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Abstract

The traditional approachto complex problemsin science
andengineeringis to breakdown eachprobleminto a setof
primitivebuilding blocks,whicharethencombinedby rules
to form structures. In turn, thesestructurescan be taken
apartsystematicallyto recover the original building blocks
thatwent into them.Connectionistmodelsof suchcomplex
problems(especiallyin therealmof cognitive science)have
oftenbeencriticizedfor their putative failureto supportthis
sortof compositionality, systematicity, andrecoverability of
components.In thispaperwediscussaconnectionistmodel,
Recursive Auto-Associative Memory(RAAM), designedto
deal with theseissues. Specifically, we show how an ini-
tial approachto RAAM involving arbitrary building-block
representationsplacedsevere constraintson the scalability
of the model. We describea re-analysisthe building-block
and“rule” componentsof themodelasmerelytwo aspects
of asingleunderlyingnonlineardynamicalsystem,allowing
themodelto representanunboundednumberof well-formed
compositionalstructures.Weconcludeby speculatingabout
theinsightthatsucha“unified” view mightcontributeto our
attemptsto understandandmodelrule-governed,composi-
tionalbehavior in a varietyof AI domains.

Introduction
The traditional approachto complex problemsin science
andengineeringis to breakdown eachprobleminto asetof
primitivebuildingblocks,whicharethencombinedby rules
to form structures.In general,thisapproachhasprovedsuc-
cessfulenoughthat it is rarely mentioned,let aloneques-
tioned,in contextsoutsideof introductoryAI andengineer-
ing courses.Nevertheless,whenappliedto complex sys-
temsin nature,theapproachtendsto beanoversimplifica-
tion.

At oneendof thespectrumwe find autocatalyticchemi-
calreactionsthatgeneratethecomponentsrequiredfor their
own synthesis(Zaikin & Zhabotinsky 1970). Suchreac-
tions provide perhapsthe simplestexample of a system
in which the rolesof building blocksandrulesareentan-
gled in a unconventionalway. At the other endwe have
thefull-blown complexity of humanbehavior, notablylan-
guage. In this domainthe Chomskyan “wordsandrules”

approach(Pinker 1999)hasbecomethe dominantanalyti-
calframework,despitethetheoreticaldifficultiesassociated
with the definition of “word” (Sciullo & Williams 1987),
the practicaldifficulty of automaticallyisolating individ-
ual words in fluent speech(Rabiner& Juang1993), and
the everydayobservation that real languageseemsto con-
tain moreexceptionsthanrules. In betweenthesetwo ex-
tremeslies all the complexity of real biological systems,
in which basicengineeringconceptslike modularity and
reuserun up againstthe difficulty of knowing precisely
whatbuilding blocksarebeingmodularizedandactedupon
in rule-governedways.Suggestionsfor theseincludegenes
(Dawkins1990),species(Wynne-Edwards1962),andmen-
tal faculties(Fodor1983),amongothers.

Engineersandresearchersusingbiologicallyinspiredap-
proachesto problem-solvinghave hadto dealwith various
manifestationsof this issue. In the field of geneticalgo-
rithmsthenotionof “building block” (Goldberg 1989)has
receiveda gooddealof attentionandgeneratedsomecon-
troversy(Forrest& Mitchell 1993). It is only recentlythat
thoroughstudiesof crucial issueslike compositionalityin
artificial andnaturalevolution have beenundertaken(Wat-
son2002),anda greatdealof work remainsto bedone.

In a somewhat parallel development,the literature on
connectionist(a.k.a. neural)networks is fraught with at-
temptsto addressthe issueof rule-governedcomposition-
ality. At oneextreme,the distributed, “eliminativist” ap-
proachtries to do away with structuresandrulesentirely,
seeingbothasemergentepiphenomena(e.g.,hidden-layer
activations)in thebehavior of networkstrainedonpatterned
data(Elman1990).At theotherextreme,so-calledlocalist
approacheschooseto representstructureexplicitly, either
throughdirectconnectionsamongunitsrepresentingprim-
itive concepts,or throughneuron-like synchronousfiring
of thoseunits or clustersof units (Shastri& Ajjanagadde
1993).

The RAAM Model
An entirelydifferentapproach,discussedin the remainder
of this paper, takesthe traditionalnotion of compositional



structureveryseriously, while still attemptingto exploit the
distrib� utedrepresentationsthatgiveneuralnetwork models
so much of their appeal. In this approach,called Recur-
sive Auto-Associative Memory, or RAAM (Pollack1990),
the basic building blocks are binary strings representing
thevariousentitiesto becombined(words,concepts,etc.).
As shown in Figure1, the RAAM network consistsof an
encoder, which recursively composesthebinarystringsto
producefixed-sizevectorrepresentationsof structuresover
thosestrings,anda decoder, which unpacksthe encoded
vectorrepresentationsinto (anapproximationof) theirorig-
inal forms. Together, the encoderanddecoderaretrained
asanauto-associator(Ackley, Hinton, & Sejnowski 1985)
using the standardneuralnet back-propagationalgorithm
(Rumelhart,Hinton,& Williams 1986).

g

f

f

B

A

B

e f g

g

B

e B

e

A

Figure1: RAAM encodinganddecodinga treestructure.

The key insight of RAAM is that the hidden-layerac-
tivations representingcompositionalstructurecan be fed
backinto theencoderinput,allowing structures(fixed-arity
trees)of arbitrarysizeandcomplexity to bebuilt. Similarly,
theoutputof thedecoderis fed backto thedecoderinput,
after passingthrougha “terminal test” to seewhetherit is
similar enoughto a binary string (all zerosandones)for
decodingto terminate.If not,decodingcontinues.Thede-
coderoutputis computedby alogisticsigmoid“squashing”
function whoserangeis the interval (0,1). Therefore,the
simplestterminal test is simply a hard thresholdin which
valuesbelow 0.2aretreatedas0, andvaluesabove0.8as1.

Limitations of RAAM
AlthoughRAAM answeredthe challengeof showing how
neuralnetworkscouldrepresentcompositionalstructuresin
a systematicway, and led to lots of philosophicaldiscus-
sion, the model failed to scaleup reliably to datasetsof
morethanafew dozendifferenttrees.This limitation arose
from the terminaltest,which createda variety of “halting
problem”: decodingeitherterminatedtoo soon,treatinga
non-terminalasa terminal,or continuedindefinitely, treat-
ing a terminalasa non-terminal.In addition,encodingsof
novel structuresover existing terminalsweretypically de-
codedto already-learnedstructuresover thoseterminals.

A numberof different fixes were attempted,generally
involving a more elaborateterminal test than the simple
threshold.No significantprogresswasmade,however, un-
til a key insightaboutthedecoderemerged.

New RAAM formulation
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Figure2: An exampleRAAM decoderthat is a 4 neuron
network, parameterizedby 12 weights. Eachapplication
of thedecoderconvertsan ( �*)+ -,

coordinateinto two new
coordinates.

ConsidertheRAAM decodershown in figure2. It con-
sistsof four neuronsthateachreceive thesame( �*)+ -,

in-
put. Theoutputportionof thenetwork is dividedintoaright
anda left pair of neurons.In the operationof the decoder
the output from eachpair of neuronsis recursively reap-
plied to thenetwork. UsingtheRAAM interpretation,each
suchrecursionimpliesa branchingof a nodeof thebinary
tree representedby the decoderand initial startingpoint.
However, this samenetwork recurrencecanalsobe evalu-
atedin thecontext of dynamicalsystems.This network is
a form of iteratedfunctionsystemor IFS (Barnsley 1993),
consistingof two pseudo-contractive transformswhich are
iteratively appliedto pointsin a two-dimensionalspace.

In the context of RAAMs the main interestingproperty
of contractive IFSeslies in the trajectoriesof pointsin the
space.For contractive IFSesthe spaceis divided into two
setsof points. The first set consistsof points locatedon
the underlyingattractor(fractal attractor)of the IFS. The
secondsetis thecomplementof thefirst, pointsthatarenot
on the attractor. The trajectoriesof points in this second
setarecharacterizedby a gravitation towardstheattractor.
Finite, multiple iterationsof thetransformshave theeffect
of bringing the points in this secondset arbitrarily close
to the attractor. In this sense,the attractorpoints, rather
than points above or below an arbitrary cutoff threshold,
representaguaranteedterminatingconditionfor theRAAM
decoder.

Using the points (vectors)of the attractor, rather than



bit strings,asa “natural” terminaltest,allowedusto over-
come. the RAAM halting problem. The relevant threshold
is not proximity to anarbitraryvaluelike 0 or 1, but rather
proximity to the(theoreticallyinfinite) dustof pointsrepre-
sentingthe attractor. With this approach,we wereableto
increasethe numberof decodabletreesfrom a few dozen
to tensof thousands.Ultimately the numberof decodable
treeswasin factprovedto beunbounded,in (Melnik, Levy,
& Pollack 2000). An equally promisingresult from that
work wastheobservationthattheunboundedsetof decoded
treescouldbemadeto conformto asetof rules,contraryto
traditionalclaimsaboutthefundamentalincompatibilityof
rule-basedandconnectionistapproaches.

Thedifferencebetweentheold andnew formulationsof
RAAM is vividly illustratedin Figure3,whichmapstheat-
tractoranddecodedtreesfor anattractorimagederivedby
a visual “Blind Watchmaker” technique(Dawkins 1986).
As the figureshows, the attractor(terminals)andits com-
plement(decodedtrees)arebothpartof a single,(theoreti-
cally) continuousspace.Every point in this spacedecodes
to a terminalor non-terminaltree,with thedepthandvari-
ety of the treesbeinglimited by thearbitrarypixel resolu-
tion at which thespaceis sampled.1
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Figure3: Map of uniquetreesin 2D fractal RAAM, sam-
pled at 100x100pixels. Eachnon-terminaltree is repre-
sentedby a differentgrayscalevalue. Attractor (terminal
set)is blackspiral.

1In thisrespectwemayaccusedof returningto thesortof arbi-
trary discretecutoff thatplaguedthe terminaltestof old RAAM.
We hopeby now to have conveyed the sensein which the frac-
tal terminal test respectsthe underlyingdynamicsof the model,
in a way that the thresholdingcutoff terminal testdid not. Fur-
ther, our artificial neurons,implementedwith double-precision
floating-pointnumbers,likely have excessively high precisionas
comparedto thebiologicalneuronsthatinspirethem.

Re-grounding the Symbols
Eschewing theuseof arbitrarybit-stringrepresentationsas
primitive building blocks overcomesthe scalability prob-
lemswith theolderRAAM formulation,but leavesuswith
abootstrappingproblem:if theterminalsaredefinedasthe
pointson theattractor, andtheattractoris a functionof the
decoderweights,thenthesymbolic“ground” is constantly
changingunderneathourfeetastheweightsareadaptedvia
back-propor someotherlearningalgorithm. We currently
seetwo waysout of this dilemma.

First, we might exploit someother principle to fix the
set of terminal vectors, and then train the RAAM en-
coder/decodernetwork asin theolderversionof themodel,
usingback-propagation.The criterion for evaluatingsuch
a principlewould betheextentto which it producedtermi-
nal vectorsyielding a rich, complex dynamicsof the sort
portrayedin Figure 3. A salient featureof this figure is
that theterminals(attractor)take on realvaluesdistributed
over a large portion of the unit square(whereasthe origi-
nal bit-string representationswould be locatedonly in the
extremecornersof this space).This suggeststhat general
(real-valued)terminalvectorsin the space(0/ ) � ,21 arethe
sortof representationswe shouldbelooking for.

Fortunately, thereis agrowingbodyof literaturedescrib-
ing techniquesfor representingsymbolicdata(suchasword
meanings)in exactly suchvectorspaces.The LatentSe-
manticAnalysismodel(Landauer& Dumais1997),which
usesco-occurrencestatisticson text corpora,is one such
model that hasenjoyed a gooddealof successin a num-
berof domainswheretraditionalsymbolictechniqueshave
proven lessadequate. Another possiblecandidateis El-
man’sSimpleRecurrentNetwork (SRN)modelof temporal
structure.(Elman1990).Elmanhasshown how trainingthis
sortof network on a temporalpredictiontaskcanresultin
hiddenlayeractivationsthatembodymeaningfulcategori-
cal informationabouttheitem presentedon theinput layer
(suchaspartof speechandmorefine-grainedsemanticdis-
tinctions).It is intriguingto speculatehow suchrepresenta-
tionsmight interactwith a RAAM beingtrainedto induce
treesover theitemsin thetemporalsequences.2

Second,we might extendthe unified approachtaken so
far, by using the IFS decoderweightsto label the attrac-
tor terminalsaswell. Barnsley (1993)notesthateachpoint
on theattractoris associatedwith anaddresswhich is sim-
ply the sequenceof indicesof the transformsusedto ar-

2With respectto languagelearning,asupervisedalgorithmlike
back-propseemsmore appropriateto the sequentialtasksgiven
to Elman’s SRNs,thanit doesto a structure-learningmodel like
RAAM: whereasthesequenceof wordsis explicitly availableas
input to the language-learner, the putative syntacticstructureof
of that sequenceis much lessobvious. We might conceptualize
thelanguage-learner’s taskassomehow deducingasetof decoder
weightsthat will yield the appropriatesequences,given an SRN
representationof thesequentialitems.



rive on that point from otherpointson the attractor. The
address� is essentiallyan infinite sequenceof digits. There-
fore to achieve a labeling for a specificalphabetwe need
only considera sufficientnumberof significantdigits from
this address.With a two-transformdecoderandonesignif-
icantdigit, this schemegivesusbinaryaddresses(0 and1,3 and 4 ) sufficient for representinga largevarietyof formal
languages.This approachallows us to derive the decoder
weightswithout theneedfor anencoder, usinganumberof
evolutionaryalgorithmsinsteadof back-prop.Thefirst au-
thor is currentlyworking with anundergraduatestudentin
anattemptto co-evolveIFSRAAM decodersfor apursuer-
evadercommunicationgameof thesortdescribedin (Ficici
& Pollack 1998), wherethe “messages”consistof zeros
andones. Our hopeis that simultaneous,conflicting con-
straintsof thisgame(bepredictableto friends,confusingto
enemies)will yield a rich compositionaldynamics,based
solelyonthestringrepresentationsavailableto thecommu-
nicatingagents.

Relevance to Computational Synthesis
From the perspective of the currentsymposium,the main
insightof theIFS RAAM work is thattreatingthebuilding
blocks and compositionalrules of a systemas two sepa-
ratecomponentsmaybeaninherentlylimiting approach. It
wasonly afterunderstandingtheterminals(attractorpoints)
and non-terminals(transientsto attractor)as merely dif-
ferentaspectsof a singleunderlyingsystem(IFS) that we
were able to overcomethe severe limitations of the orig-
inal RAAM formulation. Although this result was ob-
tainedin the context of a particulartype of model (auto-
associative neuralnet)appliedto a particulartypeof com-
positionalstructure(fixed-arity tree), we believe that the
insight gainedfrom the result may have profound impli-
cationsfor thefield of computationalsynthesisasa whole.
In facingthechallengeof scalingto high complexities,we
maywell needto turn away from thetraditionaldichotomy
betweenbuilding blockandrule,andseekout substratesin
whichsuchdistinctionsemergeasartifactsof humanobser-
vation,ratherthanbeingstipulateddesignprinciples.
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