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Abstract. Problem difficulty estimates play important roles in a wide variety of
educational systems, including determining the sequence of problems presented to
students and the interpretation of the resulting responses. The accuracy of these
metrics are therefore important, as they can determine the relevance of an educa-
tional experience. For systems that record large quantities of raw data, these obser-
vations can be used to test the predictive accuracy of an existing difficulty metric.
In this paper, we examine how well one rigorously developed – but potentially out-
dated – difficulty scale for American-English spelling fits the data collected from
seventeen thousand students using our SpellBEE peer-tutoring system. We then at-
tempt to construct alternate metrics that use collected data to achieve a better fit.
The domain-independent techniques presented here are applicable when the ma-
trix of available student-response data is sparsely populated or non-randomly sam-
pled. We find that while the original metric fits the data relatively well, the data-
driven metrics provide approximately 10% improvement in predictive accuracy.
Using these techniques, a difficulty metric can be periodically or continuously re-
calibrated to ensure the relevance of the educational experience for the student.

1. Introduction

Estimates of student proficiency and problem difficulty play central roles in Item Re-
sponse Theory (IRT) [11]. Several current educational systems make use of this theory,
including our own BEEweb peer-tutoring activities [2,8,9,13]. IRT-based analysis often
focuses on estimating student proficiency in the task domain, but the challenge of esti-
mating problem difficulty should not be overlooked. While student proficiency estimates
can inform assessment, problem difficulty estimates can be used to refine instruction:
these metrics can affect the selection and ordering of problems posed and can influ-
ence the interpretation of the resulting responses [6]. It is therefore important to choose
a good difficulty metric initially and to periodically evaluate the accuracy of a chosen
metric with respect to available student data. In this paper, we examine how accurately
one rigorously developed – but potentially outdated – difficulty scale for the domain of
American-English spelling predicts the data collected from students using our SpellBEE
system [1]. The defining challenge in providing this assessment lies in the nature of the
data. As SpellBEE is a peer-tutoring system, the challenges posed to students are deter-
mined by other students, resulting in data that is neither random nor complete. In this
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work, we rely on a pairwise comparison technique designed to be robust to data with
these characteristics. After assessing the relevance of this existing metric (in terms of
predictive accuracy), we will examine some related techniques for initially constructing
a difficulty metric based on non-random, incomplete samples of observed student data.

2. American-English spelling: A sample task domain

The educational system examined here, SpellBEE, was designed to address the task do-
main of American-English spelling [1]. SpellBEE is the oldest of a growing suite of
web-based reciprocal tutoring systems using the Teacher’s Dilemma as a motivational
mechanism [2]. For the purposes of this paper, however, the mechanisms for motivation
and interaction can be ignored, and the SpellBEE system and the difficulty metric used
by it can be specifically re-characterized for an educational data mining audience.

2.1. Relevant characteristics of the SpellBEE system

Students access SpellBEE online at SpellBEE.org from their homes or schools. As of
May 2007, over 17,000 students have actively participated. After creating a user account,
a student is able to log in, choose a partner, and begin the activity.2 During the activity,
students take turns posing and solving spelling problems. When posing a problem, the
student selects from a short list of words randomly drawn from the database of word-
challenges. This database is comprised of 3,129 words drawn from Greene’s New Iowa
Spelling Scale (NISS), which will be discussed in the next section [12].3 When respond-
ing to a problem, the student types in what they believe to be the correct spelling of the
challenge word. The accuracy of the response is assessed to be either correct or incorrect.
Figure 1 presents a list of the relevant data stored in the SpellBEE server logs.

To date, we have observed over 64,000 unique (case-insensitive) responses to the
challenges posed,4 distributed across over 22,000 completed games consisting of seven
questions attempted per student. Student participation, measured in games completed,
has not been uniform, however. Of the challenges in the space, most students have only
attempted a very small fraction. In fact, when examining the response matrix of every
student by every challenge, less than 1% of the matrix data is known. An important
characteristic of the SpellBEE data, then, is that the response matrix is remarkably sparse.
Given that the students acting as tutors are able to – and systemically motivated to –
express their preferences and hunches through the problems that they select, another
important characteristic of the SpellBEE data is that the data present in the student-
challenge response matrix is also biased. The effects of this bias can be found in the
following example: 16% of student attempts to spell the word “file” were correct, while
66% of attempts to spell the word “official” were correct. The average grade level among
the first set of students was 3.9, while for the second set it was 6.4. In Section 3.2 we

2In the newer BEEweb activities, if no one else is present, a student can practice alone on problems randomly
drawn from the database of challenges posed in the past.

3In SpellBEE, the word-challenges are presented in the context of a sentence, and so of the words in Greene’s
list, we only use those found in the seven public-domain books that we parsed for sentences.

4Of these, 17,391 were observed more than once. In this paper, we restrict the set of responses that we
consider to this subset. See Footnote 7 for the rationale behind this.



Figure 1. The SpellBEE server logs data about each turn taken by each student, as shown in the first list. The
data in the first list is sufficient to generate the data included in the second list.

1. time : a time-stamp allows responses to be ordered
2. game : identifies the game in which this turn occurred
3. tutor : identifies the student acting as the tutor in this turn
4. tutee : identifies the student acting as the tutee in this turn
5. challenge : identifies the challenge posed by the tutor
6. response : identifies the response offered by the tutee

1. difficulty : the difficulty rating of the challenge posed by the tutor
2. accuracy : the accuracy rating of the response offered by the tutee

will present techniques designed to draw more meaningful difficulty information from
this type of data.

2.2. Origin, use, and application of the problem difficulty metric

When trying to define a measure of problem difficulty for the well-studied domain of
American-English spelling, we were able to benefit from earlier research in the field.
Greene’s “New Iowa Spelling Scale” provides a rich source of data on word spelling dif-
ficulty, drawn from a vast study published in 1954. Greene first developed a methodol-
ogy for selecting words for his list (5,507 were eventually used.) Approximately 230,000
students from 8,800 classrooms (grades 2 through 8) around the United States partici-
pated in the study, totally over 23 million spelling responses [12]. From these, Greene
calculated the percentage of correct responses for each word for each grade. This table
of success rates is used in SpellBEE to calculate the difficulty of each spelling problem
for students, whose grade level is known.

3. Techniques for assessing relative challenge difficulty

The research questions addressed in this paper focus on the fit of the difficulty model
based on the NISS data to the observed SpellBEE student data. Two different techniques
are involved in the calculating this fit. The first converts the graded NISS data to a linear
scale. The second identifies from the observed student data a difficulty ordering over
pairs of problems, in a manner appropriate for a sparse and biased data matrix. Both will
be employed to address the research questions in the following sections.

3.1. Linearly ordering challenges using the difficulty metric

Many subsequent studies have explored various aspects of Greene’s study and the data
that it produced. Cahen, Craun, and Johnson [5] and, later, Wilson and Bock [14] explore
the degree to which various combinations of domain-specific predictors could account
for Greene’s data. Initially starting with 20 predictors, Wilson and Bock work down
to a regression model with an adjusted R2 value of 0.854.5 Here, we not interested in

5The most influential of which being the length of the word.



Figure 2. Difficulty data for two words from the NISS study are plotted, and the I50 statistics are calculated.
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predicting the NISS results, but instead are interested in assessing the fit (or predictive
power) of the 1954 NISS results to observations made of students using SpellBEE over
50 years later. We will drawn upon one statistic used by Wilson and Bock: the one-
dimensional flattening of the seven-graded NISS data. This statistic, which they refer to
as the “location” of the word, is the (fractional) grade level at which 50% of the NISS
students correctly spell word w.6 We denote this as I50(w). Figure 2 illustrates how the
graded difficulty data that is used to derive this statistic for two different words. The
value of this statistic is that it provides a single grade-independent difficulty value for a
word that can be compared directly to that of other words.

3.2. Identifying pairwise difficulty orderings using observed student data

Given the characteristics of the data collected from the SpellBEE system, identifying the
more difficult of a pair of problems based on this data is not trivial. The percentage of
correct responses to a challenge, the calculation used to generate the NISS data, is not
appropriate here, as the assignment of challenges to students was done in a biased, non-
random manner (recall the “file”/“official” example from Section 2.1.) Tutors, in fact,
are motivated to base their challenge selection on the response accuracies that they an-
ticipate. A more appropriate measure, rooted in several different literatures, is to assess
pairwise problem difficulties on distinctions indirectly indicated by the students. In the
statistics literature, McNemar’s test provides a statistic based on this concept [10], in the
IRT literature, this is used as a data reduction strategy for Rasch model parameter esti-
mation [7], and the Machine Learning literature includes various approaches to learning

6Wilson and Bock calculate the 50% threshold based on a logistic model fit to the discrete grade-level data,
while we calculate the threshold slightly differently, based on a linear interpolation of the grade-level data.



Table 1. While the I50 metric flattens the grade-specific NISS data to a single dimension, the relative difficulty
ordering of most word-pairs based on the graded NISS data is the same as when based on the I50 scale. In
this table, we quantify the amount of agreement between I50 and each set of grade-specific NISS data using
Spearman’s rank correlation coefficient. The strong correlations observed suggest that the unidimensional scale
sufficiently captures the relative difficulty information from the original NISS dataset. (The number of words,
N, varies by grade, as the NISS study did not show several of the harder words to the younger students.)

Grade N Spearman’s ρ

2 2218 0.751
3 3059 0.933
4 3126 0.977
5 3129 0.974
6 3129 0.960
7 3129 0.935
8 3129 0.915

rankings based on pairwise preferences [4]. Assume that for some specific pair of prob-
lems, such as the spelling of the words “about” and “acknowledge”, we first identify all
students in the SpellBEE database who have attempted both words. Given that response
accuracy is dichotomous, there are only four possible configurations of a student’s re-
sponse accuracy to the pair of challenges. In the cases where the student responds to both
correctly or incorrectly, no distinction is made between the pair. But in the cases where
the student correctly responds to one but incorrectly to the other, we classify this as a
distinction indicating a difficulty ordering between the two problems.7

It is also worth stating that in this study, we assume a “static student” model, so we
are not concerned with the order of these two responses. At the cost of some data loss,
one could instead assume a “learning student” model, for which only a correct response
on one problem followed by an incorrect response on the other would define a distinction.
Had the incorrect response been observed first, we could not rule out the possibility that
the difference was due to a change in the student’s abilities over time, and not necessarily
an indication of difference in problem difficulties.8

An example may clarify. If counting the number of both directional distinctions
made by all students (e.g. 12 students in SpellBEE spelled “about” correctly and “ac-
knowledge” incorrectly, while 2 students spelled “about” incorrectly and “acknowledge”
correctly), we have a strong indication of relative problem difficulty. McNemar’s test as-
signs a significance to this pair of distinction counts. In this work, we more closely fol-
low the IRT approach, relying only the relative size of the two counts (and not the signifi-
cance.) Thus, since 12 distinctions were found in one direction and only 2 in the other, we
say that we observed the word “about” to be easier than the word “acknowledge” based
on collected SpellBEE student data. If distinctions were available for every problem pair,

7We recognize that some distinctions are spurious, for which the incorrect response was not reflective of
the student’s abilities. Here we take a simplistic approach of identifying and ignoring non-responses (in which
the student typed nothing) and globally-unique responses (which no other student ever responded, to any chal-
lenge.) Globally-unique responses encompass responses from students who don’t yet understand the activity,
responses from students who did not hear the audio recording, responses from student attempting to use the
response field as a chat interface, and responses from students making no effort to engage in the activity.

8Another possible model is a “dynamic student” model, for which student abilities may get better or worse
over time. Under this model, no distinctions can be definitively attributed to difference in problem difficulty.



a total of 3,129 × 3,128 = 9,787,512 pairwise problem orderings could be expressed. In
our collected data so far, we have 3,349,602 of these problem pairs for which we have
distinctions recorded. In the subsequent sections, we measure the fitness of a predictive
model (like I50) based on how many of these pairwise orderings are satisfied.9

4. Assessing the fit of the NISS-based I50 model to the SpellBEE student data

Given the NISS-based I50 difficulty model of problem difficulty and the data-driven tech-
nique for turning observed distinctions recorded in the SpellBEE database into pairwise
difficulty orderings, we can now explore various methods to assess the applicability of
the model to the data.

4.1. Assessing fit with a regression model

The first method is to construct a regression model that uses I50 to predict observed diffi-
culty. Since observed difficulty is currently available only in pairwise form, this requires
an additional step in which we flatten these pairwise orderings into one total ordering
over all problems. As this is a highly non-trivial step, the results should be interpreted
tentatively. Here, we accomplish a flattening by calculating, for each challenge, the per-
centage of available pairwise orderings for which the given challenge was the more diffi-
cult of the pair. So if 100 pairwise orderings involve the challenge word “acknowledge”,
and 72 of these found “acknowledge” to be the harder of the pair, we would mark “ac-
knowledge” as harder than 72% of other words. A regression model was then built on
this, using I50 as a predictor of the pairwise-derived percentage. The model, after filtering
out data points causing ceiling and floor effects (i.e. I50(w) = 2.0 or I50(w) = 8.0), had
an adjusted R2 value of 0.337 (p < 0.001 for the model). The corresponding scatterplot
is shown in Figure 3.10 The relatively low adjusted R2 value is likely at least partially a
result of the flattening step (rather than solely due to poor fit.) Had we flattened the data
differently, this value would clearly change. In order to obtain a more reliable measure
of model fitness, we seek to avoid any unnecessary processing of the mined data.

4.2. Assessing fit with as the percentage of agreements on pairwise difficulties

The second method that we explore provides a more direct comparison, without any fur-
ther flattening of the student data. Here, we simply calculate the percentage of observed
pairwise difficulty orderings (across all challenges) for which the I50 model correctly
predicts the observed pairwise difficulty ordering. When we do this across all of the
3,349,602 difficulty orderings that we have constructed from the student data, we find
that the I50 model correctly predicts 2,534,228 of these pairwise orderings, providing a
75.66% agreement with known pairwise orderings from the mined data. Remarkably, we
found that the predictive accuracy of the I50 model did not significantly change as the

9Note that it is not be possible to achieve a 100% fit, as some cycles exist among these pairwise orderings.
10The outliers in this plot mark the problems that are ranked most differently by the two measures. The word

“arithmetic”, for example, was found to be difficult by SpellBEE students, but was not found to be particularly
difficult for the students in the NISS study. Variations like this one may reflect changes in the teaching or in the
frequency of usage since the NISS study was performed 50 years ago.



Figure 3. Words are plotted by their difficulty on the I50 scale and by the percentage of other words for which
the observed pairwise orderings found the word to be the harder of the pair. An adjusted R2 value of 0.490 was
calculated for this model. (When ignoring the words affected by a ceiling or floor effect in either variable, the
adjusted R2 value drops to 0.377.)
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quantity of student data used for the distinction varied. 75.1% of predictions based on one
distinction were accurate, while 74.7% of predictions based on 25 distinctions were ac-
curate (intermediate values ranged from 71.0% to 77.6%). This flat relationship suggests
that pairwise difficulty orderings constructed from a minimal amount of observed data
may be just as accurate, in the aggregate, as those orderings constructed when additional
data is available.

5. Incorporating SpellBEE student data in a revised difficulty model

We now know that there is a 75.66% agreement in pairwise difficulty orderings between
the I50 difficulty metric derived from the NISS data and the observed pairwise prefer-
ences mined from the SpellBEE database. Can we improve upon this? We will present
an approach that iteratively updates the I50 problem difficulty estimates using the mined
data and a logistic regression model. Rather than producing a single predictive model, we
construct one logistic model for each challenge, and use these fitted model to update our
estimates of the problem difficulty. Applied iteratively, we hope to converge on problem
difficulty metric that better fits the observed data. This process is inspired by the param-
eter estimation procedures for Rasch models [11], which may not be directly applicable
due to the large size of our problem space.

For a given challenge c1 (e.g. “acknowledge”), we can first generate the list of all
other challenges for which SpellBEE students have expressed distinctions (in either di-
rection.) In Section 3.2, we chose to censor these distinctions in order to generate a bi-



Figure 4. A logistic regression model is used to estimate the difficulty of the word “abandon.” At left, the first
estimate is based on the original I50 difficulty values. At right, the third iteration of the estimate is constructed
based on data from the previous best estimate. The point estimate dropped from 8.0 (from I50) to 7.06 (from
iteration 1) to 6.81 (from iteration 3.)
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nary value representing the difficulty ordering. Here we will make use of the actual dis-
tinction counts in each direction. For each challenge with which pairwise distinctions for
c1 are available, we note our current-best estimate of the difficulty of c2 (initially, using
I50 values), and note the number of distinctions indicating that c1 is the more difficult
challenge. We can then regress the grouped distinction data on the problem difficulty es-
timate data to construct a logistic model relating the two. For some c1, if the relationship
is statistically significant, we can use it to generate a revised estimate for the difficulty of
that challenge. By solving the regression equation for the c2 problem difficulty value for
which 50% of distinctions find c1 harder, we can calculate the difficulty of a problem for
which relative-difficulty distinctions are equally likely in either direction. This provides
a revised estimate for the difficulty of the original problem, c1. We use this procedure to
calculate revised estimates for every challenge in the space (unless the resulting logis-
tic regression model is statistically not significant, in which case we retain our previous
difficulty estimate.) This process can be iteratively repeated, using the revised difficulty
estimates as the basis of the new regression models. Figure 4 plots this data for one word,
using the difficulty estimates resulting from the third iteration of the estimation.

A second approach towards incorporating observed distinction data into a unified
problem difficulty scale is briefly introduced and compared to the other metrics. Here,
we recast the estimation problem as a sorting problem, and use a probabilistic variant
of the bubble-sort algorithm to reorder consecutive challenges based on available dis-
tinction data. Initially ordering the challenge words alphabetically, we repeatedly step
through the list, reordering challenges at indices i and i + 1 with a probability based on
the proportion of distinctions finding the first challenge harder than the second.11 After
“bubbling” through the ordered list of challenges 200,000 times, we interpret the rank-
order of each challenge as a difficulty index. These indices provide a metric of difficulty
(which we refer to as ProbBubble), and a means for predicting the relative difficulty of
any pair of challenges (based on index ordering.)

11If distinctions have been observed in both directions, the challenges are reordered with a probability de-
termined by the proportion of distinctions in that direction. If no distinctions in either direction have been ob-
served, the challenges are reordered with a probability of p = 0.5. If distinctions have been observed in one
direction but not the other, the challenges are reordered with a fixed minimal probability (p = 0.1).



Table 2. Summary table for the predictive accuracy of various difficulty metrics. For each metric, the percent-
age of accurate predictions of pairwise difficulty orderings is noted. The accuracy of the I50 metric is measured
against all of the 3,349,602 pairwise orderings identified by student distinctions. The accuracy of the data-
driven metrics (I50rev.1 and ProbBubble) are based on the average results from a 5-fold cross-validation, in
which the metrics are constructed or trained on a subset of the pairwise distinction data and are evaluated on a
different set of pairwise data (the remaining portion.)

Difficulty Model Predictive Accuracy

I50 75.66%
I50rev.1 84.79%

ProbBubble 84.98%

Table 3. Spearman’s rank correlation coefficient between pairs of problem difficulty rank-orderings (N =
3129, p < 0.01, two-tailed.)

Metric 1 Metric 2 Spearman’s ρ

I50 I50rev.3 0.677
I50 ProbBubble 0.673

I50rev.3 ProbBubble 0.908

Given the pairwise technique used in Section 4.2 for analyzing the fit of a diffi-
culty metric for a set of pairwise difficulty orderings, we can examine how these two
data-driven models compare to the original I50 difficulty metric. Table 2 summarizes our
findings. Here we observe that the data-driven approaches provide an improvement of
almost 10% accuracy with regard to the prediction of pairwise difficulty orderings. As
was noted earlier, cycles in the observed pairwise difficulty orderings prevent any linear
metric from achieving 100% prediction accuracy, and the maximum achievable accuracy
for the SpellBEE student data is not know. We do note that two different data-driven
approaches, logistic regression-based iterative estimation and the probabilistic sorting,
arrived at very similar levels of predictive accuracy. Table 3 uses Spearman’s rank corre-
lation coefficient as a tool to quantitatively compare the three metrics. One notable find-
ing here is the extremely high rank correlation between the ProbBubble and I50rev.3
data-driven metrics.

6. Conclusion

The findings from the research questions posed here are both reassuring and revealing.
Although the NISS study was done over 50 years ago, much of its value seems to have
been retained. The NISS-based I50 difficulty metric was observed to correctly predict
76% of the pairwise difficulty orderings mined from SpellBEE student data. Many of
the challenges for which the difficulty metric achieved low predictive accuracies corre-
sponded with words whose cultural relevance or prominence has changed over the past
few decades. The data-driven techniques presented in Section 5 offers a means for in-
corporating these changes back into a difficulty metric. After doing so, we found the
predictive accuracy increased approximately 10%, to the 85% agreement level.

The key technique used here to enable the assessment and improvement of problem
difficulty estimates works even when not all students have attempted all challenges or



when the selection of challenges for students is highly biased. It is data-driven, based
on identifying and counting pairwise distinctions indicated indirectly through observa-
tions of student behavior over the duration of use of an education system. The pairwise
distinction-based techniques for estimating problem difficulty information explored here
is a part of a larger campaign to develop methods for constructing educational systems
that require a minimal amount of expert domain knowledge and model-building. Our
BEEweb model is but one such approach, the Q-matrix method is another [3], and most
the IRT-based systems discussed in the introduction are, also. Designing BEEweb activ-
ities only requires domain knowledge in the form of a problem difficulty function and a
response accuracy function. The latter can usually be created without expertise, and the
former can now be approached, even when collected data is sparse and biased, using the
techniques discussed in this paper.
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