiment on two abstract test problems

is given, indicating the number of axes extracted may be an overestimate of

the true dimensionality of a domain.

Chapter 4 advances the claim that an informativeness mechanism embed-

ded in a running algorithm permits an emergent geometric organization of

the populations which mitigates certain algorithm pathologies. Two empiri-

cal studies of the dynamics of running algorithms are given, both involving

dimension selection.

Section 4.2 furthers the argument of section 3.2.2 that intransitivity and

cycling are effectively avoided by using Pareto coevolutionary techniques. The

section discusses another pathology, alternately called focusing or overspecial-

ization, which may be expected to produce deeper difficulties for running algo-

rithms than intransitivity does. It then investigates the dynamical behavior of

a particularly simple Pareto coevolutionary algorithm, the population-based

Pareto hillclimber (P-PHC) on a test problem designed to amplify the over-

specialization pathology. Plots of the populations of this algorithm indicate

that that the population of test entities, when incented to inform rather than

perform, organize around the known dimensions of the interactive domain un-
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der consideration, and that this organization is what allows the algorithm to

avoid overspecializing.

Section 4.3 presents an empirical study which suggests that augmenting

a cooperative coevolutionary algorithm with Pareto dominance comparison

of individuals and an informativeness comparison on their possible collabo-

rators impacts both questions of collaborator selection as well as the relative

overgeneralization pathology. The section surveys previous work by Panait

et al. [78] which studied the relative overgeneralization behavior of a known

CCEA on two instances of a class of test problems known as maximum of

two quadratics, or MTQ, functions [105]. An analysis of the algorithm setup

and test problem used in [78] reveals that the initial population of the al-

gorithm could in fact have found the global optimum, indicating the CCEA

was actively pulling away from it and preferring the suboptimal solution of

that problem. The given CCEA is minimally modified to introduce a Pareto

dominance comparison between parts rather than using fitness derived from

collaborating with best or random collaborators as in the original algorithm. It

is theoretically observed that in this domain, and potentially in many coopera-

tive domain, informativeness coincides to some extent with Pareto dominance:

two parts which are non-dominated with respect to Pareto dominance are also

differently-informative when they are thought of as tests. Thus, it is argued

that the algorithm does not need an explicit informativeness mechanism, as

Pareto dominance will already keep differently-informative parts for use in

later collaborations. The modified algorithm, called pCCEA, is shown to re-
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liably find the global optimum of two test problems, including one which is

rigged to be difficult even for full-mixing collaboration CCEAs.16

Chapter 5 sums up the work, points to future directions of work, and com-

pares against recent developments. In particular, the chapter discusses an

attempt to embed a dimension extraction algorithm in a running coevolution-

ary algorithm, a topic neglected in chapter 4.

1.5.1 Perspective on Ideal Trainers

The future work section of chapter 5 of Juillé’s Ph.D. dissertation states

This implementation of the “Ideal” trainer concept ... relies on

some explicit strategies in order to maintain pressure towards adapt-

ability and to provide a direction for the evolution of the training

environment. This last strategy is based on the explicit defini-

tion of a partial order over the space of problems. However, this

methodology assumes that the space of problems has been identi-

fied and that any element of arbitrary “difficulty” can be accessed.

For many problems, this methodology cannot be applied directly

[56].

The work presented here can be seen as beginning to address these issues

of providing direction by measuring the difficulty of tests. Chapter 3 presents

16That is, CCEAs which test a part with all possible collaborators, rather than one or
two, and pick the best from among all of them.
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two methods for ordering17 the entities playing the role of tests (“problems”

in the quote above). Chapter 4 gives two empirical applications of the idea

which corroborate the belief that an algorithm can discover and exploit more

and more “difficult” tests, and that doing so improves coevolutionary dynam-

ics by alleviating cycling, overspecialization, and relative overgeneralization

pathologies in the particular experiments performed.

17In our case preordering rather than partially ordering.



Chapter 2

Mathematical Preliminaries

In this chapter we briefly recall some definitions from discrete mathematics,

particularly from the theory of ordered sets, also establishing notational con-

ventions we will use. We first define ordered sets as mathematical objects;

we then examine some ways these objects combine and relate. See [94] for

an elementary introduction to ordered sets, and [9] for information on more

advanced concepts such as pullbacks.

2.1 Ordered Sets

Recall the Cartesian product of two sets S and T is the set of ordered pairs

S × T = {(s, t) | s ∈ S, t ∈ T}. A binary relation on a set S is a subset Q ⊆

S × S. Given s1,s2 ∈ S and a binary relation Q on S, we say s1 and s2 relate

under Q, written s1Qs2, when (s1, s2) ∈ Q. We also say that two elements s1

46



CHAPTER 2. MATHEMATICAL PRELIMINARIES 47

and s2 which relate under Q are comparable according to Q; otherwise, they

are incomparable. In other words, if (s1, s2) ∈ Q or (s2, s1) ∈ Q, then s1 and

s2 are comparable; if neither is in Q, they are incomparable.

A binary relation Q on a set S is reflexive when, for all s ∈ S, sQs. Q

is transitive if, for all s1, s2, s3 ∈ S, s1Qs2 and s2Qs3 imply s1Qs3. Q is

anti-symmetric if for all s1, s2 ∈ S, s1Qs2 and s2Qs1 imply s1 = s2.

A binary relation Q is a preorder if it is both reflexive and transitive. If

a preorder is also anti-symmetric, it is a partial order. If, finally, all pairs of

individuals from S are comparable according to the partial order Q, then Q is

a total order or linear order. The usual order on the set of natural numbers is

a linear order, while the subset relation ⊆ is a canonical example of a partial

order (which is not linear when the set has more than one element). Note

that, in analogy with partial functions, a partial (or pre-) order need not define

relations between all pairs of members of S, whereas a total order must. We

will call S a preordered set or simply an ordered set when it is equipped with

a relation which is a pre-, partial, or total order. We will write the relation

≤S when we need to refer to it directly. If s1, s2 ∈ S, s1 ≤S s2 denotes that

s1 and s2 lie in relation ≤S; thus, when treating ≤S as a subset of S × S,

(s1, s2) ∈ S×S. We will write s2 ≥S s1 for the same relation. s1 6≤S s2 means

that (s1, s2) 6∈ S × S.

A binary relation Q on a set S expresses the same information as a di-

rected graph with vertices S; the elements of Q correspond to the edges of

the graph. Moreover, we can think about graphs in terms of their incidence
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matrices. Consequently, one can think of these concepts in any of these ways,

as convenient.

Two ordered sets can be combined in a number of ways. For our purposes,

the two most useful are Cartesian product and intersection.

Definition 2.1.1 (Cartesian Product of Preordered Sets). Let S and

T be preordered sets. As sets, ≤S × ≤T ⊆ S × T × S × T . Hence, we can

interpret ≤S × ≤T as a relation on S × T . ≤S × ≤T will be an order of some

kind, but as shown in the example below, the type of order may change. To

be precise we define the Cartesian product of two preordered sets (S,≤S) and

(T,≤T ) by (S,≤S)× (T,≤T ) = (S × T,≤S × ≤T ). We will write this product

simply as S × T . If we take the Cartesian product of a preordered set S with

itself, we write it as S2 and the relation in particular as ≤2
S. We define Sn and

≤n
S similarly.

Example 2.1.2. The set of real numbers � is totally ordered by the usual

order ≤. � 2 = � × � is the familiar Cartesian plane. The order on � 2 is

≤ × ≤=≤2. Unrolling the definition: (x1, y1) ≤
2 (x2, y2) ⇔ x1 ≤ y1∧x2 ≤ y2.

It is straightforward to verify ≤2 is a partial order. It is not a total order

because, for example, (0, 1) and (1, 0) are incomparable with respect to ≤2. �

Definition 2.1.3 (Intersection of Preordered Sets). Let S and T be

preordered sets. As a set, ≤S ∩ ≤T⊆ (S∩T )× (S∩T ). Thus ≤S ∩ ≤T is a re-

lation on S ∩ T which can be verified to be an order. Consequently, we de-

fine the intersection of two orders S and T to be (S∩T,≤S ∩ ≤T ). As with the Carte-
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sian product, we will write this intersection as S ∩ T or ≤S ∩ ≤T .

Whereas a total order can have at most one maximum, a partial or preorder

can have many maxima, referred to as maximal elements.1

Definition 2.1.4 (Maximal Elements in Preordered Sets). A maximal

element of the preordered set S is any element ŝ ∈ S with the property that,

for all other s ∈ S, ŝ ≤S s⇒ s ≤S ŝ. We will write Ŝ for the set of all maximal

elements of the preordered set S. It is possible that Ŝ = ∅ or Ŝ = S.

The following three relations can be derived from any order.

Definition 2.1.5 (Incomparability). Let S be a preordered set. Two ele-

ments a and b of S are incomparable, written a� b, if neither a ≤S b nor b ≤S a

hold.

Definition 2.1.6 (Strict Relation). Let S be a preordered set. Define <S

as follows: for all a, b ∈ S, a <S b if and only if a ≤S b and b 6≤S a.

Definition 2.1.7 (Similarity Relation). Let S be an preordered set. Define

the equivalence relation ∼S on S as follows: for all a, b ∈ S, a ∼S b if and only

if a ≤S b and b ≤S a. We will say a and b are similar when a ∼S b.

In a partial order, the similarity relation is the same as equality because

of anti-symmetry. However, the same is not the case in a preordered set,

1There is also a definition of maximum in partial and preorders which must be larger
than all other elements in the set. However, for our purposes maximal elements are much
more useful.
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and therein lies the difference between the two concepts. We can rephrase

definitions 2.1.4 and 2.1.6 in more familiar terms using ∼S. A maximal element

is a ŝ ∈ S such that for all s ∈ S, ŝ ≤S s ⇒ ŝ ∼S s. Also, a <S b if and only

if a ≤S b and a 6∼S b.

We can make any preorder into a partial order by taking the quotient with

respect to ∼S:

Definition 2.1.8 (Quotient Order). Let S be an ordered set. Let S/∼S ,

read “S modulo (the equivalence) ∼S” be the set of equivalence classes of S

under ∼S. Given an a ∈ S, write [a] for the equivalence class of a under ∼S;

in particular, [a] = {a′ ∈ S | a′ ∼S a}. We define an order on S/∼S, which

we will also write ≤S , as follows. If [a] and [b] are two equivalence classes in

S/∼S , then [a] ≤S [b] in S/∼S if and only if a ≤S b in S.

The following proposition shows definition 2.1.8 is reasonable:

Proposition 2.1.9. The order ≤S on S/∼S is well-defined; furthermore, it is

a partial order.

Proof. Let a1, a2, b1, b2 ∈ S be such that a1 ∼S a2, b1 ∼S b2 and a1 ≤S b1.

To show well-definedness of ≤S on S/∼S, it suffices to show a2 ≤S b2. By

similarity, we know a2 ≤S a1 and b1 ≤S b2. We therefore have the following

chain: a2 ≤S a1 ≤S b1 ≤S b2. Then a2 ≤S b2 by transitivity, and ≤S is

a well-defined relation on S/∼S . The reflexivity and transitivity of ≤S on

S/∼S are clear from the definition. What remains is to show this relation

is antisymmetric. However, if a ≤S b and b ≤S a in S, then a ∼S b, and it
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follows immediately that [a] = [b]. Consequently, [a] ≤S [b] and [b] ≤S [a]

imply [a] = [b]. Thus ≤S is a partial order on S/∼S .

2.2 Functions into Ordered Sets

Let S and T be preordered sets, and let f : S → T be a function. f is

monotone, or monotonic, if s1 ≤S s2 ⇒ f(s1) ≤T f(s2) for all s1, s2 ∈ S.

The intuition behind this definition is that f preserves order; put differently,

passage through the function f does not destroy any pairwise relations. If we

regard S and T as graphs, then a monotone f is exactly a graph homomor-

phism. f is an isomorphism of preordered sets if f is a monotone bijection

and, additionally, f−1 is monotone. Two isomorphic preordered sets are “the

same;” that is, they typify the same order structure, possibly differing in how

their elements are labeled. We will write S ∼= T to indicate S and T are

isomorphic preordered sets. Isomorphic preordered sets have “the same” max-

imal elements; i.e., if f : S → T is an isomorphism of preordered sets, then

f(Ŝ) = T̂ .

Let S be a set, R a preordered set, and let f : S → R be a function; we

will call f a function into the preordered set R. Given such a function f , we

can pullback the order of R into S [9]. To be more precise,

Definition 2.2.1 (Pullback Orders). Let f : S → R be a function into

the preordered set R. Define the preorder ≤f on S as follows: s1 ≤f s2 ⇔

f(s1) ≤R f(s2) for all s1, s2 ∈ S. We will write the resulting preordered set
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(S,≤f ) as Sf ; we will refer to it as the preorder induced on S by f .2 As defined,

≤f is the largest preorder on S making the function f monotone.

Lemma 2.2.2. Sf really is an ordered set.

Proof. That ≤f is reflexive is clear. Let s1, s2, s3 ∈ S be such that s1 ≤f s2

and s2 ≤f s3. In other words, f(s1) ≤R f(s2) and f(s2) ≤R f(s3). ≤R is

transitive, from which f(s1) ≤R f(s3) follows. By definition, then, s1 ≤f s3.

Since s1, s2 and s3 were arbitrary, ≤f is transitive, making it an order.

Following the convention in domain theory [1], write [S → R] for the set

of all functions from S to R. If R is a preordered set, we can order [S → R]

in several ways. First, we consider the pointwise order:

Definition 2.2.3 (Pointwise Order). Two functions f, g ∈ [S → R] lie

in order pointwise, which we write f ≤pw g or just f ≤ g, if for all s ∈ S,

f(s) ≤R g(s). The pointwise order is the default order on [S → R]. When we

speak of [S → R] as if it were ordered, we assume it has the pointwise order.

Lemma 2.2.4. ≤pw really is an order.

Proof. f(s) ≤R f(s) for any S because of the reflexivity of ≤R; thus, ≤pw is

reflexive. If f, g, h ∈ [S → R] are such that f ≤pw g and g ≤pw h, then for any

s ∈ S, f(s) ≤R g(s) and g(s) ≤R h(s). It follows from the transitivity of ≤R

that f(s) ≤R h(s) as well. Since s was arbitrary, f ≤pw h follows. Therefore,

≤pw is both reflexive and transitive, making it a preorder.

2Occasionally we will use the same symbol for the induced preorder on S. In other words,
if ≤R is the order on R, we will sometimes write s ≤R s′ instead of s ≤f s′. The context
will make clear what we mean by this abuse of notation.
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f1 f2 f3

a 0 2 1
b 1 1 0

Figure 2.1: ≤pw and ⊆ can be distinct orders on [S → R]. Let S = {a, b},
R = {0 < 1 < 2}. Observe that f1 ≤pw f2, but f1 6⊆ f2; and, f2 ⊆ f3, but
f2 6≤pw f3.

The second order we consider on [S → R] is via suborder:

Definition 2.2.5 (Suborder Order). Recall that an element f ∈ [S → R]

corresponds to a preorder on S, namely the pullback order ≤f defined above.

Given two functions f and g, we can ask whether ≤f ⊆ ≤g. We write f ⊆ g

when ≤f ⊆ ≤g. Explicitly, f ⊆ g holds when, for all s1, s2 ∈ S, f(s1) ≤R

f(s2) ⇒ g(s1) ≤R g(s2). The fact that ⊆ defined on functions is a preorder

derives from the fact that, as a relation between sets, ⊆ is a preorder (in fact,

a partial order).

Figure 2.1 shows ≤pw and ⊆ are distinct orders in general.

The action of currying a function, borrowed from the lambda calculus, will

be useful.3

Definition 2.2.6 (Currying). Given any function f : A × B → C, there is

an associated curried function A → [B → C]. The lambda calculus makes

heavy use of this association; thus, we will suggestively write this function

λb.f : A → [B → C] and call it f curried on B. It is defined as follows. For

3Take note that lambda application comes from the adjunction between the Cartesian
product functor and the exponential functor in any Cartesian closed category; see [9] for
details.
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any a ∈ A, the function λb.f(a) maps b ∈ B to f(a, b) ∈ C. λa.f is defined

similarly.

2.3 Poset Decomposition

In this section we set up and state the poset decomposition theorem. Our

presentation borrows from [94], which should be consulted for details and

proofs.

Assume all posets are finite. We begin with the notion of linear extension:

Definition 2.3.1 (Linear Extension). A linear extension of an ordered set

R is a total ordering L of the elements of R which is consistent with R’s order.

In other words, if S is the underlying set of both R and L, the identity function

1S : S → S is monotone with respect to R in the domain and L in the range.

Example 2.3.2. Let R have elements {a, b, c} and relations a ≤ c, b ≤ c (i.e.,

a and b are incomparable). Then one linear extension of R puts these elements

in order a ≤ b ≤ c; call it L1. R has a second linear extension L2 putting the

elements in order b ≤ a ≤ c. �

In light of this example, we have the following:

Definition 2.3.3 (Linear Realizer). A linear realizer of a (finite) poset

R is a set {L1, . . . , Ln} of linear extensions of R such that
n⋂

i=1

Li = R. The

intersection means that the only comparisons in
n⋂

i=1

Li are the ones which are

in all the Li; all other pairs of elements are incomparable.
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Example 2.3.4. In example 2.3.2, L1 and L2 constitute a linear realizer

{L1, L2} of R. To see this, notice that a ≤ c and b ≤ c in both L1 and

L2, whereas a ≤ b in L1 while b ≤ a in L2. Thus, in L1

⋂
L2, a ≤ c and b ≤ c

whereas a and b are incomparable. These relations are exactly the ones in R;

hence, R = L1

⋂
L2. �

We have been leading up to the following fundamental fact about posets

which we state without proof.4

Theorem 2.3.5 (Poset Decomposition Theorem). Every finite poset has

a minimal realizer.

The “minimal” in the name “minimal realizer” means the linear realizer

contains a minimum number of linear extensions. This minimum, call it n,

is the dimension of R; alternately, R is called an n-dimensional poset. For

instance, the poset in examples 2.3.2 and 2.3.4 is two-dimensional. The justi-

fication for using the word “dimension” is via the following two lemmas:

Lemma 2.3.6. Every linear extension L of R gives rise to an embedding

x : R →
�
.

Proof. A linear extension of R is essentially a choice for putting the elements

of R into a list. If R = {s1, . . . , sm}, then L will be sσ(1) ≤ sσ(2) ≤ · · · ≤ sσ(m),

σ being some permutation of 1, . . . , m. Let us reindex R by defining ti = sσ(i).

4See [94] for details. The crux of the proof is to show that R has at least one linear
realizer; the finiteness of R guarantees this linear realizer must be finite, that there are
finitely many linear realizers for R, and that there is thus a minimal-sized one.
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Then, the mapping x : R →
�

defined by ti 7→ i, is monotonic by construction.

It is also injective, since we only index distinct elements of R.

Lemma 2.3.7 (Embedding Lemma). Every linear realizer {L1, . . . , Ln} of

R gives rise to an embedding φ : R→
�

n .

Proof. By lemma 2.3.6, each Li gives rise to an injective, monotone function

xi : R →
�
. These functions define a sort of coordinate system for R. Define

the map φ : R →
�

n by s 7→ (x1(s), . . . , xn(s)) for all s ∈ R. Each coordinate

xi of φ is injective and monotone; thus φ itself is too.

Remark 2.3.8. In particular, if R is an n-dimensional poset, it has a minimal

realizer {L1, . . . , Ln}. By lemma 2.3.7, there is thus an embedding φ : R →
�

n .

�
n embeds into � n , and so we see that φ can be regarded as embedding R

into ordered, n-dimensional Euclidean space. n is minimal in this case, so R

cannot be embedded into m-dimensional space for some smaller m. Thus the

name “n-dimensional poset.”



Chapter 3

Informative Dimensions

3.1 Overview

This chapter gives two proposals for instantiating the notion of informative

dimensions. Both proposals are theoretical in nature. Each is shown to capture

salient features of the interactive domain to which they are applied. Both are

static methods, applied to domains independently of any algorithm choices.

Both methods treat functions of the form p : S × T → R, where R is an

ordered set of outcomes or values, S is the set of possible candidate solutions,

T is the set of test entities, and the function p encodes the outcome of an

interaction between a candidate solution and a test entity, returning a value

which is a measurement of the candidate solution’s capability against a test.

Section 3.2 discusses the ideal test set, which is the set of maximally-

informative test entities taken with respect to the informativeness order defined

57
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in that section. It is shown that comparing two candidate solutions with re-

spect to the ideal test set gives the same ordering as comparing them against

the entire set of tests. An application of the idea to symmetric, binary-outcome

domains reveals that using Pareto dominance over tests to compare candidate

solutions has the effect of removing cycles while leaving other ordering infor-

mation unchanged.

Section 3.3 gives a static dimension extraction method for binary-outcome

domains. It defines a notion of axis, which is a linearly-ordered subset of the

set of tests in which the ordering of the tests gives a sense of their difficulty. It

further defines a coordinate system as a set of axes. Coordinate systems can

have independence and spanning properties analogous to those among basis

vectors in a vector space.

The material presented in this chapter derives from previously published

work. The material in section 3.2 first appeared in [16] and was later elaborated

in [18]. The results in section 3.3 were published in [21].

3.2 Static Dimension Selection and Intransi-

tivity

This section assumes the reader is familiar with discrete mathematics. We give

relevant background material and establish notational conventions in chapter

2. We will freely use the notions of pullback order (definition 2.2.1) and cur-

rying a function (definition 2.2.6).
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Section 3.2.1 defines a notion of solution for interactive domains with func-

tions of the form p : S × T → R, generalizing common solution concepts

used in genetic algorithm function optimization (EA) and multi-objective op-

timization (MOO). The key idea is to curry the function p on T ; the resulting

function has form S → [T → R], whence S can be thought of as taking values

in the set [T → R] instead of a more conventional value set like � . At first

glance this seems to be an overcomplicated exercise in symbol manipulation.

However, the set [T → R] can be ordered, and that order can be pulled back

into S. The order is essentially equivalent to the Pareto covering order, gener-

alized to interactive domains such that it covers the use of Pareto dominance

in Pareto coevolution (see chapter 1, section 1.4.4).

Armed with a way to compare entities and a notion of solution, we can

define a dual notion, the set of maximally-informative tests. The informative-

ness order is the corresponding order on the tests. It is not the same as Pareto

covering, however. The maximally-informative tests, or ideal test set, is our

first example of a set of informative dimensions, here a dimension selection

from the set of all possible tests. We show that the ideal test set gives the

same order, and hence same notion of solution, as the complete set of tests.

Furthermore, we argue that the ideal test set, were something known about it,

reveals something about the structure and difficulty of the interactive domain.

As an application of this space of ideas, section 3.2.2 considers the special

case of symmetric two-player, binary-outcome domains, showing the Pareto

dominance relation offers new information exactly when the domain is intran-
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sitive. The “new information” is the conversion of some relation between two

entities lying in a cycle into an incomparability between them. Repeated ap-

plication of the move from the original domain to the one defined by Pareto

dominance leaves the original payoffs unchanged. Hence, one way to view

Pareto dominance in this special case of symmetric, binary-outcome domains

is that it removes cycles but leaves all other relations unchanged.

3.2.1 The Framework

In this section we develop a theoretical ordering of individuals in an interactive

domain. The order allows us to rank individuals in such a way that we can

express a solution as the set of maximal candidates. When applied to the

special case of function optimization, the set of maximal candidates is the

set of maxima of the objective function. When applied to multi-objective

optimization, the set of maximal candidates is exactly the Pareto front.

Dually, we can order tests by informativeness, and define the set of maximally-

informative tests. A key result, expressed in theorem 3.2.7, is that the maximally-

informative tests induce the same set of maximal candidates as the full set of

tests. Thus, we see the same information about ranking candidate solutions

using just the maximally-informative tests, a set which might be much smaller

than the full set T . Reducing the number of tests required to solve a problem

will have an impact on the efficiency of practical algorithms.

We conclude the section by arguing the difficulty of applying coevolution

to an interactive domain relates directly to the order structure of the set of
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maximal candidates and the set of maximally-informative tests.

Throughout this section we will consider interactive domains which are

expressed with a function p : S × T → R. The only constraints we place on p

is that R be a linearly ordered set. We will write the order on R as ≤R.

Solution As Set of Maximal Candidates

A common class of problems attacked with EAs start with a function f : S →

� , with the task of finding elements of S which maximize f . Similarly, in a

common class of MOO problems, one starts with a set of functions fi : S → � ,

and the task is to find the Pareto front of the fi. In fact, the Pareto front is

a type of maximum too:

Proposition 3.2.1 (MOO as Maximization). The Pareto front of a set of

objectives fi : S → � (1 ≤ i ≤ n) is Ŝ〈f1,...,fn〉, the set of maximal elements

of the preorder induced on S by the function 〈f1, . . . , fn〉 into the partial order

� n .

Proof. The Pareto front consists of those ŝ ∈ S which are not dominated by

any other s ∈ S. Define a preorder � on S as follows: s � s′ ⇔ ∀i, fi(s) ≤

fi(s
′) for all s, s′ ∈ S. s � s′ expresses that s′ dominates or is equal to s.

Observe that s � s′ ⇔ s ≤〈f1,...,fn〉 s
′ (see definition 2.2.1). The non-dominated

front is then F = {ŝ ∈ S | ∀s ∈ S, s � ŝ}. The condition ∀s ∈ S, s � ŝ is

logically equivalent to the condition ∀s ∈ S, ŝ � s⇒ s � ŝ. Consequently, we

have that F = {ŝ ∈ S | ∀s ∈ S, ŝ � s ⇒ s � ŝ} = {ŝ ∈ S | ∀s ∈ S, ŝ ≤f s ⇒
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s ≤f ŝ}, where f = 〈f1, . . . , fn〉. However, the latter set is Ŝf . Thus, we have

shown F = Ŝf .

As a result of this proposition, we can view MOO as a form of maximiza-

tion. Likewise, we can also view coevolution in interactive domains as maxi-

mization problems. The critical step is to curry the function p : S × T → R

on T to produce a function λt.p : S → [T → R]. This function precisely

expresses the association between a candidate, which is an element s ∈ S, and

its “vector” of objective values λt.p(s), which is an element of [T → R].

We can order the range [T → R] using the pointwise order ≤pw.1 Further-

more, we can pull the order on [T → R] back through the curried function

λt.p to produce an order on S. This pulled back order expresses the prac-

tice in multi-objective optimization of ordering two individuals s1, s2 ∈ S by

comparing their vectors of objective values. Namely, s1 � s2 exactly when

λt.p(s1) ≤pw λt.p(s2).

Now that we have a preorder on S, we propose the set of maximal elements

as a solution to the problem p : S × T → R. Formally,

Definition 3.2.2 (Maximal Candidates). The set of maximal candidates

of the interactive domain p : S × T → R is Sp = Ŝλt.p. Explicitly, Sp = {ŝ ∈

S | ∀s ∈ S, [∀t ∈ T, p(ŝ, t) ≤R p(s, t)] ⇒ [∀t ∈ T, p(s, t) ≤R p(ŝ, t)]}. We will

call Sp ⊆ S the solution set of the domain p.

Here are two examples illustrating the definition:

1Proposition 3.2.1 suggests ≤pw really is the appropriate order to use.
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Example 3.2.3. Rock-paper-scissors

In this simple game, S = {rock, paper, scissors}, T = S and R = {0 < 1}.

According to the rules of the game, the result of comparing rock with scissors,

for example, is that rock wins. We therefore give p : S×S → R as the matrix:

T

rock paper scissors

rock 1 0 1

S paper 1 1 0

scissors 0 1 1

Then the functions λt.p(s) are the rows of the matrix. Comparing these rows point-

wise, we see they are all incomparable. Consequently, in rock-paper-scissors, Sp =

{rock, paper, scissors} = S. Note that two entities are similar in the sense

of definition 2.1.7 if their rows are identical. �

Example 3.2.4. EA optimization and MOO

Consider optimization problems in which we have objectives fi : S → � for

1 ≤ i ≤ n. We can use these objectives to define a payoff function p(s, s′) =

f(s) − f(s′), where f = 〈f1, . . . , fn〉. For all s1, s2, s
′ ∈ S, f(s1) − f(s′) ≤n

f(s2)− f(s′) ⇔ f(s1) ≤
n f(s2) by adding f(s′) to both sides of the inequality.

It follows, therefore, that ŝ is a maximal element with respect to Sλt.p if and

only if ŝ is a maximal element of the function f . As a result, the solution set

Sp is exactly the Pareto front of f (see proposition 3.2.1). �
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In light of the observation that definition 3.2.2 generalizes common solution

concepts used in MOO and EA optimization, it is a natural notion of solution

for coevolution as well. This particular solution concept is independent of algo-

rithm choices, in the same way that the problem statement “find the maxima

of the function f : S → � ” is independent of which flavor of algorithm one

uses to solve it. In that respect, this notion of solution lies at a more abstract

level than other solution concepts in common use such as “maximize average

fitness over the population.”

Maximally-Informative Test Set

Now we define the informativeness order among tests. The impact of the

definition is expressed in theorem 3.2.7, where we show the maxima of this

informativeness relation are sufficient for inducing the solution set. Finally,

we discuss the structure of the maximally-informative test set as a measure

for categorizing interactive domains.

Let ≤ be an order on a set S. Recall the similarity relation ∼ of definition

2.1.7, defined a ∼ b ⇔ a ≤ b ∧ b ≤ a, tells us which elements in S look

equivalent according to ≤. We can now define a relation among the possible

orders on S.

Definition 3.2.5 (Informativeness). Let ≤1 and ≤2 be two orders on S,

and let ∼1 and ∼2 be the corresponding similarity relations. Say ≤2 is more

informative than ≤1, written ≤1 � ≤2, if and only if ≤1 ⊆ ≤2 and ∼2 ⊆

∼1 (note the order of the subscripts). If we write ≤1 ⊆
= ≤2 for the latter con-
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dition, then � = ⊆ ∩ ⊆=.

Roughly speaking, to be informative, an order should have neither incom-

parable elements nor equal elements. The idea behind the definition is that

a test which shows two candidates to be incomparable,2 or shows them to be

equal, does not give us any information about how they relate to one another.

The relation ⊆ tells us when one order has fewer incomparable elements; the

relation ⊆= tells us when an order has fewer equal elements. Therefore, the

intersection ⊆ ∩ ⊆= tells us about both incomparability and equality.

We can use � to order [S → R]. Given f, g ∈ [S → R], write f � g when

≤f�≤g. Now we are in a position to describe the maximally-informative test

set. In words, it is the set of maximal elements in T with respect to the

pullback of the informativeness order on [S → R]. Formally,

Definition 3.2.6 (Maximally-Informative Test Set). Let p : S × T → R

represent an interactive domain, and let λs.p : T → [S → R] be p curried

on S. Let [S → R] have the informativeness order �. Pull this order back

through λs.p into T , and write the resulting ordered set as T�. Then the

maximally-informative test set for this domain is Tp = T̂� ⊆ T .

That definition 3.2.6 is useful is borne out by the following theorem:

Theorem 3.2.7. Let p : S × T → R be an interactive domain, and consider

p |Tp
: S×Tp → R, the restriction of p to the maximally-informative tests. For

2a and b incomparable, a � b, means that neither (a, b) nor (b, a) are elements of ≤
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brevity, write q for p |Tp
. Then Sλt.p

∼= Sλt.q; in other words, the maximally-

informative set of tests induces the same order on S as the full set of tests T .

Consequently, it also induces the same set of maximal candidates.

Proof. We must show Sλt.p
∼= Sλt.q. Explicitly, this isomorphism is equivalent

to the following: for all s1, s2 ∈ S, λt.p(s1) ≤pw λt.p(s2) ⇔ λt.p |Tp
(s1) ≤pw

λt.p |Tp
(s2). Unrolling still further, this equivalence translates into: for all

s1, s2 ∈ S, [∀t ∈ T, p(s1, t) ≤R p(s2, t)] ⇔ [∀t ∈ Tp, p(s1, t) ≤R p(s2, t)].

The forward implication holds trivially, because Tp ⊆ T . Consequently,

we focus our attention on showing ∀t ∈ Tp, p(s1, t) ≤R p(s2, t) ⇒ ∀t ∈

T, p(s1, t) ≤R p(s2, t), for any s1, s2 ∈ S. If we can show this implication,

we have the result.

Let s1, s2 ∈ S, and imagine there is a t ∈ T such that p(s1, t) 6≤R p(s2, t).

This is equivalent to saying that ∀t ∈ T, p(s1, t) ≤R p(s2, t) fails to hold. Since

R is a linearly ordered set, it follows that p(s1, t) >R p(s2, t). By definition

of Tp, there must be a t̂ ∈ Tp such that t � t̂. But then p(s1, t̂) >R p(s2, t̂)

by definition of �. Therefore, if ∀t ∈ T, p(s1, t) ≤R p(s2, t) fails to hold, so

does ∀t ∈ Tp, p(s1, t) ≤R p(s2, t). The contrapositive of this fact is gives us the

result.

Theorem 3.2.7 shows that we do not need to use the full set of tests T in

order to distinguish individuals in S. In fact, the maximally-informative test

set Tp will induce the same order on S and so the same maximal candidates.

If Tp is a strict subset of T , then we can in theory solve the same problem p
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using fewer tests. For this reason, we refer to the maximally-informative test

set as an ideal test set.

Here are some illustrative examples:

Example 3.2.8. Rock-paper-scissors, revisited

In the rock-paper-scissors incidence matrix (see example 3.2.3), the columns

are the λs.p(t). Reading left to right, the induced orders are {scissors <

rock ∼ paper}, {rock < paper ∼ scissors}, and {paper < rock ∼ scissors}.

None of these orders is a suborder of another. It follows that Tp = {rock, paper, scissors} =

T . �

Example 3.2.9. Consider the domain where S = T = {a, b, c} and R = {0 <

1 < 2}. p is given by the matrix

a b c

a 0 1 0

b 1 0 1

c 2 1 1

The orders induced on S are, left to right, {a < b < c}, {b < a ∼ c},

and {a < b ∼ c}. Observe that c � a, so Tp = {a, b} 6= T . Notice also that

Sp = {c}, so this example shows Sp and Tp can be distinct. That is, solutions

need not make good tests. �

Categorizing Domains Using Tests

Tp is too big. It could be there are tests t1, t2 ∈ Tp such that t1 ∼ t2, where

we are taking ∼ with respect to the informativeness order. In that case, t1
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and t2 both induce the same order on S, so that either t1 or t2 individual

induce the same order on S as the set {t1, t2}. Thus, we really only need one

representative from each equivalence class of ∼ to preserve the order on S as

the ideal test set does. This observation leads us to:

Definition 3.2.10. The value |Tp/∼ | is the test-dimension of the domain p.

Then we have the following:

Theorem 3.2.11. Let n ≥ 1, and let the function f : S → � n be an optimiza-

tion problem. Define p : S × S → � n by p(s, s′) = f(s) − f(s′) for all s, s′ ∈

S. Then p has test-dimension 1.

Proof. The observation in example 3.2.4 that f(s1)− f(s′) ≤ f(s2)− f(s′) ⇔

f(s1) ≤ f(s2) leads to the result, because all tests s′ are equivalent.

Remark 3.2.12. A MOO problem with n objectives looks like it should have

test dimension n. However, in theorem 3.2.11 we are using the objectives

to compare pairs of individuals. Then the individuals are the tests, not the

objectives themselves. In that case, any single individual will do as a test. If

we were to treat the objectives themselves as tests, then a MOO problem with

n objectives would indeed have test dimension n.

We interpret theorem 3.2.11 as saying that “difficult” interactive domains

have test-dimension > 1. Rock-paper-scissors has test-dimension 3, for ex-

ample. Therefore, we can categorize domains on the basis of the test set
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structure, independently of any search algorithms we might employ. Further-

more, domains with simple test set structure are likely to be simpler to solve

in practice. For instance, rock-paper-scissors has an intransitive cycle which

is reflected in its test set structure. As we saw, multi-objective optimization

problems, at least in the way we have formulated them, have a particularly

simple test set structure. Indeed, this structure is spelled out explicitly in

the definition of the problem, whereas in the typical coevolution application,

the test set structure is not known in advance but is implicit in the function

p : S × T → R. See Juillé’s discussion of the cellular automaton majority

function problem in [59]. The test-dimension is a simple numerical measure of

the test set structure which gives us some information about the difficulty of

applying coevolution to the domain.

3.2.2 Pareto Dominance and Intransitivity

As an application of the concepts in section 3.2.1, we consider the special

class of interactive domains represented by functions p : S × S → {0 < 1}.

Functions of this form arise in the problem of learning deterministic game-

playing strategies through self-play, or in perfect-information, zero-sum games

encountered in game theory.

In this setting, we can view p as representing a relation on S. To be

specific, the relation is the subset p−1(1) ⊂ S×S. In other words, a relates to

b exactly when p(a, b) = 1. We will write this relation aRpb. In other words,

the relation aRpb holds exactly when p(a, b) = 1. Intuitively, we interpret aRpb
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as “a loses or draws to b.” If p represents a symmetric game, the usual notion

of transitivity for a game is equivalent to the transitivity of the relation Rp.

A critical problem which arises in the dynamics of coevolutionary algorithms

stems from intransitive superiority cycles. Such a cycle always occurs when p

is not transitive because, in that case, there is a finite set of players ai ∈ S such

that p(ai−1, ai) = 1 and p(ai, ai−1) = 0 for 1 ≤ i ≤ n − 1, but p(an, a0) = 1.

Transitivity would dictate p(a0, an) = 1. Coevolutionary dynamics operating

on such a game can become stuck cycling amongst the ai without ever making

“real” progress. See [103] for a discussion of this issue.

One of the promises of Pareto coevolution is that it can help with intransi-

tive cycles by revealing the true relationship among the individuals in a cycle.3

We will show there is a close relationship between the transitivity of p and the

Pareto dominance relation. In particular, we will show in theorem 3.2.16 that

Rp is a preorder if and only if Pareto dominance over p is equal to Rp itself. In

other words, Pareto dominance gives us different information than the payoff

function p exactly when the latter is intransitive.4 One conclusion we can draw

from this fact is that Pareto coevolution can detect intransitive cycles. An-

other conclusion, lemma 3.2.19, is a potentially useful negative result. At first

glance, one might think multiple iterations of the Pareto relation construc-

tion (definition 3.2.13) would provide ever more information about a domain.

3We would like Pareto dominance to reveal they are incomparable.
4It is worth emphasizing that these results apply only in this specific context of symmetric

binary-outcome domains, not in general. We make critical use of the symmetry in roles
between candidates and tests, and the fact that R contains only two comparable outcomes.
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Lemma 3.2.19 shows this is not the case. Applying Pareto dominance to a re-

lation once sometimes produces a new relation, but applying the construction

twice is always equivalent to applying it once.

We will prove all results with respect to any relation R on a set S, Rp then

being a special case. We begin by constructing a new relation over S from R

which captures the Pareto dominance relation:

Definition 3.2.13 (Pareto Relation). The Pareto relation over R, written

�R, is defined as follows. For all a, b ∈ S, a �R b if and only if xRa ⇒ xRb

for all x ∈ S.

Remark 3.2.14. The Pareto relation over Rp corresponds to our usual notion

of Pareto dominance. Intuitively, the definition says “b dominates, or is equal

to, a if, whenever x draws or loses to a, then x draws or loses to b as well.”

The following proposition will be useful:

Proposition 3.2.15. �R is a preorder.

Proof. Clearly xRa ⇒ xRa for all x ∈ S; thus, a �R a, making �R reflexive.

If a �R b and b �R c for some a, b, c ∈ S, we want to show a �R c. But this

follows from the transitivity of ⇒: a �R b means xRa ⇒ xRb, while b �R c

means xRb ⇒ xRc, for all x ∈ S. So if we have xRa⇒ xRb and xRb ⇒ xRc,

it follows xRa ⇒ xRc, in other words, a �R c. �R is thus transitive, so is a

preorder.

Now we have the theorem:
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Theorem 3.2.16. R = �R if and only if R is a preorder

Proof. The theorem is a consequence of the following two lemmas.

Lemma 3.2.17. R is reflexive if and only if �R ⊆ R.

Proof. To prove the forward implication, assume R is reflexive, and imagine

a �R b. We must show aRb. By definition, a �R b means xRa ⇒ xRb for all

x ∈ S. In particular, since aRa, it follows aRb. Thus, �R ⊆ R.

For the reverse implication, assume �R ⊆ R. Since �R is a preorder

(proposition 3.2.15), it is reflexive; it follows at once R must be also.

Lemma 3.2.18. R is transitive if and only if R ⊆ �R.

Proof. First consider the forward implication. Assume R is transitive; we must

show R ⊆ �R . Let aRb. By transitivity of R, we know that for any s ∈ S,

xRa and aRb imply xRb. It follows a �R b. Thus we have shown R ⊆ �R.

Now to the reverse implication. Assume R ⊆ �R. We want to show

R is transitive. So, let aRb and bRc. Because R ⊆ �R, the latter implies

b �R c, or equivalently, xRb ⇒ xRc. Coupled with the assumption that aRb,

we have immediately that aRc. In other words, we have shown R is transitive,

as needed.

An important consequence of theorem 3.2.16 is that iterating the Pareto

relation construction “tops out” after two applications. Formally,

Corollary 3.2.19. The mapping R 7→�R is idempotent; i.e., for any relation

R on a set S, ��R
= �R.
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Proof. Follows directly from proposition 3.2.15 and theorem 3.2.16.

Corollary 3.2.19 tells us that repeating the Pareto dominance construction

does not reveal any new information. For instance, if R represents the rock-

paper-scissors game, then �R is the identity relation I since each strategy is

incomparable to each other. In other words, the only relations are the reflexive

ones like rock �R rock. �I= I, as well; hence, ��R
=�R.

3.2.3 Discussion

This section gave a static, dimension selection called the ideal test set. It was

shown that this notion of informative dimension leaves the notion of solution,

the maximal candidates with respect to Pareto dominance, unchanged. In

fact, it leaves all ordering information afford by Pareto dominance unchanged:

comparing two candidate solutions against only the ideal test set is equivalent

to comparing them against the set of all possible tests. Thus, all features of the

domain relevant to comparing entities is captured by this notion of informative

dimension.

This section further argued that in the special case of symmetric, binary-

outcome domains, Pareto dominance essentially removes cycles while leaving

all other ranking information unchanged. Heuristically speaking, the use of

Pareto dominance to compare entities might then be expected to reduce the

ill effects of cycles in a domain.
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3.3 Static Dimension Extraction

This section gives a second static notion of informative dimension. However,

here we give a dimension extraction which, rather than simply selecting a

subset of tests, remaps outcome information into a coordinate system which

resembles a basis for a vector space. Thus, each axis of the type defined

here is one informative dimension, a coordinate system is a set of informative

dimensions, and the spanning property of coordinate systems guarantees that

comparing two candidate solutions with the coordinate system gives the same

ordering information as comparing them against the complete set of tests.

To elaborate, an axis is a linearly ordered set of tests. In a sense to be

detailed here, tests increase in difficulty as one ascends the axis. The outcomes

of a particular candidate solution against the tests in an axis can be used to

give it a coordinate on the axis. The higher a candidate is along an axis,

the more capable it is against the tests on the axis. Each candidate has a

coordinate on an axis, a specific test in the axis against which a candidate

receives a 0 outcome. Since that test can be associated with its index in

the linear order, a candidate’s coordinate can be associated with a number.

Thus, the axis can also be thought of as a numerical objective, or yardstick, of

the interactive domain. Two weakly independent axes give different rankings,

or measurements, of at least some candidate solutions. They thus differ as

objectives. The collection of axes into a coordinate system can be thought of

as giving a set of underlying objectives for the interactive domain [35].
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This section proves that any finite, binary-outcome interactive domain has

a weakly-independent coordinate system which spans the original domain’s

Pareto dominance ordering. It also gives experimental validation of the ideas

by extracting dimensions from a running coevolutionary algorithm and com-

paring the dimensionality of the coordinate system against that of the in-

teractive domain itself. Section 3.3.1 gives the mathematical definition of

coordinate system for binary-outcome interactive domains. An example from

geometry motivates the definitions. Section 3.3.2 presents a polynomial-time

dimension-extraction algorithm which, given an interactive domain, constructs

a coordinate system for it. The coordinate system need not be minimal, but it

is guaranteed to span the domain in a certain precise sense and satisfy a weak

independence criterion. Finally, section 3.3.3 presents experimental valida-

tion of the formal and algorithmic ideas. We apply the dimension-extraction

algorithm to the test population in a coevolutionary simulation on two do-

mains with known dimension; we see that the algorithm correctly deduces the

dimension or overestimates it, depending on the domain.

3.3.1 Geometrical Problem Structure

Let p : S × T → 2 be any function, where S and T are finite sets5 and 2 is

the partially ordered set {0 < 1}. Here the set S is interpreted as the set of

candidate solutions; T is the set of tests or test cases, and 2 is the outcome of

applying a test to a candidate. The function p encodes the interaction between

5The finiteness assumption is not strictly necessary, but it greatly eases the exposition.
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a test and a candidate; intuitively, we can think of it as a payoff function. Such

functions appear often in optimization and learning problems. For example:

Example 3.3.1 (Function approximation). Let f : T → � be a target

function defined over a set T , and let S be a set of model functions T → � .

The problem is to find a function in S that matches f as closely as possible.

Notice that if h ∈ S is some candidate function, then a point t ∈ T can serve as

a test of h. For example, we can define p : S×T → 2 by p(h, t) = δ(f(t), h(t)),

δ the Kronecker delta function.

Example 3.3.2 (Chess). Let S = T = {deterministic chess-playing strategies}.

For any two strategies s1, s2 ∈ S, define p(s1, s2) = 1 if s1 beats s2, 0 otherwise.

Then p is of form S × T → 2.

Example 3.3.3 (Multi-objective Optimization). Let S be a set of candi-

date solutions, and for each 0 ≤ i ≤ n− 1, let fi : S → 2 be an objective. The

optimization task is to find (an approximation of) the non-dominated front

of these n objectives. Let T = {f0, . . . , fn−1}, and define p : S × T → 2 by

p(s, fi) = fi(s) for any s ∈ S, fi ∈ T .

In this section, we will use such a function p to define an abstract coordinate

system on the set S. This coordinate system will give a precise meaning to

the notion of underlying objectives. In all of our examples, S will be finite. At

first glance it is not obvious what a coordinate system on a finite set might

look like. One of the major contributions in this section is forwarding an idea

about how we might do that.
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Figure 3.1: Typical members of the families X and Y; see text for details.

Motivation

As a motivating example for the definitions to follow, let us consider the 2-

dimensional Euclidean space E2, namely the set � × � with its canonical

coordinate system and pointwise order. Write x : E2 → � and y : E2 → �

for the two coordinate axes; for any point in E2, the function x returns the

point’s x coordinate and the function y returns its y coordinate. p ≤ q holds

for two points p, q ∈ E2 exactly when x(p) ≤ x(q) and y(p) ≤ y(q) both hold.

Now consider these two families of subsets of E2. For each r, s ∈ � :

Xr = {p ∈ E2|x(p) ≥ r} (3.1)

Ys = {p ∈ E2|y(p) ≥ s} (3.2)

Geometrically, Xr is the half plane consisting of the vertical line x = r and

all points to the right of it. Ys is the half plane consisting of the horizontal

line y = s and all points above it. Figure 3.1 illustrates these two families.

For brevity, let us write X for the family (Xr)r∈� and Y for (Ys)s∈� . In

other words, an element of the family X is one of the sets Xr, and an element
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of Y is one of the sets Ys. We would like to show that X and Y can act as

stand-ins for the coordinate functions x and y. In particular, X and Y satisfy

the following three properties:

1. Linearity: For all r, s ∈ � , Xr ⊂ Xs or Xs ⊂ Xr. Furthermore,

Xr = Xs implies r = s. Similarly, Yr ⊂ Ys or Ys ⊂ Yr and Yr = Ys

implies r = s.

2. Independence: There exist r, s ∈ � such that Xr and Ys are incompa-

rable with respect to ⊆; that is, neither is a subset of the other.

3. Spanning: For all p ∈ E2 define f(p) = inf{r| p ∈ Xr} and g(p) =

inf{r| p ∈ Yr}. Then f and g are well-defined functions from E2 to � ,

and p ≤ q in E2 exactly when f(p) ≤ f(q) and g(p) ≤ g(q) both hold.6

Property 1 states that the family X is linearly ordered by ⊂; Y is as well.

Property 2 states that the two families X and Y give independent information

about E2. Finally, property 3 states that X and Y can together be used to

recover the order on E2; this is the sense in which they span the space.

Properties 1-3 make no reference to the special qualities of E2. In fact, they

require only the family X ∪Y of subsets of E2. Since we can define families of

subsets in any set, particularly finite ones, these three properties are a suitable

abstract notion of coordinate system which can be fruitfully extended to finite

sets.

6In this example f = x and g = y. This property is the definition of the order on E2 in
disguise.
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Coordinate Systems

Before defining a coordinate system on S, we will need some preliminary def-

initions to simplify notation.

Let p : S × T → 2 be any function on the finite sets S and T . For each

t ∈ T , define the set Vt = {s ∈ S|p(s, t) = 0}. The set Vt is therefore the subset

of all candidates which do poorly against the test t. We can use these sets to

define a preordering on T . Namely, define t1 ≤ t2 if Vt1 ⊂ Vt2 . Observe that

in general this will be a preorder: there is no guarantee that Vt1 = Vt2 implies

t1 = t2. However, reflexivity and transitivity hold. It will be convenient to

define two formal elements t−∞ and t∞ and extend the order ≤ from T to

T = T ∪ {t−∞, t∞} by defining t−∞ < t < t∞ for all t ∈ T . That is, t−∞ and

t∞ are respectively the minimum and maximum of ≤ extended to T . For any

subset U ⊂ T , we will write U for U ∪ {t−∞, t∞}. Under the mapping t 7→ Vt,

t−∞ corresponds to ∅ and t∞ corresponds to S. This formal device will make

certain arguments easier. In particular, for any s ∈ S and any U ⊂ T , there

will always be t1, t2 ∈ U such that p(s, t1) = 0 and p(s, t2) = 1. U will always

have a minimum and a maximum.

Section 3.2 argues that a function like p induces a natural ordering on the

set S which is related to the idea of Pareto dominance in multi-objective opti-

mization. We argue that this ordering captures important information about

how two candidate solutions in S compare to one another in an optimization

problem defined by p. Let us write � for this ordering; then for any s1, s2 ∈ S,
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s1 � s2 holds if p(s1, t) ≤ p(s2, t) for all t ∈ T . For instance, in the multi-

objective optimization example, s1 � s2 exactly when fi(s1) ≤ fi(s2) for all

objectives fi ∈ T . In the multi-objective optimization literature the latter

condition means s2 covers s1.

With these preliminaries, we can define a coordinate system on S. The

sets Vt will play a role analogous to the Xr and Yr above. The ordering � on

S is the one we wish to span.

Definition 3.3.4 (Coordinate System). A family T = (Ti)i∈I of subsets of

T is a coordinate system for S (with axes Ti) if it satisfies the following two

properties:

1. Linearity: Each Ti is linearly ordered by ≤; in other words, for t1, t2 ∈

Ti, either Vt1 ⊂ Vt2 or Vt2 ⊂ Vt1 .

2. Spanning: For each i ∈ I, define xi : S → Ti by: xi(s) = min{t ∈

Ti| s ∈ Vt} = min{t ∈ Ti| p(s, t) = 0}, where the minimum is taken with

respect to the linear ordering on Ti. Then, for all s1, s2 ∈ S, s1 � s2 if

and only if ∀i ∈ I, xi(s1) ≤ xi(s2).

The definition of xi(s) as the minimal t ∈ Ti such that p(s, t) = 0 implies

that p(s, t) = 1 for all t < xi(s). The requirement that Ti be linearly ordered

guarantees that if s ∈ Vt1 and t1 < t2, then s ∈ Vt2 as well. It follows that if

t > xi(s), then s ∈ Vt; i.e., p(s, t) = 0. Consequently, if Ti = {t0 < t1 < · · · <

tki
} is an axis and xi(s) = tj, we can picture s’s placement on the axis like

this:
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p(s, t) 1 1 . . . 1 0 . . . 0

Ti t0 −→ t1 −→ . . . −→ tj−1 −→ tj −→ . . . −→ tki

This picture is the crux of what we mean by “axis.” For any candidate

s, the above picture holds. s’s coordinate on a particular axis is exactly that

place where it begins to fail against the tests of the axis. Intuitively, we can

think of an axis as representing a dimension of skill at the task, while s’s

coordinate represents how advanced it is in that skill.

We have not assumed independence because we would like to consider

coordinate systems that might have dependent axes. Much as in the theory

of vector spaces, we can show that a coordinate system of minimal size must

be independent. However, as we will see shortly, in this discrete case there is

more than one notion of independence which we must consider.

Definition 3.3.5 (Dimension). The dimension of S, written dim(S), is the

minimum of |T | taken over all coordinate systems T for S.

Remark 3.3.6. Because S and T are finite, dim(S) will be well-defined if we

can show at least one coordinate system for S exists. We will do so shortly.

In the meantime, let us assume coordinate systems exist and explore some

of their properties.

Definition 3.3.7 (Weak Independence). A coordinate system T for S is

weakly independent if, for all Ti, Tj ∈ T , there exist t ∈ Ti, u ∈ Tj such that

Vt and Vu are incomparable, meaning neither is a subset of the other.



CHAPTER 3. INFORMATIVE DIMENSIONS 82

Then we have a theorem reminiscent of linear algebra:

Theorem 3.3.8. Let T be a coordinate system for S such that |T | = dim(S).

Then T is weakly independent.

Proof. Suppose T is not weakly independent. Then there are two axes, call

them Ti and Tj, such that all tests in Ti are comparable to all tests in Tj.

Consequently, we can create a new coordinate system T ′ as follows. First,

T ′ has all the axes as T except Ti and Tj. Create a new axis Tk by forming

Ti ∪ Tj and then arbitrarily removing duplicates (which are t, u such that

Vt = Vu). The resulting Tk is then linearly ordered, and so can be an axis.

Put Tk in T ′. Then, T ′ is also a coordinate system for S, but |T ′| is one

less than |T |, contradicting the fact that T was minimal. Thus, T must be

independent. �

Existence of a Coordinate System

We now prove that any function p : S × T → 2 with S and T finite gives rise

to a coordinate system on S. Simply put, the set of all chains in T satisfies

definition 3.3.4. Once we can show one such coordinate system exists, we know

that a minimal one exists and there is a reasonable notion of the dimension of

S.

Definition 3.3.9. A chain in T is a subset C ⊂ T such that, for all t1, t2 ∈ C,

either Vt1 ⊂ Vt2 or Vt2 ⊂ Vt1 ; further, Vt1 = Vt2 implies t1 = t2.

Let C be the set of all chains in T . Then:
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Theorem 3.3.10. C is a coordinate system for S.

Proof. Write C = (Ci)i∈I . By definition, each Ci is linear. Thus we need only

check that this family spans �.

(⇒) Assume s1 � s2. We want to show ∀i, xi(s1) ≤ xi(s2). Consider a

Ci ∈ C and imagine Ci = {t0 < t1 < · · · < tki
}. If xi(s1) 6≤ xi(s2), i.e.

xi(s1) > xi(s2), we must have the following situation:

p(s1, t) 1 1 . . . 1 1 . . . 1 0 . . . 0

Ci t0 → t1 → . . . → tj2−1 → tj2 → . . . → tj1−1 → tj1 → . . . → tki

p(s2, t) 1 1 . . . 1 0 . . . 0 0 . . . 0

Ci t0 → t1 → . . . → tj2−1 → tj2 → . . . → tj1−1 → tj1 → . . . → tki

where xi(s1) = tj1 and xi(s2) = tj2. However, then p(s1, ti2) > p(s2, ti2),

which contradicts the assumption that s1 � s2. Thus, xi(s1) ≤ xi(s2). This

argument holds for any Ci and any s1, s2 ∈ S; therefore we have our result.

(⇐) Assume ∀i ∈ I, xi(s1) ≤ xi(s2). We have the following for each Ci ∈ C:

p(s1, t) 1 1 . . . 1 0 . . . 0 0 . . . 0

Ci t0 → t1 → . . . → tj1−1 → tj1 → . . . → tj2−1 → tj2 → . . . → tki



CHAPTER 3. INFORMATIVE DIMENSIONS 84

p(s2, t) 1 1 . . . 1 1 . . . 1 0 . . . 0

Ci t0 → t1 → . . . → tj1−1 → tj1 → . . . → tj2−1 → tj2 → . . . → tki

where xi(s1) = tj1 and xi(s2) = tj2 . It is clear from the diagram that for

all t ∈ Ci, p(s1, t) ≤ p(s2, t). This fact holds for any Ci. That is, we have for

all t ∈
⋃
i∈I

Ci, p(s1, t) ≤ p(s2, t). However,
⋃
i∈I

Ci = T , meaning we have s1 � s2.

Combining the above two implications, we have shown that s1 � s2 if and

only if ∀i ∈ I, xi(s1) ≤ xi(s2), for any s1, s2 ∈ S. Hence, C is a coordinate

system for S, as we set out to show. �

3.3.2 Dimension-Extraction Algorithm

In this section we give an algorithm whose runtime is polynomial in |S| and

|T | that finds a weakly-independent coordinate system for a set of candidates.

The algorithm accepts as input a set of candidates, a set of tests, and the

outcome of each candidate for each test and outputs a weakly independent

coordinate system for the tests. However, because the algorithm uses fast

heuristics to minimize dimension without becoming unacceptably slow, the

output coordinate system need not be of minimal dimension.7

The main idea of the algorithm is as follows. We start out with an empty

coordinate system, containing no axes. Next, tests are placed in the coordinate

system one by one, constructing new axes where necessary. A new axis is

7See the discussion of the difficulty of finding minimal-sized coordinate systems in section
5.2.
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required when no axis is present yet, or when a test is inconsistent with tests on

all existing axes. Two tests t, u are inconsistent if Vt and Vu are incomparable

with respect to ⊆. We now discuss two aspects of coordinate systems that

inform our algorithm.

In a valid coordinate system, the tests on each axis are ordered by strict-

ness; any test must minimally fail the candidates failed by its predecessors on

the axis. This constraint informs our heuristic for choosing the order in which

to consider tests: the first step of the algorithm is to sort the tests based on

the number of candidates they fail.

A second aspect of coordinate systems is that a test whose set of failed

candidates is the union of the sets of candidates failed by two other tests can

be viewed as the combination of those tests. For example, if a test t1 on

the first axis fails candidates s1 and s3 and a test t2 on the second axis fails

candidates s2 and s4, then a test located at position (t1, t2) in the coordinate

system must fail the union of the candidate sets: candidates {s1, s2, s3, s4}.

Since such a composite test provides no additional information about which

tests a candidate will pass or fail, it can be safely discarded. Therefore, the

second step of the algorithm is to remove any tests which can be written as

the combination of two other tests.

Once the tests have been sorted and superfluous tests removed, the proce-

dure is straightforward; tests are processed in order and are either placed on

an existing axis if possible, or on a new axis if necessary. The pseudocode of

the algorithm is as follows:
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3.3.3 Experiments

As a validation of the ideas presented in the previous sections, we applied

our dimension-extraction algorithm to the populations of a coevolutionary

simulation. Here we report the procedure we used and the results of the

experiments.

Naturally, the question arises whether this algorithm will really extract

useful coordinate systems from an interactive domain. This question clearly

bears much further empirical study. Here we are content to address the simpler

question of whether the dimension extraction algorithm will give meaningful

answers for particular domains in which we know what the underlying objec-

tives are.

Method

The algorithm of fig. 3.2 was applied to the populations in a variant of the

Population Pareto Hill Climber (P-PHC) algorithm to be detailed in chapter

4, section 4.2. Briefly, a population of candidates and a separate population of

tests is maintained by the algorithm. At each time step, the tests are treated

as objectives that the candidates are trying to maximize. Each candidate is

given a single offspring, and the parent is replaced if the offspring does at least

as well as the parent on each test.

Tests are incented to find distinctions between candidates. If a and b are

two candidates, a test t makes a distinction between them if t(a) 6= t(b).
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Each test is given one offspring; an offspring replaces its parent if it makes

a distinction the parent does not make. It is possible for an offspring to

lose distinctions which the parent also makes; we are not concerned with this

possibility in this algorithm. Except for this variation in test selection, all

other algorithm details are the same as those reported in section 4.2.

Two numbers games were used as test problems [103]. The first domain

was the Compare-on-One game presented in [35]. In this game, candidates

and tests are both n-tuples of numbers. c and t are compared on the single

coordinate where t is maximal. c “wins” the game if it is larger than t on

that coordinate. This game has been shown to induce a pathology known as

“focusing” or “overspecialization;” in conventional coevolutionary algorithms.

The second domain was the Transitive game. Again, candidates and

tests are n-tuples of numbers. This time, when a candidate c interacts with a

test t, c wins if it is at least as large as t on all dimensions.

Observe that the coevolutionary algorithm does not have access to the fact

that individuals are tuples of numbers. The games are given as black boxes to

the P-PHC algorithm and it must make best use of this win/loss information.

Consequently, when we run our dimension-extraction algorithm on the P-PHC

populations, we are hoping to see the algorithm discover the number n which

is the true dimension of the game.

We used the following procedure to estimate the number of dimensions. 10

independent copies of P-PHC were run for 2,000 time steps. At each time step,

the estimated number of dimensions in the current population was output ac-
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cording to the dimension-extraction algorithm. This value was averaged across

the 10 runs to obtain a single “average run.” Then the following statistics were

calculated across all 2,000 time steps: the 10th and 90th percentiles; the upper

and lower quantiles; and the median. The number of true dimensions of the

underlying domain was varied from 1 to 16 and statistics were gathered for

each number of dimensions.

Results

Our results are presented in figure 3.3. These figures are box plots of the

estimated number of dimensions versus the true number of dimensions. The

boxes span the lower and upper quartiles of the dimension estimates; the

whiskers give the 10th and 90th percentiles. The plus marks the median of

the dimension estimates. The dotted line gives the expected answer.

The figure on the left gives the results for Compare-on-One. There is

good agreement between the estimated value of the number of dimensions and

theoretical value for dimension ranging from 1 to 16. Further, the variance in

the estimates is generally quite small.

The figure on the right gives the results for Transitive. In this case the

algorithm consistently overestimates the number of dimensions of the domain.

There is a larger amount of variance in the estimate as well when compared

with Compare-on-One. We only display up to 10 dimensions in the figure,

enough to see the trend.
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3.3.4 Discussion

This section gave a second proposal for informative dimension, coordinate sys-

tems, which can be seen as a concrete instantiation of the idea of underlying

objectives discussed in [35]. It provided a algorithm whose runtime is polyno-

mial in the number of candidates and tests for extracting a coordinate system,

and gave validation experiments comparing extracted coordinate systems from

the populations of a running algorithm against the known dimensionality of

the domain on which the algorithm was running. It should be stressed that

the ideas presented in this section are specific to binary-outcome domains.

An axis here defined is a linearly-ordered set of tests. It has the property

that for any candidate solution, there is a corresponding test in the axis, its

coordinate, such that the candidate gets a 0 outcome against that test and

all tests after it on the axis, but gets a 1 outcome against all tests below.

Note that since a linear order is also a list, we can associate a number with a

candidate’s coordinate: the index of the corresponding test in the list. Thus,

there is a geometric interpretation of these ideas. An n-dimensional coordinate

system gives a way of embedding the candidate solutions into an n-dimensional

Euclidean space. There are thus connections with multi-objective optimization

and data visualization latent in this work.
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3.4 Discussion

This chapter proposed two notions of informative dimensions. One, the ideal

test set, is a static selection of tests from the complete set of tests. The other,

coordinate systems, is a static dimension extraction which remaps the outcome

information of the tests into another space which nevertheless gives the same

ordering information among the candidate solutions.

Note that in the case of binary-outcome interactive domains, the complete

set of tests and the ideal test set are both trivial examples of coordinate sys-

tems. While the complete set of tests need not be weakly independent, the

ideal test set is. Thus, weakly-independent coordinate systems can be seen as

generalizations of the ideal test set when restricted to binary-outcome domains.

In any case, it seems fair to say that “interesting” interactive domains will

possess more than one informative dimension, regardless of which sense we use

for the last term. Furthermore, none of these are known in advance of running

a coevolutionary algorithm. While we may have some enumeration of the test

entities, and we can construct coordinate systems or ideal test sets from it,

none of that information is available before the algorithm starts. At best, an

algorithm can try to assemble this kind of information as it runs and generates

more and more entities.

The DECA algorithm described in 5.1 constructs a type of coordinate sys-

tem closely related to the one defined in definition 3.3.4 to guide evaluation

and selection. The algorithm keeps the coordinate system in a kind of archive,
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modifying it as new individuals are encountered. The coordinate system to

provide accurate evaluation information about the population of candidate

solutions. However, one can imagine other ways of using coordinate system

information to guide a coevolutionary algorithm. For example,

• Discrimination: When two candidates appear equal, mutate the tests

on each axis where the candidates are placed, with the hope of finding

tests which discriminate those candidates.

• Managed Challenge: Prefer mutating tests near the upper ends of

axes rather than the lower ends. The idea is that tests near the low ends

of axes will soon become uninformative (e.g., if the candidates progress),

whereas the tests at the upper ends of axes are more challenging.8

We argued that axes can be thought of as numerical objectives in an inter-

active domain. This view allows the set of candidate solutions to be embedded

into an n-dimensional Euclidean space, giving a geometrical interpretation to

an interactive domain. The next chapter explores questions of how certain

coevolutionary algorithms using an informativeness incentive organize their

populations geometrically.

8See the discussion of managed challenge in section 5.4.
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Input:
List candidates, tests
boolean play(cand, test)
boolean consistentWith(test1, test2)
Test and(test1, test2)

Output:
Tree dimensions

Algorithm:
sort tests by number of fails
for each test1, test2, test3 ∈ tests (with test1 6= test2 6= test3)

if test3 = and(test1, test2)
remove test3 from tests

end
end

for each test ∈ tests
for each leaf ∈ dimensions

if consistentWith(test, leaf)
add test as child to leaf

end
if test was not added to a leaf
add test as new leaf to root of dimensions

end
end

end

Figure 3.2: Algorithm for coordinate system construction. The algorithm
accepts sets of candidates and tests and their outcomes, and constructs a
coordinate system that reflects the structure of the domain. Axes in this
coordinate system consist of tests, and the location of a candidate in this
induced space uniquely identifies which tests it will fail or pass.
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Figure 3.3: Estimated number of dimensions in two numbers games, applying
the algorithm in fig. 3.2 to the populations of a coevolutionary algorithm;
see text for details. The left figure is the estimate for the Compare-on-

One game; note the tight correspondence with the theoretical number of di-
mensions. On the right is the estimate for the Transitive game; here the
algorithm consistently overestimates.



Chapter 4

Emergent Geometric

Organization

4.1 Overview

This chapter argues the claim that algorithms augmented with an informa-

tiveness mechanism (or some equivalent) to dynamically select tests produce

better results than algorithms without such a mechanism. We argue the point

by giving two empirical studies, one comparing a Pareto coevolutionary al-

gorithm (P-PHC) against a more conventional coevolutionary algorithm on

two numbers games, the other comparing a cooperative coevolutionary algo-

rithm modified to use Pareto dominance (pCCEA) against a more conventional

CCEA. We observe

• That intransitivity in the domain does not necessarily lead to poor al-

94
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gorithm performance, and that overspecialization is the more worrisome

pathology;

• That both intransitivity and overspecialization can be effectively ad-

dressed by comparing candidates using Pareto dominance and compar-

ing tests using informativeness (to allow dynamic selection of informative

tests);

• That the relative overspecialization phenomenon can also be effectively

addressed by comparing component parts using Pareto dominance, treat-

ing collaborators as tests.

We further observe in the numbers game experiments that when an in-

formativeness mechanism is in place, the population of test entities organizes

around the known dimensions in numbers game problems. This emergent ge-

ometric organization of the test entities in some sense corrals the candidate

solutions, preventing them from regressing on either dimension and thereby

avoiding overspecialization. It is unclear whether such an effect could be ex-

posed in the experiments on pCCEA, as there is no obvious way to visualize

the test domains in the plane. However, the improved performance of pC-

CEA over more conventional CCEAs suggests that something of the sort is

happening.

Section 4.2, an example of dynamic dimension selection, furthers the work

of chapter 3, section 3.2 by showing that any interactive domain represented

by a function of form p : S×T → R can be pseudoembedded into n-dimensional
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Euclidean space for some n called the dimension of the domain. Based on that

observation, we can extend the observation made in chapter 3 that intransi-

tivity in the original domain disappears when Pareto dominance is used to

compare candidate entities. However, it is vital to realize that this conclusion

is only valid if we had all possible tests on hand to use for comparing. Since

a running algorithm never has such information available, this conclusion can

only be taken heuristically.

Nevertheless, the experiments in that section support the belief that this

heuristic conclusion can hold in practice. A Pareto coevolutionary algorithm,

P-PHC, which sues Pareto dominance to compare candidate entities and an

informativeness mechanism to compare tests does not have difficulties in the

intransitive domain pIG.

Imagining a domain embedded in an n-dimensional space suggests another

pathology, overspecialization. Ideally, we would like entities which have high

values on all dimensions of the domain. However, it may happen that instead

entities overspecialize on one dimension and neglect the others. A domain de-

signed to amplify this possibility, pFG is given. A conventional coevolutionary

algorithm, P-CHC, does indeed exhibit overspecialization behavior on this do-

main. However, P-PHC does not. Instead, P-PHC organizes the test entities

around the known dimensions of the domain, which pressures candidate enti-

ties to maintain capabilities on all dimensions simultaneously and thus avoid

overspecialization.
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Section 4.3 reports the result of changing a conventional CCEA to com-

pare component parts using Pareto dominance over all possible collaborators.

The resulting algorithm, pCCEA, is compared to two other more conventional

CCEAs on two test problems designed to elicit the relative overgeneralization

phenomenon from CCEAs. The original, conventional CCEA exhibits this

phenomenon in every repetition of the experiment. cCCEA, a CCEA which

uses all possible collaborators for testing instead of just a subset, does not

exhibit relative overgeneralization on one test problem, but often exhibits it

on the second problem. pCCEA, by contrast, reliably avoids relative overgen-

eralization and finds the global optimum of both test problems.

Note that since cCCEA has access to all possible collaborators but uses the

maximum value to assign a part a single numerical fitness, cCCEA is subject to

the critiques of this practice raised in chapter 1. cCCEA has access to the same

pool of collaborators as pCCEA, yet pCCEA outperforms cCCEA on both test

problems. We conclude the switch away from using numerical fitnesses derived

from aggregates to using the multi-objective, Pareto dominance comparison

method explains the improved performance.

The results in this chapter are derived from previously published material.

Section 4.2 first appeared in [17], while section 4.3 is presented in [19].
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4.2 Dynamic Dimension Selection and Under-

lying Objectives

This section extends the result of chapter 3, section 3.2 by showing that any

interactive domain represented by a function of form p : S × T → R can be

pseudoembedded into n-dimensional Euclidean space for some minimal n. We

conclude that intransitivity in the original domain disappears when Pareto

dominance is used to compare candidate entities. However, this conclusion is

only valid if we had all possible tests on hand to use for comparing. Since a

running algorithm never has such information available, this conclusion can

only be taken heuristically.

The experiments in that section support the belief that this heuristic con-

clusion can hold in practice. This section develops a Pareto coevolution al-

gorithm, P-PHC, which sues Pareto dominance to compare candidate entities

and an informativeness mechanism to compare tests does not have difficulties

in the intransitive game pIG.

Embedding a domain in an n-dimensional space suggests another pathol-

ogy, overspecialization. Ideally, we would like entities which have high values

on all dimensions of the domain. However, it may happen that entities over-

specialize on one dimension and neglect the others. A domain designed to

amplify this possibility, the focusing game pFG is given. We observe that

a conventional coevolutionary algorithm, P-CHC, does overspecialize in this

domain. However, P-PHC does not. Instead, P-PHC organizes the test enti-
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ties around the known dimensions of the domain, which “corrals” candidate

entities to maintain capabilities on all dimensions simultaneously.

4.2.1 Orders and Coevolution

In this section we prove the preorder decomposition theorem. We apply our

results to interactive domains of form p : S × T → R, showing that any such

domain can be embedded into Euclidean n-space for some unknown n. Finally,

we work through an example to illustrate the concepts.

Applications to Coevolution

First, let us recall some important definitions and notation from chapter 2.

For any function f : S × T → R, where S is a set and R is a poset, write Sf

for the preordering induced on S by pullback, and write the order on Sf as

≤f . This definition means that s1 ≤f s2 exactly when f(s1) ≤R f(s2).
1

As in definition 2.2.6, any function of form S × T → R can be curried to

a function of form S → [T → R], where [T → R] stands for the set of all

functions from T to R. If p : S × T → R, write λt.p for the corresponding

curried function.

Consequently, starting from an interactive domain p : S × T → R, with R

a poset, there is a corresponding preorder structure on the set S, namely the

Sλt.p we saw in definition 2.2.6. The basic idea is that two candidate solutions

1We can interpret this definition in terms of fitness functions: s1 ≤f s2 if s2’s fitness is
at least as high as s1’s.
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s1 and s2 lie in the relation s1 ≤λt.p s2 exactly when s2’s array of outcomes

covers s1’s. In other words, s2 does at least as well as s1 does against every

possible opponent. We refer the reader to chapter 3 for details and examples.

The poset decomposition theorem applies to partial orders, not preorders,

so we need to adjust it slightly. Our approach is to utilize the similarity relation

of definition 2.1.7. Recall that every preorder R comes with an equivalence

relation defined: s1 ∼ s2 if and only if s1 ≤R s2 and s2 ≤R s1. One way to

think about this relation is in the context of an objective function f : S → � .

s1 ∼ s2 exactly when the individuals s1 and s2 have the same fitness. In

a multi-objective context, s1 ∼ s2 when s1 and s2 have the same objective

vector. Given this equivalence relation, we can then prove the following:

Lemma 4.2.1. Let R be a finite preordered set. There is a canonical partially

ordered set Q = R/∼ and a surjective, monotone function π : R → Q (called

the projection) such that π(s1) = π(s2) if and only if s1 ∼ s2, for all s1, s2 ∈ R.

Q is called the quotient of R.

Proof. The proof that Q is a well-defined partial order is given in proposition

2.1.9. Let us show that π is surjective and monotone. Define π : R → Q by

π(s) = [s] for all s ∈ R, where [s] is the equivalence class of s under ∼. π is

surjective trivially, since the only equivalence classes in Q are of form [s] for

some s ∈ R. To see π is monotone, observe the order on Q is [s1] ≤Q [s2] if and

only if s1 ≤R s2. An equivalent way to state this definition is: π(s1) ≤Q π(s2)

if and only if s1 ≤R s2 (this is just rewriting [si] as π(si)). The “if” part proves
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the monotonicity of π.

Lemma 4.2.1 permits us to adapt the poset decomposition theorem (the-

orem 2.3.5) to preorders. If R is a preorder, form the quotient Q = R/ ∼,

which will be a partial order. Apply the embedding lemma (lemma 2.3.7) to

yield an embedding φ : Q→
�

n of Q in
�

n . Composing φ with the projection

π gives a monotone function φ ◦ π : R →
�

n which we call a pseudoembedding

of R into
�

n . By this we mean the following. Write ψ for φ ◦ π. ψ is such

that ψ(s1) = ψ(s2) exactly when s1 ∼ s2. Consequently, ψ behaves like an

embedding, except that it sends equivalent individuals in R to the same point

in
�

n . Otherwise, it sends non-equivalent elements in R to different points

in
�

n while preserving the order relations between them. Let us record these

observations as:

Theorem 4.2.2 (Preorder Decomposition Theorem). Every finite pre-

order can be pseudo-embedded into
�

n (and thus into � n). Moreover, every

finite preorder has a minimum n, the dimension of the preorder, for which

such pseudoembedding is possible.

Let us examine an example to help visualize the definitions.

Example 4.2.3. Consider the following game:.

p rock stone paper scissors

rock 0 0 −1 1

stone 0 0 −1 1

paper 1 1 0 −1

scissors −1 −1 1 0
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paper

scissorsrock

stone

Figure 4.1: The preorder rock-stone-paper-scissors displayed as a graph. An
arrow between two individuals indicates a ≤ relationship; absence of an arrow
indicates the individuals are incomparable.

This game is rock-paper-scissors with a clone of rock called “stone.” In

this case, S = T = {rock, stone, paper, scissors}, and R = {−1, 0, 1} with

−1 ≤ 0 ≤ 1.

By comparing the rows of this matrix, we can see that none of the strategies

dominates any of the others. Every strategy does well against at least one

opponent; likewise, every strategy does poorly against at least one opponent.

However, rock ∼ stone because their rows are identical. Consequently, the

induced preorder on {rock, stone, paper, scissors} contains only the relations

rock ≤ stone and stone ≤ rock. We show this preorder in figure 4.1.

When we mod out the equivalence relation ∼, we arrive at a partial order

consisting of the three equivalence classes {[rock], [paper], [scissors]}. In this

partial order, all three elements are incomparable to one another. This is, in

fact, a 2-dimensional partial order, with linear realizer L =

{([rock], [paper], [scissors]), ([scissors], [paper], [rock])}Figure 4.2 shows a plot

of the corresponding pseudoembedding.
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Figure 4.2: The preorder rock-stone-paper-scissors pseudo-embedded into the
plane

� 2

Discussion

We began with an interactive domain which may have had intransitive cycles

and other pathologies. We ended up with what amounts to an embedding of

the domain into
�

n for some unknown dimension n.
�

n is a particularly simple

partial order; in particular, it is transitive. How did we turn a pathological

problem into a nice transitive one?

The first point to note is that a pseudoembedding, while well-defined math-

ematically, is not easily computable. Indeed, it is has been known for some

time that even learning the dimension of a poset is NP-complete [110]. Fur-

thermore, to compute a poset decomposition, we need to have all the elements

of the poset on hand. While in many domains it is possible to enumerate all
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solutions,2 it is typically intractable to do so. Thus, while pseudoembeddings

exist as mathematical objects, they are at least as expensive to compute as

solving the problem by brute force. This is not surprising; if we had a pseu-

doembedding in hand, we could treat our problem as a greater-than game

and solve it relatively easily. Pseudoembeddings thus encode a considerable

amount of information about the original domain which we have to “pay for”

somehow. In essence, what we have done is reorganize the information in a

domain.

A second point is that we can at least hope that the preorder decomposition

of an interactive domain can be approximated by a more practical algorithm.

In the next section, we will present a simple algorithm aimed at approximating

the preorder decomposition of a domain and show that it works reasonably

well on two instances of the numbers game.

4.2.2 Experiments

In this section we present our experimental results. We begin by recalling the

numbers game from [103]. Next, we describe the algorithms we employ and

our implementation choices. Finally, we present and discuss results.

The Numbers Game

“The numbers game” [103] actually refers to a class of games. Common among

them is that the set of individuals, call it S, consists of n-tuples of natural

2Exceptions include domains with real-valued parameters.
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numbers. How we choose to compare individuals, and what choice we make for

n, define an instance of the game. In our experiments, we will be considering

two instances. In both, we will deviate somewhat from the score functions

defined in [103]. Instead of returning a score, we will construct our functions

to have form p : S × S → {0, 1}, where S =
� 2 is the set of ordered pairs

of natural numbers, and the function p simply says which individual is bigger

(i.e., gets a bigger score or “wins” the game).

In our experiments we only present data for 2-dimensional domains, since

the issues we wish to emphasize are already visible at this low dimensionality.

For simplicity of presentation, we define these games for 2 dimensions only.

The Intransitive Game In this game, we first decide which dimensions of

the individuals are most closely matched, and then we decide which individual

is better on that dimension. The payoff function we use is:

pIG((i1, j1), (i2, j2)) =





1 if |i1 − i2| > |j1 − j2| and j1 > j2

1 if |j1 − j2| > |i1 − i2| and i1 > i2

0 otherwise

(4.1)

This game is intransitive; one cycle is (1, 6), (4, 5), (2, 4) [103]. (1, 6) and

(4, 5) are closest on the second dimension, so (1, 6) > (4, 5). (4, 5) and (2, 4)

are closest on the second dimension also, so (4, 5) > (2, 4). However, (2, 4) and

(1, 6) are closest on the first dimension, meaning (2, 4) > (1, 6). Nevertheless,

an individual with high values on both dimensions will tend to beat more
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individuals than one without, and it seems, intuitively, that the best solutions

to this game are such individuals.

The Focusing Game In this game, the first and second individuals are

treated asymmetrically. The second individual is scanned to see on which

dimension it is highest. Then, it is compared to the first individual. The

first individual is better if it is higher on the best dimension of the second

individual. As a payoff function:

pFG((i1, j1), (i2, j2)) =





1 if i2 > j2 and i1 > i2

1 if j2 > i2 and j1 > j2

0 otherwise

(4.2)

Note that this game is transitive. However, the emphasis on one dimension

at the expense of others encourages individuals to race on one of the two

and neglect the second. Nevertheless, an individual which is high on both

dimensions will beat more individuals than one which is overspecialized on a

single dimension.

This game is closely related to the compare-on-one game described in

[35].3

3But note that pFG has range {0, 1} and requires strict inequalities for a 1 output,
whereas compare-on-one has range {−1, 1} and does not require strict inequalities.
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Algorithms and Setup

We will compare two algorithms, a population based coevolutionary hillclimber

(P-CHC) and a population based Pareto hillclimber (P-PHC). The P-CHC

has a single population. To assess the fitness of an individual, we sum how

it does against all other individuals according to the game we are testing.

The wrinkle is that each individual produces exactly one offspring, and the

offspring can only replace its parent if it is strictly better. This algorithm

uses a subjective fitness measure to assess individuals, but the constraint that

an offspring can only replace its own parent is a simple form of diversity

maintenance resembling deterministic crowding [63].

Our Pareto hillclimbing algorithm is similar in spirit to the DELPHI algo-

rithm presented in [35]. Our P-PHC operates as follows. There are two popu-

lations, candidates and tests. The candidates are assessed by playing against

all the tests. Rather than receiving a summed fitness, they receive an outcome

vector, as in evolutionary multi-objective optimization [48]. The outcome vec-

tors are then compared using Pareto dominance: candidate a is better than

candidate b if a does at least as well as b does versus all tests, and does better

against at least one. The tests are assessed differently, using an approximation

of informativeness. Since the outcome order is 0 < 1, the informativeness mea-

sure presented in section 3.2 collapses to comparing which pairs of candidates

a test says are equal. For our purposes, we will approximate informativeness

by simply counting how many pairs of candidates are made equal by a test.4 In

4This method has the advantage of being faster to compute. It is an approximation of
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other words, each test has a score f(t) =
∑

s1,s2∈Si
δ(p(s1, t), p(s2, t)), where Si

is the current population, and δ(p(s1, t), p(s2, t)) returns 1 if p(s1, t) = p(s2, t),

0 otherwise. For our experiments, p will be one of pIG, or pFG. As in the co-

evolutionary hillclimber, in the Pareto hillclimber individuals receive only one

offspring, and an offspring can only replace its parent. However, the climbing

is done separately in the two populations.5

To factor out issues of representation and focus on evaluation, in our ex-

periments, genotype=phenotype. That is, individuals are simply pairs of num-

bers. To create a mutant, we add random noise to each coordinate with some

probability. Notice there is no mutation bias in any particular direction.

We will be using a population size of 100 for all experiments. In the

coevolutionary hillclimber, the single population will be 100 individuals; in

the Pareto hillclimber, there will be 50 candidates and 50 tests. The mutation

rate is 100%; mutation adds +1 or -1 to each dimension. No form of crossover

is used. We ran each simulation for 500 time steps.

Results

Figures 4.3 and 4.4 show performance versus evolutionary time for both P-CHC

and P-PHC on the payoff functions pIG and pFG. Note that the coevolutionary

hillclimber out paces the Pareto hillclimber. The Pareto hillclimber must

informativeness in the sense that two tests which receive unequal counts are incomparable
according to the informativeness order.

5We should remark that neither of these algorithms was intended to be practical; rather,
they are intended to test our ideas.
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Figure 4.3: Performance versus time of P-CHC and P-PHC on IG (intransitive
game). Plot shows a single, typical run. Performance is measured as the sum
of the coordinates; the plot shows this value for the best individual of the
population at each time step.

adjust not only its candidates to make an improvement, but also its tests.

Updating the tests causes a lag, which slows down progress. The graphs are

intended to be qualitative, however; what is important is that both algorithms

make steady progress.

Note figure 4.3, the intransitive game. Unlike the algorithm used in [103],

P-CHC made continuous progress on the intransitive game. Since P-CHC

essentially adds only a diversity maintenance mechanism, it seems the diversity

is important to the success or failure of coevolution on this domain.

At first glance, the Pareto coevolution mechanism of P-PHC does not seem

to be adding anything. To understand more completely what is happening, in

figure 4.5, we plot the final candidates P-CHC found on a typical run on pFG,
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Figure 4.4: Performance of P-CHC and P-PHC on FG (focusing game). Plot
shows a single, typical run. Performance is measured as the sum of the coor-
dinates of the best individual.

together with the final candidates and tests which P-PHC found on a typical

run. Notice how P-CHC has overspecialized entirely on the horizontal dimen-

sion. While it made great progress there, it neglected the vertical dimension

entirely. By contrast, P-PHC has maintained progress on both dimensions

equally. While it did not move as far as P-CHC, it did remain balanced. Most

important are the tests P-PHC found. In the plot, the tests appear to be “cor-

ralling” the candidates, keeping them in a tight group near the main diagonal.

An animation of a typical run of P-PHC reveals this is indeed the case. The

tests keep step behind the candidates. The same configuration of tests and

candidates persists, but the group of them move slowly up and to the right,

towards the better values of this game.



CHAPTER 4. EMERGENT GEOMETRIC ORGANIZATION 111

0

50

100

150

200

250

300

0 50 100 150 200 250 300

y 
co

or
di

na
te

x coordinate

Final Candidates from Typical Runs of P-CHC and P-PHC

Final P-CHC candidates
Final P-PHC candidates

Final P-PHC tests

Figure 4.5: Position in plane of final candidates from P-CHC run on pFG (lower
right), together with final candidates and tests from P-PHC (lower left). P-
CHC has overspecialized on the horizontal dimension, whereas P-PHC has
improved in both dimensions. The tests which P-PHC found are arranged to
“corral” the candidates along the main diagonal.
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4.2.3 Discussion

To sum up, we have shown mathematically that a wide class of interactive do-

mains, if properly construed, can be looked upon as n-dimensional, transitive,

greater-than games. The trouble is that discovering n is an NP-complete prob-

lem in general, let alone the embedding which would permit us to convert our

favorite interactive domain to a nicely-behaved transitive domain. Neverthe-

less, we feel the mathematical result does change the face of intransitivity. We

examined intransitivity experimentally, using insights gained from the math-

ematics, and saw that it may not be the demon it has been made out to be.

Instead, it may be that algorithms fail because they are overspecializing on

some dimensions of a domain at the expense of others.

4.3 Dynamic Dimension Selection and Rela-

tive Overgeneralization

This section reports the result of augmenting a conventional CCEA with a

Pareto dominance comparison of candidates, where dominance is taken over all

possible collaborators. The resulting algorithm, pCCEA, is compared to two

other, more conventional CCEAs on two maximum of two quadratics (MTQ)

problems designed to amplify relative overgeneralization. These problems have

two critical points, one of which is a local optimum sitting on a low, wide peak,

the other of which is a global optimum sitting on a wide, narrow peak. Relative
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overgeneralization leads algorithms to prefer the lower, wider peak. In fact,

an analysis of the MTQ domains reveals that the initial population of the

algorithm is very likely to contain representatives on the peak containing the

global optimum. Yet the CCEA and cCCEA algorithms often do not find this

optimum, suggesting they actively pull away from the higher peak. Thus, the

relative overgeneralization phenomenon is not an accident of noise or drift, but

is encouraged by the selection method used in the algorithm.

Empirically, we observe that the original, conventional CCEA exhibits this

phenomenon in every repetition of the experiment. cCCEA, a CCEA which

uses all possible collaborators for testing instead of just a subset, does not

exhibit relative overgeneralization on one test problem, but often exhibits it

on the second problem. pCCEA, by contrast, reliably avoids relative overgen-

eralization and finds the global optimum of both test problems.

Note that since cCCEA has access to all possible collaborators but uses the

maximum value to assign a part a single numerical fitness, cCCEA is subject to

the critiques of this practice raised in chapter 1. cCCEA has access to the same

pool of collaborators as pCCEA, yet pCCEA outperforms cCCEA on both test

problems. We conclude the switch from numerical fitnesses from aggregates

to the multi-objective, Pareto dominance comparison method explains the

improved performance.

This section is organized as follows. In section 4.3.1 we give necessary

background from Pareto coevolution and cooperative coevolution. In section

4.3.2 we give and analyze the particular Maximum of Two Quadratics used



CHAPTER 4. EMERGENT GEOMETRIC ORGANIZATION 114

in [78] and in the experiments reported here. In section 4.3.3 we present our

experimental results. Finally, in section 4.3.4 we discuss implications of what

we have observed.

4.3.1 Background

Pareto Coevolution

Much of the material we are reviewing here can be found in more detail in

chapter 3, which should be consulted for details.

Let p : S × T → R be a function; here S and T are sets and R is a

preordered set. The set S can be thought of as the set of candidate solutions

(candidates). These are the entities which an algorithm is meant to optimize.

The set T can be thought of as tests; these individuals serve to test or measure

the candidates and give information about how good they are. The ordered set

R can be thought of as results or outcomes of interactions between candidates

and tests.

It is worth pointing out that both candidates and tests are roles that in-

dividuals can take. When we have an algorithm like a CCEA over a function

f : X × Y → � , we are in much the same situation as above: a two-place

function into an ordered set. However, the situation is slightly different. The

CCEA aims to optimize both individuals in X and individuals in Y ; thus these

sets act variously as candidates and tests. At the stage of the algorithm when

X elements are selected, X is acting as the candidate set to be optimized; the
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possible collaborators from Y can then be thought of as tests measuring the

X values. However, when we consider updating Y , the roles reverse: the Y

values are candidates and the X values are tests.

Let us return to the function p. We can use this function to compare two

candidates s1, s2 ∈ S as follows: s2 (Pareto) covers s1, which we will denote

s1 � s2 if, for all t ∈ T , p(s1, t) ≤ p(s2, t). If each t ∈ T is thought of as

a test, this relation says that for each test, s2 does at least as well as s1. s2

Pareto dominates s1 if s1 � s2 and, in addition, there is a t ∈ T such that

p(s1, t) < p(s2, t). That is, s2 is at least as good as s1 against all tests and is

strictly better than s1 against at least one test.

If it happens that there are t1, t2 ∈ T such that p(s1, t1) < p(s2, t1) but

p(s1, t2) > p(s2, t2), then s1 and s2 are incomparable. We will denote incom-

parability s1 � s2 as in definition 2.1.5. The idea of incomparability in this

instance is that there are two tests, one which shows s2 is better than s1,

but another which shows s1 is better than s2. In this case we cannot give a

strict relationship between the two candidates; they each have value, albeit in

different ways.

The relation � is a preorder on the set S. As such it has a set of maximal

elements; these are elements ŝ ∈ S such that if ŝ � s, then s � ŝ must also

hold, for any s ∈ S. In words, ŝ is maximal if, whenever it appears to be

less than or equal to some other value, that value is less than or equal to it

(meaning the two values are equivalent). The set of all maximal elements of

� is called the Pareto optimal set, Pareto front, or non-dominated front by
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various authors.

Thus far we have considered comparing candidates in S. What about the

tests in T ? An observation made in [42] is that it is not appropriate to use

Pareto covering or Pareto dominance to compare tests. Rather, as advocated

there and indeed in this dissertation as a whole, it makes sense to compare tests

according to how informative they are about ranking candidates. It suffices for

our purposes to consider two cases. If two tests t1, t2 ∈ T rank all the candidate

individuals in the same order, then they are equally informative. However, if

there are s1, s2 ∈ S such that p(s1, t1) < p(s2, t1) and p(s1, t2) > p(s2, t2), then

the tests t1 and t2 are differently informative.

Cooperative Coevolution

Cooperative coevolution has generally been presented as a framework as op-

posed to a particular algorithm. We will follow the scheme given in algorithm

2 of [105]. The algorithm keeps some indexed set of populations ps. For each

population ps, parents are selected, offspring generated via the variation op-

erators, collaborators are selected from the remaining populations, and the

individuals of ps are evaluated with these collaborators. The next generation

for population ps consists of the individuals which survive selection based on

this evaluation. Within this framework one is free to use whichever selection,

generation, variation, collaboration, and evaluation mechanism one wishes. In

what follows we will detail the choices which were made for the experiments

reported in section 4.3.3.
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Some applications of cooperative coevolution involve a function of form

f : X×Y → � . The task is to find values in the sets X and Y which optimize

this function. One way to approach optimizing such a function is to define

two populations corresponding to settings for X and Y . The evaluation of two

individuals x ∈ X and y ∈ Y can then be f(x, y) or some function thereof.

Relative overgeneralization is already evident in simple scenarios like this one.

We will be considering two Maximum of Two Quadratics (MTQ) functions

[105]. Let f1 and f2 be two quadratic functions defined:

f1(x, y) = h1

(
1 −

16(x− x1)
2

s1
−

16(y − y1)
2

s1

)

f2(x, y) = h2

(
1 −

16(x− x2)
2

s2

−
16(y − y2)

2

s2

)

where hi, si, xi and yi are parameters controlling the height, width, and

vertex of the function. Given two such functions, an MTQ function is defined:

MTQ(x, y) = max(f1(x, y), f2(x, y)) (4.3)

The function employed in [78] uses the following parameter settings: h1 =

50, s1 = 1.6, (x1, y1) = (3
4
, 3

4
); and h2 = 150, s2 = 1

32
, (x2, y2) = (1

4
, 1

4
). 6 We

will denote this function MTQ1. We will also be considering a second function

MTQ2 which is MTQ1 but with h1 = 125. These two functions are displayed

6We have switched the positions of the global and local optima versus what was reported
in Panait et al.
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Figure 4.6: Plot of MTQ1.
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Figure 4.7: Plot of MTQ2.

in Figs. 4.6 and 4.7.

In our experiments we will be comparing three CCEAs. The first is as

in [78]; for brevity we call this algorithm simply CCEA. The sets X and Y

are both sets of reals, the unit interval [0, 1]. There are two populations,

one consisting of 32 individuals from X, the other containing 32 individuals

from Y . Tournament selection is used. Here, to perform selection on X for

example, two individuals x1, x2 are selected at random from the X popula-

tion. These individuals are varied by adding Gaussian noise with mean 0 and

standard deviation 0.05. Then the individuals are evaluated. Evaluation is

done by selecting the highest-valued individual y∗ from the Y population of
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the previous generation7 as well as a random individual y. x1’s evaluation is

max(MTQ(x1, y
∗),MTQ(x1, y)); i.e., the objective function value of x1 and

its best collaborator. Once evaluation is performed, a random value r between

0 and 1 is chosen. If r ≤ k, then the higher-valued of x1, x2 is added to the

next population; otherwise the lower-valued individual is added. Here k is

a parameter controlling the selection pressure; we have used k = 0.75 in all

experiments reported. One last point is that the highest-valued individual

of the previous generation is always carried forward unmodified to the next

generation.

The second CCEA variant, which we call pCCEA, has two modifications

over CCEA. First, at the stage when individuals are being compared, objective

value with a collaborator is not used. Instead, the two individuals are com-

pared according to Pareto dominance. That is, instead of considering adding

the individual with the higher objective value, we consider adding the domi-

nant individual; for instance, if x1 � x2 and r ≤ k, then x2 is added to the

next generation. If x1 � x2, both are added to the next generation. Second,

since there is no notion of best individual in this case, we will carry forward the

non-dominated front of the previous generation. It is possible that dominated

individuals make it into the population; thus, we first find the Pareto front of

the current population, carry that forward to the next generation, and fill in

any remaining space in the population with individuals selected as above.

The final CCEA, which we call cCCEA, has one modification over CCEA.

7Or from the current generation at step 1 of the algorithm
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Instead of comparing individuals according to the best setting of the previous

generation, we will have each individual collaborate with all individuals in

the other population and give it the highest value it receives from all these

collaborations. We will use cCCEA as a control for pCCEA: since the Pareto

dominance mechanism in pCCEA has access to all individuals in the test

population, it seems only fair to give CCEA the same information and see

how well it performs.

4.3.2 Analysis

In this section we make two observations:

1. The initial populations of 32 X and Y settings frequently represent indi-

viduals on the higher peak. That is, there is a setting in the X population

and a setting in the Y population which, when paired together, lie on

the higher-valued peak;

2. In the domain defined byMTQ1, the globally-optimal and locally-optimal

settings for one population are Pareto optimal as well as being differently

informative when treated as tests of the other population.

The import of the first observation is that the initial population of these

algorithms already contains individuals which could potentially move to the

global optimum. In the case of the CCEA without the Pareto dominance

mechanism, the experimental observation that the algorithm often does not



CHAPTER 4. EMERGENT GEOMETRIC ORGANIZATION 121

find this global optimum implies that the algorithm is actively moving away

from the higher-valued peak.

The import of the second observation is that, unlike the situation in com-

petitive domains, a CCEA running on these MTQ functions does not require

an explicit informativeness mechanism to keep informative tests in the popu-

lation. Pareto dominance suffices. The reason is that in competitive domains,

Pareto dominant individuals tend to make poor tests; thus there is a need for

a separate mechanism to encourage informative tests to remain in the popu-

lation. In MTQ1 at least, the situation is different: Pareto optimal settings

tend to also be informative tests of their collaborators.

Initial Populations and the Higher Peak

We will show that, with an initial population of 32 X and Y individuals,

the initial population of a CCEA has roughly a 90% chance of containing a

representative on the higher-valued peak. To prove this, we will show that all

points (x, y) in the square spanned by the points (0.2, 0.2) and (0.29, 0.29) are

such that f2(x, y) > f1(x, y); i.e. are such that MTQ1(x, y) = f2(x, y). As

a result, the points are within this square are all on the higher-valued peak.

We will then calculate the probability that the initial population contains at

least one point in this square; this probability will give a lower bound on the

probability that the population contains a representative on this peak.

Because the region for which this relation holds is simply connected, it

suffices to show the corners of the square are all such that f2(x, y) > f1(x, y).
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(x, y) f1 f2

(0.2, 0.2) -252.5 -225.0
(0.2, 0.29) -207.05 -157.5
(0.29, 0.2) -207.05 -157.5
(0.29, 0.29) -161.6 -90.0

Table 4.1: Values of f1 and f2 on four points in the xy-plane spanning a square
which lies under the higher-valued peak.

In table 4.1 we give the values of f1 and f2 for the four corners of this square;

for all four points f2’s value is larger.

The probability that a value chosen uniformly randomly in the range [0, 1]

will land in the subinterval [0.2, 0.29] is p = 0.09. Now, if 32 values are

chosen uniformly randomly, the chance that at least one of them will lie in

the subinterval is 1 − (1 − p)32 or approximately 0.95. In other words, the

chance that the initial population of X values has at least one individual in

this range is roughly 0.95; similarly for Y . Thus, the probability that the initial

population has at least one X value and one Y value in [0.2, 0.29] is roughly

0.95·0.95 or roughly 0.90. In short, roughly 90% of runs of a CCEA with initial

population of 32 X and Y values should have at least one representative on

the higher-fitness peak.

Dominance and Informativeness

Much can be said about the dominance and informativeness structure in the

domain defined by MTQ1. We will simply show that the globally- and locally-

optimal individuals are Pareto optimal when treated as candidates and differ-
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ently informative when treated as tests. Note that because of the symmetry

of the MTQ1 function, all statements made treating X individuals as candi-

dates apply equally well when Y values are treated as candidates. Similarly,

statements about Y individuals as tests apply when X individuals are treated

as tests.

Regarding dominance, let the Y values be candidates and X values tests.

Let y∗ = 1
4

be the globally-optimal setting for Y and let y∗ = 3
4

be the locally-

optimal setting. Fig. 4.8 depicts these two candidates as functions of X.

Note they are incomparable. For x1 ∈ (x, x′), MTQ1(x1, y∗) < MTQ1(x1, y
∗).

However, for x2 6∈ [x, x′], MTQ1(x2, y∗) > MTQ1(x2, y
∗). Thus, there is a

test, x1 which says that y∗ is better than y∗ and a test x2 which says that y∗

is better than y∗.

Furthermore, both these settings are Pareto optimal. For y∗, note that the

corresponding x∗ is such that for all y ∈ Y , MTQ1(x∗, y) < MTQ1(x∗, y∗).

Consequently, y∗ cannot be dominated and so must lie on the Pareto front.

Similarly, for y∗, MTQ1(x
∗, y) < MTQ1(x

∗, y∗), meaning y∗ cannot be domi-

nated. Therefore both y∗ and y∗ are Pareto optimal as candidates.

Now let us consider informativeness when treating Y settings as tests.

Partition Y into two subsets T1 and T2 as follows: T1 = {y ∈ T |∀x ∈

X,MTQ1(x, y) = f1(x, y)} and T2 = Y \ T1. Note that y∗ ∈ T1 (because

all points (x, y∗) are on the lower-valued peak; see fig 4.8) and y∗ ∈ T2.

First we observe that all tests in T1 are equally informative. Recall that

this means they all put the X settings in the same order. Let y, y ′ ∈ T1 and
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Figure 4.8: Plot of candidates y∗ and y∗ as cross sections through MTQ1.
The shaded interval (x, x′) consists of those X settings for which y∗ is better
than y∗; for the remaining X settings, y∗ is better than y∗, making the two
non-dominated.

define two functions on X:

g(x) = f1(x, y)

h(x) = f1(x, y
′)

Simply, g gives the value of x ∈ X when y is applied to it; h gives the value

of x when y′ is applied. Now let x, x′ ∈ X. Then g(x) ≤ g(x′) if and only if

h(x) ≤ h(x′). To see this, notice that g(x)+h1
16(y−y1)2

s1

−h1
16(y′−y1)2

s1

= h(x) for

any x. Since adding a quantity to both sides of an inequality does not change

its direction, g(x) ≤ g(x′) implies h(x) ≤ h(x′). A symmetrical argument

shows that h(x) ≤ h(x′) implies g(x) ≤ g(x′). Therefore g and h both induce

the same order on X by pullback. Since g(x) = f1(x, y) = MTQ1(x, y) and

h(x) = f1(x, y
′) = MTQ1(x, y

′), it follows that y and y′ order X in the same

way. In other words y and y′ are equally informative tests. In particular, since

y∗ ∈ T1, this test orders X in the same way as all other tests in T1.
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Figure 4.9: Cross sections through MTQ1 defined by two different Y values.
x∗ and x depicted here satisfy relations 4.4 through 4.6.

The situation in T2 is more complicated than in T1. It is beyond our scope

to go into a detailed analysis of the informativeness structure for T2. However,

we observe that the tests in T2 are differently informative than those in T1. To

see this, let y ∈ T1 and y′ ∈ T2, let x∗ = 1
4

be the globally-optimal X setting

and let x ∈ X be such that:

f1(x
∗, y) < f1(x, y) (4.4)

f2(x, y
′) < f1(x, y

′) (4.5)

f1(x, y
′) < f2(x

∗, y′) (4.6)

Fig. 4.9 illustrates these relationships.

Relation 4.4 implies that MTQ1(x
∗, y) < MTQ1(x, y), in other words that

test y ranks x∗ strictly lower than x. Relation 4.5 implies that MTQ1(x, y
′) =

f1(x, y
′). By definition of x∗, MTQ1(x

∗, y′) = f2(x
∗, y′). Thus, relation 4.6

implies that MTQ1(x, y
′) < MTQ1(x

∗, y′) or, in other words, that test y′

ranks x∗ strictly higher than x. In short, the tests y and y′ rank x and x∗
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differently, so are differently informative. y and y′ were chosen arbitrarily from

T1 and T2, respectively, meaning that any test in T1 is differently informative

from any other test in T2. In particular, y∗ and y∗ are differently informative.

Recall that these two settings are also Pareto optimal; therefore we have shown

that two Pareto optimal settings for Y also make differently informative tests,

indicating a close relationship between Pareto dominance and informativeness

which is not typically present in competitive domains.

4.3.3 Experiments

In this section we will report on the experiments performed. We replicate the

case reported in [78] on MTQ1 when δ = 0. We then perform the same exper-

iment, this time using Pareto dominance to compare individuals as outlined

in section 4.3.1.

We ran CCEA, pCCEA, and cCCEA for 50 generations on MTQ1. We

repeated this experiment 250 times for each algorithm. Table 4.2 reports the

number of runs which found an individual near the global optimum8 and gives

the mean objective value of the highest-valued individual from each of the

250 runs. Recall that the objective value of the higher peak is 150, while

the objective value of the lower peak is 50. CCEA never finds high-quality

individuals; instead it always finds individuals at or near the local optimum,

corroborating what was observed in [78] (see, for instance, Fig. 2 in that paper

for the case δ = 0). By contrast, pCCEA reliably finds individuals at or near

8By which we mean the X and Y settings are in the range [0.24, 0.26]



CHAPTER 4. EMERGENT GEOMETRIC ORGANIZATION 127

Algorithm Runs Near Optimum Mean Best
CCEA 0 49.9994
cCCEA 233 143.1958
pCCEA 243 146.9373

Table 4.2: Comparison of CCEA, cCCEA, and pCCEA on MTQ1. We give
the number of runs out of 250 which produce a near-optimal pair of variable
settings, as well as the value of the highest-valued individual from each run, av-
eraged across all 250 runs. Note cCCEA and pCCEA are roughly comparable,
but outperform CCEA significantly.

the global optimum.

However, cCCEA also tends to finds individuals near the higher peak.

The question arises whether pCCEA succeeds simply because it has access to

more collaboration information than CCEA. To address this question we ran

a second experiment, applying both pCCEA and cCCEA to MTQ2. Recall

that MTQ2 is similar to MTQ1 except the local optimum has objective value

125 rather than 50; thus, the spread between the global optimum and local

optimum is lower. Table 4.3 gives the results for these two algorithms on

MTQ2. In terms of the number of runs which produce a near-optimal pair,

cCCEA does worse on MTQ2 than on MTQ1. However, pCCEA performs

comparably well on both MTQ1 and MTQ2. The reason for this is the Pareto

dominance mechanism permits the algorithm to see the value of an individual

as soon as it lands on a peak, regardless of how high on the peak it falls.
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Algorithm Runs Near Optimum Mean Best
cCCEA 177 142.6876
pCCEA 248 149.3980

Table 4.3: Control experiment comparing cCCEA and pCCEA on MTQ2. We
give number of runs out of 250 which produce a near-optimal pair of variable
settings, as well as the value of the highest-valued individual from each run,
averaged across all 250 runs. Note cCCEA performs significantly worse on this
problem than on MTQ1, whereas pCCEA performs comparably well.

4.3.4 Discussion

We began with the question of modifying the CCEA to promote the discov-

ery of global optima. pCCEA, a cooperative coevolutionary algorithm using

a Pareto dominance mechanism to compare individuals, achieves this aim re-

markably well. When compared with CCEA, pCCEA performs quite a bit

better. When compared with another modification of CCEA which uses the

same number of evaluations per generation against the same pool of collab-

orators (cCCEA), pCCEA performs comparably on MTQ1 but significantly

better on MTQ2. The explanation we give for the difference in performance on

MTQ2 is that cCCEA is sensitive to the relative, numerical objective values

of the two peaks, whereas pCCEA is sensitive to informational differences be-

tween individuals and is insensitive to their numerical values. One might say

that while maximizing performance over all collaborators shows how different

A is from B, Pareto dominance reveals how A is different from B. pCCEA’s

ability to find global optima suggests ideas from Pareto coevolution may fruit-

fully be applied to optimization with CCEAs in other domains, and supports
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the critique of using aggregate fitness measures raised in chapter 1.

4.4 Discussion

Section 4.2 argued that any interactive domain expressed with a function of

form p : S × T → R can be construed as a greater-than game in some n-

dimensional Euclidean space. Such games would be straightforward for even

the simplest algorithms (provided n is small enough), if only the embedding

were known. Of course, such an embedding is exactly what is not known in

advance; in fact, it is not unreasonable to say that a successful coevolutionary

algorithm develops at least some part of such an embedding while running.

The organization of the test entities around the dimensions of the pFG do-

main is remarkable in that neither the game nor the algorithm exposes this

information. Rather, it is revealed or emerges as a consequence of the dynam-

ics induced by the informativeness mechanism. A very similar observation

has been made with a different algorithm, DELPHI, which uses a discrimina-

tion mechanism similar to informativeness to incent test entities [35]. These

observations suggest that emergent geometric organization may be a robust

phenomenon.

Section 4.3 did not directly treat the question of emergent geometric orga-

nization because the MTQ test functions used cannot easily be analyzed and

visualized to reveal the effect. However, the improvement of performance of

pCCEA over cCCEA and CCEA suggests that such an effect is occurring. The
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collaborator pool used to test component parts must be maintaining a kind of

informational diversity to allow pCCEA to identify and scale the higher peak,

as the algorithms which do not have this mechanism fail to do so. Juxtapos-

ing these results on relative overgeneralization with those on overspecialization

suggest that the two phenomena may be closely linked and only appear differ-

ent because of the differences between the domains explored by the algorithms.

That is, adversarial domains which aim to evolve capable candidates may ex-

pose different algorithm misbehavior from cooperative domains which aim to

evolve capable wholes build from all types of entity, when at the core the

misbehavior is always arising from a failure to test adequately. The fact that

an informativeness criterion alleviates both pathologies is suggestive in this

regard.

Not to put too fine a point on it, section 4.3.2 showed that on MTQ1,

informativeness and Pareto optimality coincide to some degree: certain Pareto

optimal individuals are also differently informative. This observation raises an

intriguing question: could the relationship between informativeness and Pareto

dominance yield a metric of how competitive or cooperative a domain is? It

has been observed previously that in domains which have traditionally been

called competitive, for instance game playing, This dissertation has argued

that performing and informing, here Pareto dominance and informativeness,

are different: highly capable, dominant players are poor tests. In the domain

of chess playing, for example, Garry Kasparov is a dominant player, but the

outcomes of a set of players’ games against Kasparov would yield very little
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information about how the players compare to one another. In short, the

discrepancy between informativeness and dominance in competitive domains

is marked, whereas at least on these examples of cooperative domains, the two

concepts appear related.



Chapter 5

Conclusions, Critiques and

Corollaries

Chapter 1 argued for a reassessment of the arms race conception of com-

petitive coevolutionary algorithms. Several pathological algorithm behaviors

which forestall arms races, particularly overspecialization and cycling, were

considered from the perspective of how entities were measured. In particular,

a conceptual split was drawn between performance, the measurement of how

well an entity performs at the task, and informativeness, the measurement

of how well an entity informs about the performance of other entities. The

reliance of previous methods on a single, numerical fitness value derived from

interactions with entities which were only incented to perform was posited as

the primary culprit in producing pathological algorithm behavior and prevent-

ing arms races from arising.

132
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The chapter continued by arguing that cooperative coevolutionary algo-

rithms are vulnerable to the same critique. Though these algorithms have not

historically been conceived of as attempting to create and sustain arms races,

they do assess entities, or component parts, with collaborators drawn from a

pool of entities which have only been incented to perform. They also aggregate

interaction information into a numerical fitness assessment, just as competi-

tive coevolutionary algorithms do. Thus, they rely on the same questionable

basis of measurement that prevents arms races in competitive coevolutionary

algorithms. Seen in this light, the ongoing debate over collaboration selec-

tion methods, as well as the relative overgeneralization phenomenon, may also

stem from the shortcomings of numerical, aggregate measurements coming

from interaction with entities incented to perform.

In short, the difficulties encountered when applying either competitive or

cooperative coevolutionary algorithms were argued to arise from a common

cause: a failure of measurement, and in particular a failure to adequately and

explicitly treat the adaptation of the function of measurement in troubled

algorithms.

Given that single, aggregated fitness values are suspect, the question of

what to do instead arises. The case was made that switching to a multi-

objective value system is both possible and useful. Furthermore, if the cal-

culation of fitness from interactions with entities which were only incented to

perform is also troublesome, what can be done about that? The answer lay

in designing algorithms which explicitly incent entities to inform about the
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performance of other entities. A case was made for this answer as well.

Two further conceptual splits become apparent at this point. One is be-

tween the static features of interactive domains, independently of algorithm

choices; and the dynamic behavior of running algorithms. The notion of infor-

mative dimension introduced in chapter 3 lies on the static side of this divide,

while the notion of emergent geometric organization of chapter 4 lies on the

dynamic side.

The static/dynamic split drawn here is by no means new. To cite a recent

example, Popovici and De Jong’s analysis of collaborator selection mechanisms

in cooperative coevolution suggested that “problem properties + algorithm

properties → system performance” [83]. We followed a similar formula, treat-

ing informative dimensions as static problem properties which give rise to an

emergent geometric organization impacting dynamic system performance.

The second conceptual split is between the selection of test entities to use

when measuring informativeness and the extraction of higher-order structures

which give the same information. This split mirrors that between feature

selection and feature extraction in machine learning, which has recently seen

application in evolutionary multi-objective optimization. Brockhoff et al., for

example, treat the question of how to reduce the number of objectives in

multi-objective optimization problems both during and after optimization [15].

The work surveys techniques for dimensionality reduction and proposes two

methods, one of which relates to feature selection and the other to feature
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extraction.1

Chapter 3 gave two methods for identifying informative dimensions stati-

cally in interactive domains. Both methods are proven to maintain the Pareto

dominance relations among the candidate entities. Each therefore instantiates

the idea of an informative dimension with respect to Pareto dominance.

The first method, presented in section 3.2, treats individual test entities

as dimensions and provides a selection of a subset of these. The selection is

based on an ordering of test entities in terms of their informativeness about

the performance (instantiated as the Pareto dominance order) of the candidate

solutions. The set of maximal elements of the informativeness ordering, called

the ideal test set, is shown to give the same ranking among the candidate

entities as the entire set of possible tests; thus, in principle one only need use

the ideal test set, not the complete set of tests, to obtain correct ordering

information of candidate solutions. It is argued by example that the ideal test

set can be smaller than the full set of tests.2 It is worth pointing out that the

selection of the ideal test closely resembles the feature selection method used

by Brockhoff et al. in, for example, [15].3

The chapter argued further that the ideas of Pareto coevolution impact

1The latter is based on PCA, in fact, which maps the given dimensions of a data set into
a new coordinate system.

2There is reason to believe that interactive domains for which the only ideal test set is
the full set of tests are trivial. This will be the case if all entities lie in a large cycle, for
instance.

3Compare definition 3 in section 3.2 of that chapter with the definition of the ideal test
set given in definition 3.2.6; in particular, tests which are incomparable with respect to
informativeness are conflicting in Brockhoff’s sense, and vice versa.
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questions of cycling and intransitivity: when entities are compared using

Pareto dominance over tests, dominance cycles turn into sets of non-dominated

individuals. It is finally shown that for binary-valued tests, this construction

is idempotent. That is, repetition of the move from the original payoff matrix

to a matrix indicating which entities dominate which others does not provide

any new information not already available from Pareto dominance (and, by

extension, informativeness).

The second method defines a notion of axis for tests with binary outcomes.

An axis is a set of tests which is linearly ordered by a consistency relation

such that tests higher on an axis are more “difficult” in a precisely-defined

sense. A coordinate system is a collection of axes. It is proved that every

interactive domain with binary outcomes possesses coordinate systems which

span the original payoffs in the sense that whatever relation obtains between

two entities with respect to Pareto dominance also obtains when the pointwise

order induced by the coordinate system is used to compare them instead.

The section shows that a single axis can be thought of as a numerical-valued

objective, and a coordinate system can be thought of as a collection of such

objectives; the pointwise order, in this case, is Pareto covering with respect to

the numerical objectives.

An algorithm is given which finds a coordinate system for a set of candi-

date and test entities which runs in time polynomial in the number of entities.

A simple validation experiment is run on the populations of a simple coevolu-

tionary algorithm on two abstract test problems, suggesting that the extracted
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coordinate systems reveal some of the structure which these test problems are

known to possess.

Chapter 4 described two empirical studies of algorithms modified with

an informativeness mechanism, arguing that so-modified coevolutionary algo-

rithms can identify and represent informative dimensions in their populations

and that the resulting emergent geometric organization of the population helps

to alleviate pathological algorithm behavior.

Section 4.2 posited that overspecialization (or focusing) presents harder

challenges to coevolutionary algorithms than cycling does. Theoretically speak-

ing, once Pareto dominance is taken as a performance criterion instead of

single numerical fitness values, the intransitivities in a domain disappear (a

point which was also argued in chapter 3). One would expect therefore that

comparing using Pareto dominance rather than numerical fitness values would

mitigate cycling behavior.4 Unfortunately, such global information about the

entire interactive domain’s structure is not available to a running algorithm.

However, it is observed that the P-PHC algorithm, which explicitly incents test

entities to inform, organizes test entities around dimensions in the problem do-

main. The result is that candidate solutions are tested on all these dimensions

and regress is prevented on all. A second, more conventional coevolutionary

algorithm, P-CHC, has a tendency to neglect one or more of these dimensions,

resulting in overspecialization. The notion of emergent geometric organization

4Further support for this expectation can be found in [38], which shows that the Pareto
optimal set is a monotonic solution concept and hence is not vulnerable to the kind of cycling
that work identifies in non-monotonic solution concepts.
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is most clearly present in figure 4.5, which shows test entities clustered along

two dimensions of the example problem. The geometric organization of the

test entities in some sense “corrals” the candidate solutions such that regress

and overspecialization are prevented.

Section 4.3 established that changing a cooperative coevolutionary algo-

rithm to use a Pareto dominance comparison of parts impacts the relative

overgeneralization phenomenon and promotes the discovery of global optima.

Though thus far we have been arguing for the importance of emergent ge-

ometric organization arising from the use of an informativeness mechanism,

the pCCEA algorithm presented in section 4.3 does not implement such a

mechanism. Rather, it is argued that such a mechanism is not necessary: the

Pareto comparison of entities closely matches comparison by informativeness

such that the pool of candidate entities should also make informative tests.

In fact, empirical results verify that the pCCEA algorithm reliably finds the

global optimum of two test problems which were designed to make relative

overgeneralization extremely likely.

To sum up, this dissertation argued for the existence of informative di-

mensions in certain classes of interactive domains and gave two theoretically-

grounded methods for identifying them. There is now good reason to believe

that knowledge of informative dimensions aids the evolutionary process by mit-

igating cycling, overspecialization, and relative overgeneralization pathologies.

However, since a running algorithm does not have the global view afforded

by the theoretically present but a priori unknown informative dimensions, the
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question remains whether some heuristic method may approximate the ex-

pected benefits of informative dimensions. To this end, several empirical stud-

ies using algorithms augmented with an informativeness mechanism suggested

that a geometric organization of test entities emerges during evolution. This

emergent geometric organization gives a local approximation of the informa-

tive dimensions and thus confers some of their benefits. Experiments showed

that on test problems which have been designed to induce known algorithm

pathologies, the introduction of an informativeness mechanism (or, in the case

of pCCEA, its proxy in Pareto dominance) and the use of Pareto dominance

to compare candidate entities, improves the dynamic behavior of algorithms

and the quality of candidate solutions found.

Where does the arms race conception stand, then? Though one might

maintain the arms race as a guiding principle for coevolutionary algorithm de-

sign by simply changing the terms of the race5, this work suggests a different

vision of what coevolutionary algorithms should be doing. Rather than aiming

to induce and sustain arms races, an algorithm should aim to simultaneously

discover and navigate the geometrical structure found in interactive domains.

Though it is hardly the last word on the subject, and is clearly preliminary

and incomplete, the present work makes plausible the conception of a coevo-

lutionary algorithm as unfolding an information space and ascending through

it.

5Instead of racing on numerical fitness values, entities race on Pareto dominance and
informativeness.
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The remainder of this chapter will tie up loose ends, compare with recent,

related work, and point to additional algorithm pathologies which may result

from adopting the point of view argued here.

Regarding loose ends, chapter 3 treated informative dimensions from both a

dimension selection and a dimension extraction standpoint. However, chapter

4 only considered dynamic dimension selection, neglecting dynamic dimension

extraction. Section 5.1 treats that possibility.

Informative dimensions were proved to exist theoretically in chapter 3, and

an approximate algorithm for extracting dimensions was given in section 3.3.

The notion of informative dimensions was tested on abstract test problems, but

not on “real” problem domains. Thus the question remains whether the idea

will be useful in harder problems. There is the further question of whether an

exact algorithm could be designed which extracts a minimal-sized coordinate

system from an interactive domain. Section 5.2 discusses the development of

an exact extraction algorithm and an application of it to the game of Nim.

As for comparisons with recent work, section 5.3 cites efforts to introduce

an informativeness mechanism into a more conventional CCEA than the pC-

CEA algorithm, section 5.4 surveys the Estimation-Exploration Algorithm,

and section 5.5 considers solution concepts.

Finally, we end by considering new algorithm pathologies which may arise

in Pareto coevolutionary and related algorithms. Though overspecialization,

cycling, and relative overgeneralization pathologies may be effectively treated

with the ideas presented here, it is only reasonable to suspect that new issues
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will arise. Section 5.6 discusses four possibilities which have been observed or

predicted.

5.1 Dynamic Dimension Extraction

Chapter 4 left open the question of whether a dimension extraction technique

can be embedded in a running algorithm in a way which will mitigate patholo-

gies and thus improve performance. While dimension selection was considered

in both a Pareto coevolutionary algorithm (in section 4.2) and a cooperative

coevolutionary algorithm (in section 4.3), the topic of dimension extraction

was not treated.

Joint work with Dr. Edwin de Jong fills this gap by embedding a variant

of the dimension extraction algorithm of section 3.3 into a coevolutionary al-

gorithm [29]. The Dimension Extracting Coevolutionary Algorithm (DECA)

extracts dimensions from the test population and the information gleaned is

then used to guide evaluation and selection. Experimental results are reported

for numbers games and a game called Tartarus (see, for example, [4]). Com-

parisons with IPCA [30], LAPCA [31], and MaxSolve [32] indicate that DECA

performs comparably well to these three algorithms on the tested problems.

The results suggest that coordinate systems extracted from the populations

of running algorithms, when used to guide evaluation and selection, can have

much the same effect as archives.

Work on DECA has thus far not analyzed the extracted coordinate sys-



CHAPTER 5. CONCLUSIONS, CRITIQUES AND COROLLARIES 142

tems. It would be worth examining what these look like and whether they

compare well with the dimensions of test problems when these are known in

advance. Comparing the extracted coordinate systems through time would

also be enlightening: does the algorithm successively find and keep tests along

each informative dimension of a domain? Are dimensions lost during evolu-

tion? When new dimensions are elucidated, can the algorithm detect this fact

and keep them? While positive answers to all these questions are expected,

experiments should examine them more closely.

5.2 Extracted Dimensions Are Not Trivial

Section 3.3 left two questions open. Firstly, the fact that minimal-sized coor-

dinate systems exist as theoretical objects does not guarantee that they can

be found by an algorithm. Secondly, even if such coordinate systems could be

found, there is no reason to think that they are meaningful. With these ques-

tions left unaddressed, it may be that coordinate systems are mathematical

curiosities with limited bearing on practical problems.

Joint work with Dr. Edwin de Jong has attended to both these questions

[33]. We will survey that work now.

An algorithm is given which provably extracts a minimal-sized coordinate

system for any finite, binary outcome interactive domain. While a worst-case

runtime complexity analysis is not given, it seems clear that the algorithm runs

in time at least exponential in the number of candidates and tests, making
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it considerably less efficient than the algorithm in section 3.3. Further, the

type of coordinate system differs slightly from the one defined in that section.

Rather than using linearly-ordered sets of tests as axes, axes in that work

are sets of candidate solutions called solution failure sets. Each test entity

corresponds to a set of candidate solutions which fail it, so has an associated

solution failure set, but the algorithm permits “phantom” solution failure sets

not corresponding to any test entity which may make the coordinate system

smaller.

In spite of its computational complexity, the exact extraction algorithm is

applied to several small instances of the game of Nim. The instances are small

enough that the entire set of first-player strategies, the candidate solutions, can

be easily enumerated. Likewise, the set of second-player strategies, the tests,

can also be enumerated. In all instances reported the extracted coordinate

systems share several properties:

• They do not require “phantom” tests. Each solution failure set on each

axis directly corresponds to a test, in other words to a second-player

strategy; thus, in spite of the more complicated notion of coordinate

system, the ones actually extracted are of the same type as those defined

in section 3.3;

• The number of axes extracted is significantly smaller than the number

of tests;

• Within a given axis, all the test strategies play precisely the same moves
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in all board configurations except one. In the single board configuration

where play varies among the tests, tests near the low end of the axis

play poor moves, while tests toward the high end of the axis play better

moves. The test at the highest end of the axis plays the optimal move

for that board configuration.

We can draw several conclusions from these observations. First, minimal-

sized coordinate systems can be extracted by an algorithm. Second, the ex-

tracted dimensions are not trivial: the number of axes is significantly smaller

than the full set of tests. The third, somewhat remarkable conclusion is that

extracted dimensions have an intuitive meaning in terms of capability at the

game. The dimension extraction algorithm is blind to features of the interac-

tive domain, meaning there is no reason to suspect that axes should have any

meaning to humans. However, the extraction of dimensions from instances of

Nim has thus far consistently produced axes which test how well candidate

solutions move in a single board configuration. It is not the case that each

board configuration has an associated axis, either; there are fewer axes than

board configurations as well.

An open question is whether the board configurations which actually do

correspond to axes have some special property which we could identify without

having to first extract dimensions. If that were the case, we could directly con-

struct axes: for a given board configuration, we could populate its associated

axis with players which play the same moves in all other configurations, but

vary on how they play in that one configuration. Or, we could directly test a
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candidate solution’s ability without even constructing a coordinate system or

playing it against tests. We could simply check how it plays on those special

board configurations corresponding to axes.

5.3 Informative Actions in CCEA

Recent work on cooperative coevolutionary algorithms has followed up on the

results presented in section 4.3, adding an informativeness mechanism to a

conventional CCEA. An archive based CCEA, iCCEA, aims to find a minimal

set of parts which, when used as tests of collaborators, give the same ranking

information that comparing against all possible parts [77]. The pCCEA al-

gorithm in section 4.3 has precisely the same aim, though does not explicitly

seek a minimal-sized set of tests. iCCEA also differs from pCCEA in that

it pressures parts to not only inform well in the previous sense, but also to

inform well as tests. In other words, iCCEA has an explicit informativeness

and performance pressure on parts in each population. Section 4.3 argued

that such an informativeness mechanism was not necessary in the MTQ prob-

lems considered. The experimental results in [77] suggest otherwise, as the

iCCEA algorithm tends to outperform the pCCEA algorithm. On the other

hand, when discussing their results, the authors also note that pCCEA tends

to stall, as the Pareto front in several of the test domains is infinite. The pop-

ulation resources available for storing the Pareto front are quickly exhausted

and the pCCEA algorithm makes no further progress. The pressure to main-
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tain a minimal set of informative test collaborators, rather than the entire

Pareto front, allows iCCEA to avoid this issue. In section 5.6.1 we will discuss

the issue of an overlarge Pareto front as a new, troubling pathology arising

in Pareto coevolutionary methods. For the time being, it is clear more work

needs to be done to understand precisely why iCCEA outperforms pCCEA.6

Was iCCEA’s informativeness mechanism really necessary? Could some other

mechanism for culling the Pareto front be added to pCCEA to permit it to

explore better, and if so would it achieve the performance levels of iCCEA?

In other work, the same authors explore similar questions from the per-

spective of multi-agent learning [76]. In this work, the entities in a population

are conceived as possible actions an agent may take. Each population corre-

sponds to a different agent which is selecting its action from the ones available

in its population.

Here, again, an informativeness mechanism is added to a conventional

CCEA to derive a new algorithm, oCCEA, based on the intuition that

Agents should not necessarily explore only their most promising

actions, but also those actions that provide the other agents with

accurate projections of the joint search space [76]

In other words, agents should focus not just on performing well, but also in-

6The performance improvements of iCCEA over pCCEA are not particularly marked in
many cases. On the MTQ functions for which pCCEA was designed, for instance, iCCEA
finds solutions which are better than what pCCEA finds only in the second decimal place.
The optimal values are 150 for these functions, meaning the improvement was on the order
of 0.01%.
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forming, which in this instance means providing agents in the other population

useful information for selecting their own actions. Once again, the question

remains whether the pCCEA algorithm could be modified with a mechanism

for keeping a smaller Pareto front such that it performs as well as oCCEA in

the experiments presented.

5.4 Estimation-Exploration Algorithm

The Estimation-Exploration Algorithm (EEA), first presented in [14], devel-

ops models of an unknown (black box) system using “intelligent tests;” the

algorithm is applied to grammar induction, gene network inference, evolu-

tionary robotics, and automated recovery problems. EEA is a coevolutionary

algorithm which maintains two populations. One, the estimation population,

contains a set of models of the black box system under scrutiny. The other,

the exploration population, contains the intelligent tests, namely inputs to the

system which are intended to expose discrepancies among the present popu-

lation of models. If we think of the models as candidate solutions, then the

EEA algorithm relates closely to ideas presented in this dissertation. Mod-

els, as candidate solutions, are incented to perform, or in this instance match

the black box system as well as possible. Tests, by contrast, are intended to

inform.

More precisely, tests are selected on the basis of two criteria:

1. How well they expose disagreements among the models; and
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2. How well they show the correctness of the models, in terms of agreement

among the models on that test or between the best model’s output on

that test and the real system’s output.

The first criterion is much like informativeness, or more accurately a notion

of distinctions like that found in [42]. The incentive for a test to show how cor-

rect a model is is a kind of cooperative performance criterion not unlike that

used in cooperative coevolutionary algorithms. At this level of abstraction,

the mechanism is not unlike that used in Panait and Luke’s oCCEA algorithm

surveyed above. Just as in oCCEA, where agents choose both promising ac-

tions as well as actions which provide other agents accurate information, here

promising tests (those which show the correctness of models) as well as ones

which give accurate information (those which show disagreements among mod-

els) are both sought.

The “managed challenge” described in [13] introduces a test archive called

a test bank to EEA which is meant to alleviate disengagement. The archive

maintains tests which are too difficult for the current population of models, in

the sense that the best models have a high error rate compared to the target

system when exposed to that test input. The population of test entities (the

test suite), by contrast, contains easier, but still informative, tests. Pareto co-

evolutionary methods have thus far not addressed problems of disengagement;

perhaps an appropriate analog of managed challenge would help.

It should be mentioned that the “best” models are chosen according to

a subjective error measure which is ultimately a single, numerical value. As
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yet, no work has been done to examine whether cycling or other pathologies

may result. If the critique of arms races in chapter 1 is to be believed, we

should expect some kind of pathological behavior from EEA as a result of the

reliance on single numbers as performance criteria. Further investigation of

this possibility is warranted.

5.5 Solution Concepts

As originally defined in [38], a solution concept is a binary predicate on the col-

lection of candidate solutions buildable from any population. It specifies which

of the available candidate solutions is to be regarded as an actual solution at

that point in evolutionary time.

As a simple example from evolutionary algorithms, consider an objective

function f : G → � from some set of genotypes G to the real numbers. If

Gt ⊂ G is considered to be the population at time t, we might take the set

∂Gt = arg max
g∈Gt

f(g) (5.1)

as the subset of Gt which we regard as (provisional) solutions at this point

in evolutionary time. The boundary operator ∂X denotes “set of solutions in

context X.” Equation 5.1 is the mathematical expression of a common solu-

tion concept, the “best of population” or “maximum fitness” concept. Notice

that an optimization problem is ill-defined without some solution concept;

stating “solve f : G → � ” has no meaning until we know we are to find the
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maxima, and more specifically know that we seek, in this case, all of ∂G. The

fundamental hope behind local search in general and evolutionary algorithms

in particular is that knowledge of local solutions ∂Gt can direct an algorithm

towards the global solutions in ∂G.

Ficici’s notion of solution concept is a generalization of this idea to coevo-

lutionary algorithms. The interactive nature of the problem domains explored

by coevolutionary algorithms adds a level of complication to the definition

of solution which is not often encountered in more conventional optimization

problems. Furthermore, the fact that in recent years algorithms have used the

population contents as raw material for building candidate solutions, rather

than as containers of solutions, adds an additional layer of complication.7 So-

lution concepts take account of these complications.

[38] proves that the Pareto optimal set or non-dominated front is a mono-

tonic solution concept under certain conditions. Monotonic solution concepts

are preferred because they avoid a kind of cycling behavior which can arise

with non-monotonic ones. Thus, the use of Pareto dominance here and the

suggestion that the non-dominated front be used as a solution concept is theo-

retically justified not only because it provides an apples vs. apples comparison

mechanism and permits the discovery of informative tests, but also because it

is monotonic.

Future work should detail the precise connections between ideas of testing

7For instance, building a mixture of entities, or extracting the non-dominated set of
entities, from the final population means that the solution (mixture or set) was never itself
an object of search, but rather is built from the objects of search.
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and measurement and solution concepts. See [20] for a discussion of solution

concepts from the perspective of order theory which might facilitate the making

of such connections.

While Ficici discusses the monotonicity of the Pareto non-dominated front

as a solution concept in [38], the question of whether the front plus an ideal test

set is monotonic is open. So is the question of whether the Pareto front plus

some coordinate system of tests. Future work should address these questions

as well.

5.6 Pathologies Revisited

If it is really the case that the techniques outlined in this dissertation provide

effective remedies to pathological cycling, overspecialization, and relative over-

generalization behaviors, what remains to be done? Surely no algorithm can

be well-behaved in all possible applications [108], coevolutionary free lunches

notwithstanding [109]. Indeed, several new pathological behaviors have been

identified in approaches like Pareto coevolution. We will survey three here.

5.6.1 Resource Consumption

Multi-objective optimization literature takes for granted that multi-objective

problems have a small number of objectives. The wisdom is that the Pareto

front grows intractably large as the number of objectives grows. Brockhoff et

al., for example, discuss the question of how to reduce the number of objectives
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when there are too many to handle effectively [15].

Since Pareto coevolutionary algorithms hinge on the use of Pareto domi-

nance to compare candidate solutions, and since the number of tests may be

large (depending on population size), similar issues manifest. This dissertation

suggests methods, like the ideal test set or coordinate systems, for reducing

the number of tests or emergent objectives needed for comparing candidates.

Still, it is not clear that either of these methods will maintain a small and man-

ageable Pareto front on harder problems than the test problems to which they

have been applied to date. Noble and Watson comment on this issue in [71], for

instance, and give a mechanism for keeping the Pareto front reasonably-sized.

The benefits and risks of their mechanism are not clear, however, and several

questions remain. Is their mechanism monotonic in Ficici’s sense? If not, what

other mechanisms for pruning the Pareto front may be available? Are there

principled methods based on the order-theoretic background presented here?

Similar questions apply to the archive mechanism in [77] discussed in sec-

tion 5.3. Is the archive mechanism in iCCEA monotonic? Could pCCEA be

modified with a method for culling the Pareto front such that it avoids the

stalling issue (to be discussed in the next section) which seems to be respon-

sible for its lower performance when compared to iCCEA?

5.6.2 Disengagement and Stalling

Loosely speaking, disengagement has occurred when the evaluation informa-

tion produced by test entities no longer gives any ability to compare candidate
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entities. A simple illustration would be a math test which all students in a

class fail. A teacher is left with no information about which students know the

material better and which know it worse on the basis of such a test. Stalling

can occur as a consequence of disengagement when an algorithm uses a strict

replacement policy. If the algorithm is no longer able to distinguish between

a candidate and its variants, and the only way for variants to replace their

parents is to perform strictly better, then the population will stop changing

and the algorithm has stalled.

Informativeness, which produces a pressure to expose distinctions among

candidate entities, might be expected to help prevent disengagement. How-

ever, while informative tests are known to distinguish among the present popu-

lation of candidates, that is no guarantee that such tests can distinguish those

candidates from variants being considered for the next generation.

Viswanathan and Pollack explore this question from the perspective of

learnability [102]. A test is learnable by a candidate if one of its variants re-

ceives a different outcome on the test than the original candidate does.8 A

complete learnable test set is then such that for any distinction which does

exist between a candidate and any one of its variants, the test set contains

a test which shows that distinction. The authors give an idealized, hillclimb-

ing style algorithm which is able to find a complete learnable test set for any

candidate at each time step. One might expect classic shortcomings of hill-

8Note that, from the perspective of testing, that test shows a distinction between, or is
informative about, the candidate and its variant.
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climbers, particularly local optima, to plague even this idealized algorithm: if

a candidate is found which has an empty complete learnable test set, then the

algorithm has stalled. Yet this effect is a function of the representation, as

the comparison is being made between a candidate and one of its variants. A

different representation of the same problem might allow this same algorithm

to steadily progress. At this time it is unclear what makes a representation

suitable for a problem, though Viswanathan and Pollack’s efforts give one

theoretical suggestion for distinguishing good representations from poor ones,

though as yet no experimental verification has been conducted.

Besides an inability to distinguish candidates from their variants, another

source of disengagement and stalling which is peculiar to Pareto coevolutionary

algorithms results from the Pareto front growing too large. If the population

attempts to maintain the entire Pareto front of candidates over the current

test entities, and if that front grows to consume the entire population space,

then a kind of stalling has occurred. We commented on this issue of the size

of the Pareto front in section 5.6.1. As stated there, at this time it is not clear

how to approach this kind of disengagement in a principled way. Managed

challenge may help if the reason that variants of candidates are not replacing

their parents is an inability to distinguish; having a test bank of difficult tests

may allow such a distinction to be detected. Then again it may not; an

empirical study would help clarify the situation.
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5.6.3 The Later is Better Effect

The Later is Better Effect refers to a theoretically possible though as yet un-

verified bloating pathology in coevolutionary algorithms which strictly utilize

a monotonic solution concept [20]. Under certain conditions, it can happen

that an algorithm prefers candidate solutions which appear later in evolution-

ary time regardless of whether they show any performance improvements over

the candidates which came before. This preference for candidates which ap-

pear later can lead to a kind of bloat, as such candidates will tend to have

larger support sets.9 It is possible such effects may have already arisen in the

application of the Nash memory [43] and LAPCA [68] algorithms, though the

connection has not yet been verified.

9If they are mixtures of pure strategies, for instance, or sets of entities as in the Pareto
front.
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