
 Abstract

Cognitive scientists, AI researchers in particular, have
long-recognized the enormous benefits of modularity
(e.g., Simon, 1969), as well as the need for self-organi-
zation (Samuel, 1967) in creating artifacts whose com-
plexity approaches that of human intelligence. And yet
these two goals seem almost incompatible, since truly
modular systems are usually designed, and systems that
truly learn are inherently nonmodular and produce only
simple behaviors. Our paper seeks to remedy this short-
coming by developing a new architecture of Additive
Adaptive Modules which we instantiate as Addam, a
modular agent whose behavioral repertoire evolves as
the complexity of the environment is increased.1

 Introduction

One of the major conundrums of machine learning
research, of both the symbolic and neural varieties, is
how to produce systems which demonstrate complex
cognitive behaviors starting from simple kernels. Sim-
ple learning systems, such as feed-forward networks end
up with simple behaviors, so are really only theoretical
signposts; complex learning systems which start with a
large initial software investment, such as explanation-
based learning (DeJong and Mooney, 1986; Mitchell, et
al., 1986), beg the question of origin. Placing a simple
system in a complex environment can work if the envi-
ronment is non-threatening (Elman, 1988), but often the
cost of engineering the environment is greater than that
of engineering a working system.

This trade-off between complexity ofspecification
and complexity ofenvironment has been playing itself
out in recent tensions in connectionism between simple
systems which do not scale well versus complex (modu-
lar) systems whose origins are “not phylogenetically
plausible”. The current swing to automatic modulariza-
tion is a response to this tension, but suffers from a lack
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of distributed control. For example, both Jacobs, Jordan,
and Barto (1990) and Nowlan & Hinton (1991) rely on a
centralized gating network to select the proper expert
module. In the former, the network is given a “task bit”
as part of its input, so that the proper expert module is
effectively preselected by the input vector. Similarly, the
latter permits different inputs to the expert and gating
networks, simplifying the modularization process. Fur-
thermore, neither architecture exploits the fact that the
outputs of the gating network are continuous; instead,
the interactions between modules are encouraged to be
binary so that modulei has no appreciable influence on
the output when modulej is active. In fact, Nowlan &
Hinton’s work, following Jacobs, et al. (1991) on which
it is based, explicitly trains away these interactions.

An alternative approach to modularity is found in
the design of autonomous robots, a historically nontriv-
ial control task. Brooks (1986, 1991) offers a task-based
subsumptive architecture which has achieved some
impressive results. However, since machine learning is
not up to the task of evolving these systems, engineers
of artificial animals have embedded themselves in the
design loop as the learning algorithm, and thus all com-
ponents of the system, as well as their interactions, must
be carefully crafted by the engineer (see, e.g., Connell,
1990).

Research aimed at replacing the engineer in these
systems is at an early stage. For example, Maes (1991)
proposes an Agent Network Architecture which allows
a modular agent to learn to satisfy goals such as “relieve
thirst”; however, she presumes detailed high-level mod-
ules (such as “pick-up-cup” and “bring-mouth-to-cup”),
and her system learns only the connections between
these modules. An earlier work that does not presume
such an a priori modularization (Maes & Brooks, 1990)
allows a six-legged robot to learn to walk, but there are
no real modules in the final system. Beer and Gallagher
(1991) attack this same problem of robotic mobility, but
in a different way. They use a genetic algorithm (GA)
that produces a robot which walks well (in simulation),
yet they engineered the precise modularity of their sys-
tem. Lin (1991) similarly presumed a detailed modular-
ization and proceeded to learn each piece.

Thus, the researchers in artificial animals fall into
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the same pitfalls as others who ignore the conundrum of
machine learning: either their systems are too compli-
cated to learn, their learning algorithms to simple to
scale, or their modularization is arbitrarily indexed to the
task.

In this paper, we present a novel approach to modu-
larization, inspired by the work of Brooks, but tempered
by the requirements of modular learning. As will be dis-
cussed below, our connectionist version of subsumption
replaces Brooks’ finite state automata (FSAs) with feed-
forward networks and additional circuitry, combined so
that each module in our hierarchy respects the historical
prerogatives of those below it, and only asserts its own
control when confident.

 Additive Adaptive Modules

Our control architecture consists of a set of Additive
Adaptive Modules, instantiated asAddam, an agent
which lives in a world of ice, food, and blocks. To sur-
vive in this world, Addam possesses 3 sets of 4 (noisy)
sensors distributed in the 4 canonical quadrants of the
plane. The first set of sensors is tactile, the second olfac-
tory, and the third visual (implemented as sonar that
passes through transparent objects). Unlike other

attempts at learning that focus on a single behavior such
as walking (Maes & Brooks or Beer & Gallagher, dis-
cussed above), we chose to focus on the subsumptive
interaction of several behaviors, and hence Addam’s
actuators are a level of abstraction above leg controllers
(similar to Brooks, 1986). Thus Addam is moved by
simply specifyingδx andδy.

Internally, Addam consists of a set of dynamical sys-
tems (instantiated as feedforward connectionist net-
works) connected as shown above in Figure 1. This
architecture is actually quite simple. The 12 input lines
are from Addam’s sensors; the 2 output lines are fed into
actuators which perform the desired movement (δx, δy).
Note that we desire δx, δy ∈(-1, 1) so that Addam may
move in the positive or negative direction. To keep the
outputs in this range, we first tried using the hyperbolic
tangent activation function (output range -1 to 1), but
this was inadequate because it did not permit 0 as a sta-
ble output. We then switched to sigmoids (output range 0
to 1), necessitating the boxes with the fixed -1,+1 con-
nections below. Thus the four outputs of each “Layer i”
box represent +δx, -δx, +δy, and -δy, respectively. This
system allows both positive and negative movement, as
well as 0 as a stable output for any “Layer i”.

Addam’s movements are controlled by this system as
follows. First, the 12 sensors are sampled and fed into

ta
ct

ile
ol

fa
ct

or
y

vi
su

al

La
ye

r 
0

La
ye

r 
1

0

δx

δy

+1
-1

+1
-1

+1
-1

+1
-1

+1
-1

+1
-1

S
 E

 N
 S

 O
 R

 S

sigmoid

Figure 1: Addam’s internal architecture.
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layer 0, which puts its values forδx andδy on the output
lines. Layer 1 takes as input these same 12 sensor read-
ings and the sum squared output of layer 0, calculates its
values forδx andδy, and adds these to the output lines.
Layer 2 works similarly, and the finalδx andδy values
are translated automatically to motor controls which
move Addam the desired amount and direction.

Subsumption in our architecture captures the spirit of
Brooks (1986, 1991), where modularity is achieved by a
task-based decomposition of complex behavior into a set
of simpler behaviors. In his system, layer 0 is obstacle
avoidance and layer 1 is wandering. When layer 1 is
active, it suppresses the activity of layer 0, and yet obsta-
cles are still avoided becauselayer 1 subsumes the
obstacle avoidance behavior of layer 0. Brooks avoids
duplicating layer 0 as a subpart of layer 1 by allowing
the higher layer random access to the outputs of any of
the lower level FSAs. This fact combined with the multi-
ple realizability of layers creates questions regarding
Brooks’ design methodology of developing a single
layer of competence, freezing it, and then building a sec-
ond layer on top of the first. If layer 0 can be realized
equally well by method M1 or M2, then under Brooks’
methodology we will not know until layer 0 is fixed
which methodology’s internal modules better facilitate
the design of layer 1. Note that Addam does not have
this problem with multiple realizability since layer 1
only has access to theoutputsof layer 0.

In addition to the random access problem, Brooks
also permits layer 1 to have unlimited suppression of
layer 0’s outputs. This works well when a human is engi-
neering the robot, but such unbridled design-space free-
dom must be limited if we wish to have any chance of
evolving the system. Thus Addam’s different behavioral
layers communicate only in the limited ways shown
above.

Instead of being called subsumptive, our architecture
is more aptly labeledpreemptive. The modules are prior-
itized such that the behaviors associated with the lower
levels take precedence over those associated with the
higher levels. This is reflected architecturally as well as
functionally, so that higher-level modules are trained to
relinquish control if a lower-level module is active. For
example, suppose that layer 0 behavior is to avoid preda-
tors, and layer 1 behavior is to seek out food. In the
absence of any threatening agents, layer 0 would remain
inactive and layer 1 would move Addam towards food.
However if a predator suddenly appeared, layer 0 would
usurp control from layer 1 and Addam would flee.

Note that we could have avoided feeding the sum-
squared activation line into each module Mi by gating
the output of Mi with the sum-squared line. We did not
do this because our architecture is more general in that
gating can be learned as one of many behaviors by each
Mi.. Our goal was to have each module decidefor itself
whether it should become active – had we used gating,
this decision would have been made by Mi’s predeces-
sors.

A few more things should be noted about Addam’s

architecture. First, it has no internal state (or equiva-
lently Addam’s entire state is stored external to the agent
in the environment, as in Simon, 1969), and thus Addam
has no memory. Second, a few of Addam’s connections
are fixed a priori. (The changeable connections are those
in the boxes labelled layer 0, 1, and 2, above.) This min-
imal structure is the skeleton required for preemption,
but it does not assume any prewired behaviors.

Finally, we should point out the similarity of Add-
am’s internal structure to the cascade correlation archi-
tecture of Fahlman & Lebiere (1990). There are several
important differences, however. First, our system is
comprised of several cascadedmodules instead of cas-
caded hidden units. Second, Fahlman and Lebiere’s
higher-level hidden units function as higher-level feature
detectors and hence must receive input from all the pre-
ceding hidden units in the network. This can lead to a
severe fan-in problem. Due to the preemptive nature of
our architecture, higher-level modules need only know if
any lower-level module is active, so they require only a
single additional input measuring total activation of the
previous modules. Third, Fahlman’s system grows more
hidden units over time, correlating each to the current
error. The nodes of our architecture are fixed throughout
training, so that modularity is not achieved by simply
adding more units. Finally, there is a difference in train-
ing: Fahlman gives his network a single function to
learn, whereas our system attempts to learn a series of
more and more complex behaviors. (More on this
below.)

 Training Addam

As mentioned above, Addam’s environment consists of
three types of objects: ice, food, and blocks. Ice is trans-
parent and odorless, and is hence detectable only by the
tactile sensors. Blocks trigger both the tactile and visual
sensors, and food emits an odor which diffuses through-
out the environment and triggers the olfactory sensors.
Addam eats (in one time step) whenever it comes into
contact with a piece of food.

Addam’s overall goal is to move towards food while
avoiding the other obstacles. This makes training prob-
lematic – the desired response is a complex behavior
indexed over many environmental configurations, and
yet we do not wish to restrict the possible solutions by
specifying an entire behavioral trajectory for a given sit-
uation. Beer & Gallagher (1991) attempted to solve this
problem by using GA’s, which respond to the agent’s
overall performance instead of to any particular move-
ment. We take a different approach, namely, we train
Addam onsingle moves for a given number of scenarios,
defined as one particular environmental configuration.
Under this methodology, theextended moves which
define Addam’s behavior emerges from the complex
interactions of the adaptive modules and the environ-
ment.

Training begins with level 0 competence, defined as
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the ability to avoid ice. The training scenarios are shown
below in Figure 2, along with the desired response for
each scenario. Module 0 can successfully perform this
behavior in about 600 epochs of backpropagation
(adjusted so that the fixed +1/-1 connections remain con-
stant), and the connections of this module are then fro-
zen.

We next train Addam on level 1 behavior, defined as
the ability to move towards food,assuming no ice is
present. Once again, training is problematic, because
there are a combinatorial number of environmental con-
figurations involving food and ice. We solve this prob-
lem as follows. First, we define 14 scenarios as above,
but with food replacing ice. This defines a set S of
{(SensorValues, MoveToFoodOutput)} pairs. Note that
this does not define a value for a1, the activations of the
system prior to module 1. (See Figure 1.) Instead of forc-
ing module 1 to recognize the presence of ice, we
assume that module 0 is doing its job, and that when ice
is present a1 will be >> 0. This allows us to define a
training set T for level 1 behavior by prepending the
extreme values of a1 to the SensorValues in S, thus dou-
bling the number of configurations instead of having
them grow exponentially:

T={ {(0-SensorValues, MoveToFoodOutput)},
{(1-SensorValues, ZeroOutput)}}

Thus layer 1 (which is initially always active) must learn
to suppress its activity in cases where it is not appropri-
ate. This training method was motivated by studies on
development in which a dynamical system had to learn
to suppress its behavior when not appropriate (Thelen,
1990).

After level 1 competence is achieved (about 3500
epochs), a training set for level 2 competence (avoid
blocks) is obtained in a similar manner. Note again that
this avoids the combinatorial explosion of specifying the
many possible combinations of ice, food, and blocks.
Level 2 competence is achieved in about 1000 epochs.

 Results

Once Addam was trained, we placed it in the complex
environment of Figure 3. Its emergent behavior is illus-

trated in the top half of the figure, where the small dots
trace out Addam's path. Each dot is one time step
(defined as one application of the trained network to
move one step), so the spacing indicates Addam's speed.

Addam begins at (3.5, 1) touching nothing, so its tac-
tile sensors register zero and layer 0 is inactive. The
olfactory sensors respond slightly to the weak odor gra-
dient, causing a slight activation of layer 1, disabling the
block-avoidance behavior of layer 2. Thus we observe a
constant eastward drift, along with random north-south
movements due to the noise inherent in the sensors. As
Addam approaches the food, the odor gradient increases,
the olfactory sensors become more and more active, and
layer 1 responds more and more strongly. When the ran-
dom noise becomes negligible at about (6.5, 1), Addam
speeds up, reaches the food, and devours it.

After completing its first meal, Addam detects the
faint odor of another piece of nearby food, and once
again layer 1 controls its movement. However, at about
(9, 5.5) Addam's tactile sensors detect the presence of a
piece of ice, activating layer 0, and usurping control
from layer 1. In other words, Addam's aversion to cold
feet overcomes its zealous hunger, and it moves south-
east. After “bouncing off” the ice, the tactile sensors
return to zero, and layer 1 regains control, forcing
Addam back towards the ice. However this time it hits
the ice just a little farther north than the last time, so that
when it bounces off again, it has made some net progress
towards the food. After several attempts, Addam suc-
cessfully passes the ice and then moves directly towards
the food.

To reach the third piece of food, Addam must navi-
gate down a narrow corridor, demonstrating that its layer
1 behavior can override its layer 2 behavior of avoiding
blocks (which would repel it from the corridor entrance).
This is shown even more directly in Addam's docking
behavior (cf: Lin, 1990) as it eats the fourth piece of
food. After finishing the last piece of food, Addam is left
near a wall, although it is not in contact with it. Thus
both the tactile and olfactory sensors output zero, so both
layers 0 and 1 are inactive. This allows Addam's block
avoidance behavior to become activated. The visual sen-
sors respond to the open area to the north, so Addam
slowly makes its way in that direction. When it reaches
the middle of the enclosure, the visual sensors are bal-

Figure 2: Training scenarios for level 0 behavior, along with desired responses.
Patch of ice
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Figure 3: Addam’s emergent behavior in a complex environment, with
graph showing the activations of layers 0, 1, and 2.
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 Remarks

Addam was trained on only 42 simple scenarios, yet it
was able to perform well in a complex environment.
Unlike other connectionist modular systems, our method
of control is distributed – each module decides for itself
whether it should exert control in any given situation.
Furthermore, there is no gating network which receives a
specialized task bit – Addam has three sets of sensors all
treated equally and must learn the proper behavior on the
basis of these inputs. Finally, instead of limiting activa-
tions of the modules to being 0 or 1, we exploited the
underlying connectionist nature of our architecture,
allowing us to produce interactions between modules
more interesting than absolute preemption. For example,
the presence of ice overrode Addam’s attraction to food,
yet Addam’s “go-get-it” response to the food had a slight
influence on its “runaway” response to the ice. Had pre-

anced and Addam halts (except for small random move-
ments based on the noise in the sensors).

The bottom half of Figure 3 shows the activation of
each layer i of the system (where the activation of layer i
is ||(δx,δy)i||, the norm of layer i’s contribution to the
output lines). L0 is generally quiet, but becomes active
between time t=52 and t=64 when Addam encounters an
ice patch, and shows some slight activity around t=140
and t=168 when Addam’s tactile sensors detect blocks.
L1 (“approach food” behavior) is active for most of the
session except when preempted by the “avoid ice”
behavior of L0,, as between t=52 and t=64. The 5 peaks
in L1’s activity correspond to Addam’s proximity to the
5 pieces of food as it eat them; when the last piece of
food is consumed at t=164, L1’s activity begins to decay
as the residual odor disperses. Finally, we see that L2
(“avoid blocks” behavior) is preempted for almost the
entire session. It starts to show activity only at about
t=160, when all the food is gone and Addam is away
from any ice. The activity of this layer peaks at about
t=190, and then decays to 0 as Addam reaches the center
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emption been absolute, Addam’s attraction to ice and
aversion to food would have alternately controlled its
movement, with layer 0 exactly countering the effect of
layer 1, and Addam would have slowly starved to death
as it bounced off the ice indefinitely.

Our system also differed from traditional subsump-
tion. We choose preemption by following Brook’s own
advice in describing his goal of simplicity: “If you notice
that a particular interface is starting to rival in complex-
ity the components it connects, then either the interface
needs to be rethought or the decomposition of the system
needs redoing” (Brooks, 1986, p. 15). This is a wonder-
ful credo for engineers, but as cognitive scientists, we
must generalize it to this: If you notice that your model
of a particular aspect of cognition starts to rival in com-
plexity the components of the underlying system, then
both the underlying system and the model of the envi-
ronment need to be reexamined. Learning to adapt to the
environment is extremely difficult in Brooks’ subsump-
tion architecture, but became possible after switching to
a simplified, additive model of modularity.

Our ideas for modular adaptive control are indepen-
dent of the internal structure of the modules. In fact, the
work of Beer & Gallagher or Maes & Brooks is really
complementary to ours, for although Addam’s modules
were instantiated with feedforward networks trained by
backpropagation, they could have just as easily been
trained by either GA’s or correlation algorithms. More-
over, feedforward networks need not have been used
either. We could have substituted sequential cascaded
networks (Pollack, 1987), endowing Addam with inter-
nal state (cf Kirsh, 1991) and allowing even more com-
plex behaviors.

Finally, we note a significant difference in methodol-
ogy between our work and that of Brooks. In creating his
agents, Brooks first performs abehavioral decomposi-
tion, but in implementing each layer, he performs afunc-
tional decomposition of the type he himself warns
against (Brooks, 1991, p. 146). In training Addam, on
the other hand, we first perform a behavioral decomposi-
tion, and then let backpropagation decompose each
behavior appropriately. This automation significantly
lessens the arbitrary nature of behavior-based architec-
tures which has thus far limited the import of Brooks’
work to cognitive science.
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