Neutral search spaces for artificial evolution: a lesson from life
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Abstract

Natural evolutionary systems exhibit a complex mapping
from genotype to phenotype. One property of these
mappings is neutrality, where many mutations do not have
an appreciable effect on the phenotype. In this case the
mapping from genotype to phenotype contains redundancy
such that a phenotype is represented by many genotypes.
Studies of RNA and protein molecules, the fundamental
building blocks of life, reveal that this can result in neutral
networks - sets of genotypes connected by single point
mutations that map into the same phenotype. This allows
genetic changes to be made while maintaining the current
phenotype and thus may reduce the chance of becoming
trapped in sub-optimal regions of genotype space. In this
paper we present several redundant mappings and explore
their properties by performing random walks on the neutral
networks in their genotype spaces. We investigate whether
the properties found in nature’s search space can be
engineered into our artificial evolutionary systems. A
mapping based on a random boolean network was found to
give particularly promising results.

1. Introduction

Natural evolution differs in many respects from the
evolutionary algorithms typically employed today. One
such difference is highlighted by the neutral theory of
evolution. According to this theory a considerable fraction
of all mutations are neutral and only a minute fraction of
the remainder are actually beneficial (Kimura 1994). This
results in a redundant genotype-phenotype mapping with
typically many genotypes representing any given
phenotype. The redundancy manifests itself in a number
of different ways and at a number of different levels -
from the genetic code, consisting of 64 codons mapping
into only 20 amino acids, to the complex interplay of
molecules forming an organism. A particularly important

and thorough study of the effects of such redundancy was
performed in the context of the folding of RNA, and to a
lesser extent, protein molecules (Huynen 1996, Huynen,
Stadler, and Fontana 1996). These studies revealed a
number of interesting properties in the nature of the
secondary structures that the primary structures folded
into. There were a number of common secondary
structures each represented by a very large set of primary
sequences i.e. there was large-scale redundancy in the
genotype-phenotype mapping. The density was such that
these sets were often connected by single-point mutations
forming so-called neutral networks. Thus, it was possible
to traverse the set of genotypes through the simplest of
mutations without changing the represented phenotype.

This brought about the possibility of neutral drift allowing
larger areas of genotype space to be explored in search of
more adaptive secondary structures. However, during such
a process there is no pressure influencing movement to
arcas of genotype space in which more adaptive
phenotypes can be found and there is thus a danger of
prolonged periods of random drift. It is important,
therefore, that the neutral networks representing each of
the phenotypes are intertwined with many access points
between them. This encourages beneficial transitions from
one network to another and minimizes the amount of time
spent drifting randomly. Studies of RNA folding
suggested that this was the case. As the neutral networks
were traversed a relatively high, and roughly constant,
number of new structures were discovered at each step
(Huynen 1996).

These properties may have a significant impact on the
evolvability of a system. Instead of becoming trapped in
sub-optimal regions of genotype space, adaptation is able
to continue through genetic changes that do not alter the
phenotype but enable movement in genotype space to



areas that are closer to genotypes representing potentially
more adaptive phenotypes. Following on from previous
studies (Ebner 1999, Shipman 1999) this work explores a
number of redundant genotype-phenotype mappings with
a view to ascertaining whether these fundamental
properties of living systems can be encouraged in our
artificial systems. For related work that aims to exploit the
developmental process in engineered systems see (Hoile
and Tateson 2000).

The structure of this paper is as follows - section 2 details
the four mappings that were studied, section 3 details the
methods that were used to ascertain the properties of these
mappings, section 4 presents our findings, section 5 gives
a discussion of these results and section 6 concludes.

2. Redundant mappings

A number of different mappings were constructed for this
work, this paper reports on four of them. In order to allow
the calculation of statistics, the phenotype space was fixed
at 8 bits, giving 2° = 256 possible phenotypes. Both the
length of the genotype and the number of alleles varied
between the mappings.

2.1 Voting mapping

The first mapping, shown in figure 1, is based on a voting
approach where each bit of the phenotype is influenced by
several bits from the genotype. Each phenotype bit is
determined by looking at all the bits of the genotype to
which it is linked. A bit of the phenotype is set to one if
the majority of connected bits in the genotype “vote” in
favor of this. Thus, depending on the values of the other
relevant bits, a point mutation may or may not have an
effect on the phenotype. It is important to note that the set
of genotype bits linked to a particular phenotype bit will
typically overlap with the sets corresponding to other
phenotype bits. It is this aspect that permits multiple
phenotype bits to potentially be changed simultaneously
by a single point mutation. Together with the redundant
“majority voting” aspect of the mapping, this permits the
scene to be set for future transitions to another phenotype,
without actually changing the current phenotype encoded
in the genotype. The links between the genotype bits and
the phenotype bits are determined in the following way.
For each bit of the phenotype we select a number of bits
of the genotype which will vote for that phenotype bit,
which is typically a constant odd number. For each of the
voting bits, we randomly choose whether a set bit will
vote in favor of the corresponding phenotype bit being set,
or against it being set. Thus each gives either a positive or
a negative vote. For instance, in the results reported later,
a genotype of 24 bits was used with sets of 17 genotype
bits being chosen for each of the 8-phenotype bits. There
is thus significant overlap among the sets of voting bits.

In order to confirm that the above mapping was
introducing “useful” redundancy, we compared it with a
trivial voting mapping in which each phenotype bit was
linked to 3 genotype bits without overlap. This mapping
exhibits redundancy, but in other respects behaves exactly
like a direct encoding where exactly one genotype
represents each phenotype. The redundancy in this case
was not useful.
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Figure 1. Illustration of the voting map; each of the phenotype
bits receives input from an odd number of genotype bits. These
bits vote either positively (solid lines) or negatively (dashed
lines) for the corresponding genotype bit to be turned on. A
positive sum results in a 1 for the genotype bit and a negative
suma 0.

2.2 Cursor based mapping

The second mapping uses a developmental approach
where the phenotype is interpreted as a linear sequence of
commands similar to the genetic programming paradigm
(Koza, 1992). The commands control a write-head, which
moves over a write area as shown in figure 2.

I 2 3 4 5 6 7 3 Commands:
HEEEREEN L - left
Head R - right
N S - set bit
L R C - clear bit

Figure 2. Illustration of the cursor based mapping, the write head
can move over the write area and set or clear bits. Four
commands are used: L. - moves the write head one bit to the left,
R — moves the write head one bit to the right, S — sets the bit
under the write head, C — clears the bit under the write head. If
the write head moves out of the write area it reappears on the
other side.

Four different commands are used, two to control the
movement of the head and two to set and clear bits on the
8-bit write area. The genotype bits thus consist of 4-alleles
to represent each of these commands. All bits on the write
arca are initially cleared and then all commands



represented in the genotype are executed sequentially. The
resulting bit string is interpreted as one of the 256
phenotypes. This process is illustrated in figure 3 for a
genotype length of 11. This work used a genotype of 32
commands.
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Figure 3. Development of the phenotype using a cursor based
mapping. The genotype is interpreted as a sequence of
commands, which either move the write head or set or clear bits
on the write area. Initially all bits of the write area are cleared,
the binary string following execution of all commands represents
one of the 256 phenotypes.

2.3 Cellular automaton mapping

The third mapping also uses a developmental approach in
which the genotype specifies a cellular automaton
(Wolfram 1984) that is used to form the phenotype. In this
work a non-uniform one-dimensional cellular automaton
was used (Sipper 1997), which consists of a linear array of
cells and a rule table for each of the cells specifying how
the state changes over time. The state of the cell and its
two immediate neighbors are used to form an index into
the rule table for that bit, which specifies whether the next
state should be 1 or 0. Thus, 8 entries per phenotype bit
are required to fully specify the behavior of the
automaton. The initial state is also encoded in the
genotype resulting in a total of 72 bits for the 8-bit
phenotype used in this work.

To perform the mapping from genotype to phenotype the
state of the cellular automaton was initialized with that
specified in the genotype. The automaton was then run for
a fixed number of time steps, 20 in this work, and the

resultant binary string interpreted as one of the 256
phenotypes. This is illustrated in figure 4 for an example
cellular automaton and 16 updates.

Figure 4. Development of a cellular automaton with the
following rule table: 11011100, 00011001, 11100100, 11101010,
01110110, 01001110, 10101001, 10110100. The starting state
(encoded in the genotype) is 00111101. The development is
shown for 16 time steps after which the cellular automaton has
settled into a periodic cycle. A snapshot of the automaton at a
fixed time step is interpreted as one of the 256 phenotypes.

2.4 Random boolean network mapping

The fourth mapping is a generalization of the cellular
automaton mapping. In this case the wiring of the
automaton is also specified in the genotype together with
the rule tables and initial state. Thus, the neighborhood of
each cell is no longer fixed as the cell itself and its two
immediate neighbors but can be any of the phenotype bits
as specified by the genotype. This is illustrated in figure
5. More information on random boolean networks can be
found in (Kauffman 1993).

Y
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000 0
001 1
010 0

111 1

Figure 5. Illustration of the RBN mapping; the genotype
specifies the rule table for each cell, the initial state of each cell
and the inputs to each cell. For the example bit, the inputs
specify that the third rule is used to give its next state.



In this work the number of inputs per cell was fixed at 3
and thus 9 bits were required to specify the inputs for each
cell. This resulted in a total of 72 bits to specify the
wiring of the 8-bit boolean network, which together with
the 72 bits to specify the rule tables and initial state gave
a genotype of length 144. To perform the mapping from
genotype to phenotype the network was constructed and
initialized using the information encoded in the genotype.
As for the cellular automaton, it was then run for 20 time
steps and the resulting binary string interpreted as one of
the 256 phenotypes.

3. Evaluation of the mappings

The main tool used to evaluate the properties of the
mappings described above was a random neutral walk
(Huynen 1996). This procedure allowed a measure to be
made as to the benefit of neutral drift through assessing
the number of new phenotypes encountered. The walk
began by choosing a genotype mapping into a given
phenotype at random. All one-point mutants of this
genotype were assessed and the number of new
phenotypes encountered was logged. These are termed
innovations. In addition a list of neutral neighbors, i.e.
one-point mutants mapping into the same phenotype, was
formed. One of these neutral neighbors was chosen at
random and the procedure was repeated for a given
number of steps, 100 steps were used in this work. If no
neutral neighbors are found, the walk remains in the same
position and no further innovation is possible. This
process is illustrated in figure 6. A number of statistics
were calculated using this procedure (see Ebner et al.
2000), the following two are reported on in this paper:

3.1 Total number of innovations

For each of the 256 phenotypes, a genotype mapping into
that phenotype was chosen at random. A random neutral
walk consisting of 100 steps was performed for each of
these genotypes and the number of new phenotypes
encountered at each step was logged. This procedure was
repeated for four independent walks for each of the
phenotypes. This resulted in a total of 1024 walks and the
averaged cumulative number of innovations was plotted at
each step of the walk for each mapping.

3.2 Phenotypic accessibility

For the same set of 1024 walks described in the previous
section an accessibility plot was formed that showed
which phenotypes were encountered on the neutral walks
for all 256 phenotypes. This resulted in a 256 by 256 plot
with one axis showing the phenotype that neutral walks
were being performed for and the other axis the
phenotypes encountered on those walks. This plot gave

some impression of the connectedness of phenotype space
via the neutral pathways in genotype space.

Genotype Space

Different phenotypes encountered along random

neutral walk:
P, R P

Set of 10 equivalent genotypes found:

Figure 6. A random neutral walk in genotype space. Starting
from a randomly chosen genotype, all innovations i.e. previously
unseen phenotypes, are logged. A list of neutral neighbors, i.e.
neighboring genotypes that map into the same phenotype, is also
formed. One of these neutral neighbors is then chosen at random
and the procedure repeated for a number of steps.

4. Results

This section shows the statistics that were calculated for
each of the redundant mappings. In addition, the statistics



for a direct encoding with no redundancy are included in

order to allow comparison.
Phenotypes reachable on walk
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Figure 7. Results for a direct binary encoding. (a) The number of
phenotypes found remains constant at 8, reflecting all possible
one-point mutations. There are no neutral neighbors and thus
there can be no innovation through neutral drift. (b) The
accessibility is very sparse reflecting the fact that only 8 new
phenotypes are accessible from each phenotype.

4.1 Direct binary encoding

Figure 7 shows results for a direct encoding in which an
8-bit genotype directly specified the phenotype. In effect
there was no genotype-phenotype mapping as is
commonly the case in artificial evolution.

4.2 Voting mapping

The results in figure 8 show that neutral walks for a voting
mapping allow access to a greater number of phenotypes
than for a direct encoding. The number of innovations
continues to rise after 100 steps indicating an increased
probability of finding more adaptive phenotypes through
neutral drift. The accessibility plot is also less sparse
indicating the discovery of more phenotypes on the
neutral walks. Statistics were also gathered for a trivial
voting map as discussed in section 2.1. As expected, these
results were identical to those for a direct encoding.

Phenotypes reachable on walk

100 T T T T
T 80} , g
>
K=
[}
Q
o
=
o
c
[}
<
o
0 20 40 60 80 100
Walk length
(@)
Inter-phenotype accessibility
250
200 BEEZ
g
> 150
o
c
2 100 @
o ki
50
O o . . A . ."A'
0 50 100 150 200 250
Phenotype
(b)

Figure 8. Results for the voting mapping. (a) The number of
phenotypes found continues to increase throughout the walk
indicating continual innovation. The number eventually reaches
a total of 68. The dashed lines indicate +/- one standard
deviation. (b) The accessibility plot is denser than for the direct
encoding although some transitions were not possible.

4.3 Cursor based mapping

Figure 9 again shows that neutral walks for a cursor based
mapping allow the discovery of more new phenotypes
than a direct encoding. However, the number of
phenotypes encountered at the end of the walk was
smaller than that for the voting mapping. The curve is
beginning to level off after 100 steps and thus the number
of phenotypes found is not likely to increase much further
even with longer walk lengths. The accessibility plot is
again denser than that for a direct encoding however a
number of phenotype transitions were not found on the
neutral walks.

4.4 Cellular automata mapping

Figure 10 shows that the number of phenotypes found is
greater for the CA than for the previous mappings. The
curve is still relatively steep after 100 steps indicating
remaining potential for discovering further phenotypes
with increased walk length. The accessibility plot is also
much denser indicating that many more transitions
between phenotypes are possible for the CA mapping than
the previous mappings.
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Figure 9. Results for the cursor based mapping. (a) The number
of phenotypes found is an improvement over the direct encoding
but not as high as for the voting mapping. The final number
reached is 40. The dashed lines indicate +/- one standard
deviation. (b) The accessibility plot is denser than a direct
encoding but some transitions were not found on the neutral
walks.

4.5 Random boolean network mapping

Figure 11 shows that the ability to modify the wiring of an
automaton increases the number of innovations on a
neutral walk. The number of phenotypes found after 100
steps is approximately 50% greater than for the cellular
automaton mapping and the steep curve indicates the
potential for further innovations. The density of the
accessibility plot is also greater indicating even greater
accessibility between the phenotypes.

5. Discussion

It is common practice in artificial evolution to use a direct
one-to-one mapping between genotype and phenotype. An
example of such a mapping is the direct binary encoding,
the results for which were presented in section 4.1. In
such a scenario the number of differing phenotypes
accessible from any given genotype is restricted to the
length of the genotype i.e. all one-point mutants. In many
situations it may be common for none of these phenotypes
to be better adapted than the current one and thus
adaptation will effectively halt at a local optimum.
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Figure 10. Results for the CA mapping. (a) 95 phenotypes were
found after 100 steps on the neutral walk. The curve is still
relatively steep indicating continuing innovation. The dashed
lines indicate +/- one standard deviation. (b) The accessibility
plot is much denser than for the previous mappings indicating
greater accessibility between the neutral networks associated
with each of the phenotypes.

This is a very different scenario to the seemingly open-
ended innovation found in natural systems. The mappings
explored in this work show that continuing innovation can
be achieved with a suitable mapping between genotype
and phenotype. Introducing the same kind of redundancy
found in natural evolutionary systems into our artificial
systems may increase the efficacy of artificial evolution
through reducing the possibility of entrapment at local
optima. However, the type of redundancy is crucial. This
is highlighted by the voting mapping; the trivial voting
mapping can be made to contain very high degrees of
redundancy by increasing the number of genotype bits
that are used to vote for a given phenotype bit. However,
this redundancy will be of no benefit, regardless of how
much is introduced. The redundancy is only beneficial if
it increases the accessibility between phenotypes, i.e. if it
allows more new phenotypes to be discovered than would
be the case for a direct encoding. This is not the case for
the trivial voting mapping as all mutations effect only one
genotype bit and thus neutral mutations cannot enable
moves closer to new phenotypes while maintaining the
current phenotype. In order to allow for such a scenario a
genotype bit must be able to effect more than one



phenotype bit, which is the case when the sets of genotype
bits voting for each of the phenotype bits are allowed to
overlap. The results presented in section 4.2 show that this
enables the discovery of many more phenotypes than is
the case for the direct encoding.
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Figure 11. Results for the RBN mapping. (a) The number of
phenotypes found is higher than all the other mappings. A total
of 145 different phenotypes were found after 100 steps along the
neutral walk. The curve continues to rise indicating continuing
innovation. (b) The accessibility plot is the densest of those
presented in this paper with most transitions between phenotypes
found.

In order to introduce beneficial redundancy, therefore, it
is important not only to create a mapping in which there
are large connected sets of genotypes, representing each
phenotype of interest but also to create a mapping in
which the boundaries between the sets are intertwined. In
the case of trivial redundancy the sets only come within a
point mutation of each other in one position, as is the case
for a direct encoding. However, the addition of overlap
both increases the number of boundary points and
introduces new boundaries with different phenotypes. The
cursor-based mapping has a similar effect but on the
evidence presented here, is less effective at increasing and
expanding the boundary points of the sets. This is
highlighted by the smaller number of phenotypes
encountered during the neutral walk.

The cellular automaton mapping and, in particular, the
random boolean network mapping are especially effective
at introducing the right kind of redundancy. The
accessibility plots are quite dense indicating that the sets
of genotypes representing each of the phenotypes have
become very intertwined with a high number of boundary
points between them. The number of innovations indicates
that boundary points with other sets continue to be found
throughout the walk. These properties could considerably
aid an artificial evolutionary system.

The success of a neutral mapping is dependent on the
balance between structure and randomness. In order to
increase the possibility of discovering a given phenotype,
it would be desirable for many genotypes mapping into
that phenotype to be randomly scattered throughout
genotype space. Thus, from any point in that space it is
likely that a required genotype will be in relatively close
proximity. However this scattering cannot be entirely
random, as it is important to maintain a relatively high
number of neutral neighbors in order to encourage the
formation of connected neutral networks and allow
substantial neutral drift. The good results of the RBN
mapping reflect a good balance between these two
aspects. A large number of different phenotypes were
discovered on neutral walks whilst an average of
approximately 50% neutral neighbors was maintained.

6. Conclusion

This work has explored the properties of four redundant
genotype-phenotype mappings that were constructed in an
attempt to mimic the desirable properties found in
nature’s own redundant search space, evidenced by the
work on RNA folding (Huynen, Stadler, and Fontana
1996) for example. In all four cases the redundancy was
found to be beneficial, in that movement on the resulting
neutral networks allowed for the discovery of a larger
number of phenotypes than would be the case for a direct
encoding. Thus, the probability of entrapment at local
optima when using these mappings would be reduced.
One mapping, based on a random boolean network, was
found to have particularly good properties and may be of
real benefit in an artificial evolutionary system.

The results presented in this work used only a small
number of phenotypes and a relatively small sample of the
genotype space. With sizeable genotypes exhaustive
enumeration of the space is impossible and some form of
sampling is required. An intention of future work is to
explore other statistics that can help to further reveal the
properties of the spaces created by these and other
mappings. The performance of the mappings on larger
phenotype spaces and in the context of an adaptive fitness
walk is also being explored (Shackleton et al. 2000).
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