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Abstract

The pursuer-evader (PE) game is recognized as an im-

portant domain in which to study the coevolution of
robust adaptive behavior and protean behavior (Miller

and Cli�, 1994). Nevertheless, the potential of the

game is largely unrealized due to methodological hur-
dles in coevolutionary simulation raised by PE; ver-

sions of the game that have optimal solutions (Isaacs,

1965) are closed-ended, while other formulations are
opaque with respect to their solution space, for the

lack of a rigorous metric of agent behavior. This in-

ability to characterize behavior, in turn, obfuscates co-
evolutionary dynamics. We present a new formulation

of PE that a�ords a rigorous measure of agent behav-

ior and system dynamics. The game is moved from
the two-dimensional plane to the one-dimensional bit-

string; at each time step, the evader generates a bit

that the pursuer must simultaneously predict. Because
behavior is expressed as a time series, we can employ

information theory to provide quantitative analysis of

agent activity. Further, this version of PE opens vis-
tas onto the communicative component of pursuit and

evasion behavior, providing an open-ended serial com-

munications channel and an open world (via coevolu-

tion). Results show that subtle changes to our game

determine whether it is open-ended, and profoundly

a�ect the viability of arms-race dynamics.

1. Introduction

The pursuer-evader (PE) game is argued to be an impor-
tant domain for coevolutionary simulation (Miller and
Cli�, 1994) due not only to its ubiquity in nature, but
also because it provides a parsimonious, yet powerful,
framework of investigation: robust adaptive behavior,
open-ended coevolution, and adaptively unpredictable,
or protean, behavior all fall within its purview. In par-
ticular, the PE game is believed to be rich enough to
support the evolution of sophisticated perception, con-
trol, and predictive ability; insight gained by evolving
agents for the game may impact disciplines in the biolog-
ical and ethological communities. Nevertheless, the PE
game also presents methodological hurdles that highlight

shortcomings in the state of the art of coevolutionary
simulation itself. While some of these hurdles have dimin-
ished, most notably the red-queen e�ect (Cli� and Miller,
1995), many others remain that demand a more lucid
understanding of coevolutionary learning. Key issues in-
volve the conditions that instigate competitive arms races

or, to the contrary, mediocre stable-states (MSS) (Ange-
line and Pollack, 1994; Pollack et al., 1997), neither of
which are well understood.

We posit that the spatially-oriented PE game brings
at least three di�culties to coevolutionary research: 1)
the lack of a canonical form, which leads to 2) the ques-
tion of open-endedness, and 3) the lack of a rigorous met-
ric of agent behavior. First, there exist many versions of
the PE game. The earliest formulations (Isaacs, 1965) are
games of perfect information where optimal pursuit and
evasion strategies follow analytically from agent capabil-
ities. More recent work casts PE into a purely discrete,
non-kinematic reactive game (Koza, 1992; Reynolds,
1994), or into a continuous game of, essentially, imperfect
information that incorporates a two-dimensional physi-
cal model (Cli� and Miller, 1996), for example. Second,
these di�erences in game formulation impact the nature
of the solution space; where PE formulations have opti-
mal solutions, the game is closed-ended and, therefore,
categorically less interesting than an open-ended domain.
Further, these optimal solutions are not compelling ex-
amples of evolved complexity; a formulation where op-
timal pursuit is de�ned simply by reactively moving di-
rectly towards the evader does not even require the pur-
suer to hold state. Third, and �nally, agent behavior in
PE is currently described exclusively in subjective, qual-
itative terms; as (Cli� and Miller, 1996) point out, there
does not yet exist a quantitative, operational measure by
which one can characterize and judge agent behavior.

The hypothesized potential of the PE game is thus
largely unrealized due to the opaqueness of the do-
main, of coevolutionary dynamics, and their interaction;
we present a reformulation of the pursuer-evader game
that helps clarify all three. Simply, we move the arena



of action from the two-dimensional plane to the one-
dimensional bitstring; at each time step, the evader gen-
erates a binary symbol that the pursuer must simulta-
neously predict. Games last one thousand time steps. A
tally of correct guesses is used to derive players' scores.
Because behavior is expressed as a binary time series we
can take advantage of information theory to provide pre-
cise characterizations of agent behavior and evolutionary
progress.

As importantly, recasting the PE game in this way
opens vistas onto the communicative component of pur-
suit and evasion behavior. Recent work by (Di Paolo,
1997) raises a concern that much research on communi-
cation con
ates functional utility with operational pro-
cess: the utility of communicative behavior may very well
be that it confers adaptiveness, yet communication so
de�ned fails utterly to describe the behavior itself. Sim-
ilarly, the denotative function of `information' is often
con
ated with the process that generates it. In our PE
game we can characterize pursuit and evasion behavior
outside of the context of selective advantage. Further,
we operationalize the behaviors and unify the notion of
informationwith the structure of behavior. E�ective pur-
suit requires behavioral coordination with the evader. Ef-
fective coordination requires the induction of the evader's
behavioral dynamics by the pursuer. This process of in-
duction represents our notion of communication.

Nevertheless, \communication" obviously encom-
passes a much broader range of phenomena than pursuit
and evasion | presently too broad to be captured en-
tirely within a single experimental framework. A coarse
taxonomy might divide much research to-date into two
classes: convergent systems and competitive systems. Ex-
amples of the former include work that focuses on es-
tablishing common conventions of behavior. In (Werner
and Dyer, 1991), female and male agents converge onto a
signaling convention that facilitates reproduction. Each
utterance is fed from female to male via a three-bit par-
allel channel; in the most adaptive pairs, the utterance,
produced by a \sighted" but stationary female, causes
the \blind" male to move in one of four directions such
that it draws nearer to the female.

Other work builds a self-organizing system that con-
verges onto a convention of word/meaning associations
(Steels, 1997). The universe of discourse is the set of
agents themselves, each of which is uniquely de�ned by
a �nite set of meanings, or feature/value pairs. Experi-
ments described have on the order of twenty agents, �ve
meanings, and �ve words. The agents build lexicons that
associate the �nite set of words to the feature/value pairs
and use word groups to signify particular agents. This
domain is claimed to be open in the sense that it can
assimilate new meanings (features or values) and agents
at any time, even after a convention has emerged. Nev-
ertheless, the semantic and denotative material used to

establish a communicative convention is supplied exter-
nally from the system, not created by it; any conven-
tion that emerges is merely a re
ection of a pre-existing,
hand-built world.

In the second category of the taxonomy, we have sys-
tems that eschew convention; competitive games are de-
signed to promote ever increasing \complexity," the pre-
cise meaning of which is inevitably domain-dependent.
One game of imitation asks agents to observe another's
behavior for some time and then reproduce that behav-
ior (Kaneko and Suzuki, 1994); the observation and re-
production phases of the game last 255 and 32 times
steps, respectively. Agents are coevolved to become bet-
ter imitators and more di�cult to imitate. Though be-
havior does become more complex, the primary cause
of complexity likely derives from inductive bias in the
substrate: agent behavior is synonymous with the lo-
gistic map. The evolutionary algorithm performs a one-
dimensional search in the space of the logistic map's con-
stant, which entirely determines agent behavior. While
this system reveals what the adaptive advantages of var-
ious behaviors are according to the rules of the game, the
substrate is so impoverished that complexity of behavior
bears no meaningful relationship to agent complexity or
evolutionary search.

A comparable situation is found in a system where
grammars evolve to climb the Chomsky hierarchy
through a competitive game of string generation and
parsing (Hashimoto and Ikegami, 1996). The substrate
in this case consists of explicit production rules, how-
ever, and the mutation operators allow the system to
traverse the hierarchy easily. Indeed, the complexity of
the evolved grammars is not determined by observing
agents' behaviors (word length is limited to six symbols),
but rather by looking directly \under the hood" at their
production rules.

The above examples are emblematic of issues com-
mon to a great deal of work on communication, namely:
powerful representations, small-scale communicative (be-
havioral) acts, �xed channels, and a �xed world. Viewed
as an experiment in communication, our modi�ed PE
game provides 1) an open-ended serial communications
channel (Gregory M. Saunders, 1996), which can lead
to 2) substantial communicative acts, and 3) an open
world (via coevolution). Too, information theory pro-
vides a rigorous and accepted vocabulary for describing
signal properties. Further, the substrate used in our ex-
periments is a recurrent arti�cial neural network; though
powerful, the substrate is non-speci�c to our domain,
and thus \weak." Finally, as described below, we seek
to bridge the gap between convergent and competitive
systems and explore the tension thus created.

Results show our domain to be an e�ective instrument
for research in coevolution, pursuer-evader dynamics,
and communication. Our methodology is built around



the analytical tools made available by information the-
ory. We are able to analyze agents that evolve and use
hand-built agents of known ability to in
uence evolu-
tion. By characterizing generator behavior, we are able
to identify variations of the game that lead to mediocre
stable-states or de�ne optimal solutions. These results
lead us to a variation of our game that avoids both.

This paper is organized as follows: Section 2 details
our version of the PE game and contrasts it with the
more traditional spatial formulations; Section 3 describes
the recurrent arti�cial neural network substrate used to
represent our agents, and introduces the evolutionary al-
gorithm; Section 4 de�nes concepts from information the-
ory that provide our metric of agent behavior and coevo-
lutionary progress; Section 5 places these concepts within
the framework of a coevolutionary arms-race; Section 6
analyzes our results; Section 7 summarizes our work and
points to future directions for our research.

2. Game Setup

2.1 Two-Player Pursuer/Evader
Illustrated in Figure 1, our basic PE game consists of two
agents that play in discrete time and space. The gener-

ator (evader) is an agent that ballistically produces a
binary time series, that is, its behavior is determined
solely by its own internal dynamics; at each time step,
the generator simply outputs a new bit. The predictor

(pursuer) is an agent that, given its own internal state
along with the generator's output from the previous time
step as input, simultaneously tries to predict the genera-
tor's output for the current time step. Each match has a
duration of one thousand time steps. Thus, our generator
corresponds to a \blind" spatial evader, as its behavior
is not modulated by that of its opponent. This modi�ca-
tion \clamps" one side of the pursuer/evader dynamical
system; indeed, a \sighted" evader would simply be a
negated pursuer | an agent that predicts its opponent
in order to perform the opposite action.

In addition, our game does not de�ne a \capture"
predicate; agent performance is measured strictly in
terms of the number of correct and incorrect predictions
made, which is analogous to measuring time-in-contact
between pursuer and evader over the course of a spatial
match. Too, we discover that, due to its discrete behav-
ior, our generator corresponds to a particularly nimble
spatial evader, as its current \location" in no way con-
strains where it may be in the next time step; we have
at best a very rudimentary kinematic model.

Our variant game may thus appear quite foreign. In-
deed, it resembles the penny matching game, a version of
which is used in a non-predictive context in parasite/host
gene-matching simulations (Hamilton et al., 1990). Nev-
ertheless, we contend that our modi�cations distill the
traditional PE game to its informational essence: given
such an agile evader, the (equally agile) pursuer must

induce, from observation of behavior, a model of the
evader in order to be e�ective. The quality of the model
is demonstrated through the pursuer's prediction abili-
ties. This game, therefore, highlights the need to evolve
perceptual, computational, and \motor" abilities in the
pursuer. The search for e�ective strategies conducted by
the simulated evolution traverses a wide range of such
abilities; thus, while our game is objectively one of per-
fect information for the pursuer | it has the opportu-
nity to know the evader's actions | pursuers are not
necessarily endowed to make use of this knowledge. In
e�ect, the game easily admits the possibility of informa-
tion loss, albeit within the evolutionary substrate. In con-
trast, our game is invariably one of imperfect information

for the evader; only through coevolutionary feedback do
the evaders receive any information.

G P

Outputs @ Time

Input from Time t-1

t

Figure 1 Basic Game Setup. At each time step, the predictor
receives the output of the ballistic generator from the previous

time step and outputs a prediction of the generator's behavior

for the current time step.

2.2 Three-Player Pursuer/Evader
To synthesize convergent and competitive system dy-
namics, we introduce a third player into our game |
a \friendly" predictor. We imagine the evaders to be in-
dividuals literally under constant predation who must,
therefore, mate while \on the run." But, the mate must
be able to keep up with the evader. The three-player

PE game now consists of one ballistic generator that at-
tempts to behave in a manner that is both predictable
to the partner (friendly predictor), to allow mating, and
simultaneously unpredictable to the pursuer (hostile pre-
dictor), to allow evasion.

This modi�cation to the game is far from capricious.
Prediction is intrinsically more di�cult than generation;
if we believe the Machine Learning aphorism that \you
can only learn what you almost already know," then we
must be mindful that generators might become too com-
plex for predictors to learn against, breaking the coevolu-
tionary arms race. Worse, generators might become in-
herently unpredictable. The friendly partner serves to
dampen any such tendency by forcing generators to be
predictable to someone. In terms of communication, this
arrangement can be viewed as a competitive game be-
tween the two agent populations (generators and part-
ners) trying to evolve a proprietary behavioral conven-



tion, and the third agent population (pursuers) trying to
crack the convention.

For each generation of evolution, all generators are
played against all partner and pursuer predictors. Scores
across all games are averaged to derive �tness values.
Game scores for all agents range between [0, 1]. The ex-
act formulas used for scoring predictors are discussed be-
low in the experiment descriptions. A generator's score is
computed by subtracting the average scored by its pur-
suers from the average scored by its partners and nor-
malizing the result to fall within the range [0, 1]; values
above 0.5 thus indicate that a generator is able to make
itself more predictable to partners than pursuers.

3. Substrate and Evolutionary Algorithm

Our agent substrate is an enhanced version of the
discrete-time, deterministic recurrent arti�cial neural
network used in the GNARL system (Angeline et al.,
1994); the network enhancement consists of a set of
nine new transfer functions, min, max, sum, product, sig-
prod (sigmoid applied to product), unit-time-delay, sign,
uni-linear-truncate (truncate outside range [-1, 1]), dec-
linear-truncate (truncate outside range [-10, 10]), in ad-
dition to the traditional sigmoid function. These supple-
mentary transfer functions increase the range of behav-
ior signi�cantly, though by no means do they guarantee
agent success. Unfortunately, these new functions also
make network analysis much more di�cult.

GNARL coevolves the networks' internal architec-
tures and weights. Generators may have up to 60 hidden
nodes and 400 weights, while predictors are given more
generous limits of 150 hidden nodes and 700 weights due
to the relative di�culty of their task. These limits are
not known to be optimal and are, in fact, never reached.

The input and output layers of the networks are �xed.
All networks have a single, real-valued output that is
thresholded to a binary value. Though the game for-
mally de�nes friendly and hostile predictors to have a
single input, we currently provide both predictor roles
with a small bu�er to enhance performance: the predic-
tors have �ve binary-valued inputs, corresponding to the
last �ve outputs of the generator at times t� 1; :::; t� 5.
This enhancement in no way obviates the need for a re-
current network architecture: predictors must still induce
generator behavior by observation over time.

The GNARL algorithm performs its search solely
through mutation| crossover is not used. Five mutation
operators are implemented: change-weights, add-hidden-
nodes, remove-hidden-nodes, add-weights (connections),
and remove-weights (connections). When a hidden node
is removed, all e�erent and a�erent connections from
and to that node are removed as well. New nodes are
added with no connections. Only a single mutation op-
erator is applied to a network when it is modi�ed. Net-
work weights are modi�ed by adding a Gaussian to each

weight. The overall severity of mutation performed to a
network is determined by its temperature, which is an in-
verse function of its �tness. The higher the temperature
of a network, the more severe the mutation will be.

Three distinct agent populations of size 75 are main-
tained, one each for the evaders, friendly partners, and
hostile pursuers. In each generation of coevolution, all
evaders are matched with all friendly and hostile predic-
tors. After evaluation, approximately 75% of the worse
half of each population is replaced by mutated versions
of agents in the better half.

4. Metric of Behavior

Two key notions from the �eld of information theory pro-
vide our game with a rigorous and quantitative metric of
agent and system behavior, namely entropy and order.
Rather than give their formal mathematical de�nitions,
we emphasize a more intuitive explanation of these con-
cepts and their implications as they relate to our domain.
Formal detail can be found in (Hamming, 1980).

4.1 Entropy
Information theory is concerned with characterizing sig-
nals and their transmission. A signal source produces
some symbol, which is passed through a channel to a
receiver. We assume, for our purposes, that the channel
does not distort the signal. The entropy, h, of a source
re
ects the receiver's uncertainty as to what it will re-
ceive. The higher the entropy, the less certain the receiver
is, and the more it learns once the symbol is actually
received. Thus, entropy is a measure of the amount of
information in a signal. More precisely, the entropy of a
source is equal to the average number of bits of informa-
tion produced (conveyed) per generated symbol.

By indicating the uncertainty of the receiver, entropy
inversely indicates the degree to which the source can be
predicted by the receiver, that is, the receiver's certainty.
We must be careful to point out that the receiver's opin-
ion of what the next symbol will be is based exclusively
upon the observed behavior of the source | assumptions
about the source's internal operation are not made.

4.2 Order
If the receiver's certainty is based upon observation of the
source, we can ask \How much observation is required to
maximize the receiver's certainty?" For example, let us
consider some binary source, S. If the receiver only tallies
the number of occurrences of 0 and 1, this source may
be found to produce each 50% of the time. With this
amount of behavioral context, the receiver's certainty of
the next symbol is zero and entropy is measured at h =
1:0. Nevertheless, it may be that if the receiver keeps
track of the previous symbol received, then the source
will be found simply to be alternating between 0 and 1 ;
in this case, a behavioral context of one symbol makes
the source completely predictable. Measured entropy is



now h = 0:0. If the receiver keeps track of yet another
symbol, now the previous two, no additional advantage
is gained with respect to the source, S.

The minimal amount of behavioral context needed to
maximize the receiver's certainty of a source is the or-

der of the source. The order is equal to the number of
symbols that must be tracked, that is, the size of the his-
tory window needed to maximize receiver certainty. The
entropy measured when using a window size equal to a
source's order is the true entropy of the source; window
sizes larger than a source's order will produce measure-
ments equal to the source's true entropy, but not lower.
Thus, a receiver cannot increase its certainty of a source
by using a window size larger than the source's order.
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Figure 2 Measured vs. True System Entropy and Order.

4.3 Order Statistics and Measured Entropy
With our example source, S, above, we �rst measured en-
tropy without keeping track of the previously generated
symbol; this is equivalent to measuring entropy with a
window size of zero, or measuring with zero-order statis-
tics. Our second measurement, then, used a window size
of one, or �rst-order statistics. Our zero-order measure-
ment gave us an entropy of h = 1:0, but the �rst-order
measurement fell to the true entropy of h = 0:0. Indeed,
measured entropy will always monotonically decrease as
window size is increased, and eventually reach a source's
true entropy, as illustrated in Figure 2.

A source with true entropy h = 0:0, such as S, is
completely predictable and regular. In contrast, a bi-
nary source with maximal true entropy of h = 1:0 en-
tirely lacks structural regularity and cannot be predicted
better than random, on average, without speci�c knowl-
edge of its internal works. For a source with true entropy
somewhere in between, 0:0 < h < 1:0, there exists both
a regular component and an irregular component to the
source's signal. The regular component is that portion
of the signal that can be reliably predicted, while the
irregular component is that portion that cannot. By def-
inition, the information content of a source must reside
exclusively in the irregular component.

4.4 Complexity
System order is also equal to the logarithm of the max-
imal number of states required for a Markov model to
reproduce behavior statistically identical to a source; en-

tropy re
ects the degree of certainty in the model's state
transitions. Consider a randomly behaving binary source,
with true entropy of h = 1:0. We �nd that the minimal
window size needed to maximize a receiver's certainty of
this source is zero. Since the order of such a source is
zero, the equivalent Markov model requires 20 = 1 state
to reproduce statistically identical behavior. This result
is understandable since there exists no signal structure to
capture through state. Thus a random source is consid-
ered to be simpler than a completely predictable source
of higher order; the size and structure of the Markov
model is what counts, not the compressibility of the pro-
duced signal. This view is substantially similar to the no-
tion of statistical complexity found in (Crutch�eld, 1994).

5. Where's the Arms Race?

When considered together, order and entropy form
the nexus between generator complexity and predictor
power: if a signal has a regular component, then that
component can be predicted assuming that the power of
the predictor is su�cient; that is, the predictor must use
an order statistic, i.e., history window, of size m � n,
where n is the order of the signal being predicted. If the
predictor's window size is m, such that m < n, then it
will be able to predict only that portion of the signal's
regular component that is detectable when measuring
the signal's entropy withmth-order statistics. Recall that
as window size decreases, measured entropy increases;
thus, predictors using smaller windows will necessarily
be weaker than those using larger windows.

Because irregular signal components are inherently
unpredictable, and our three-player game requires gen-
erators to be predictable to friendly predictors, gener-
ators must maintain substantial regular components in
order to succeed. Nevertheless, generators need to be un-
predictable to the hostile predictors. The only way both
goals can be e�ectively met is for the generators and
friendly predictors to evolve system order and predictive
power that are closely matched, yet greater than the pre-
dictive power of the hostile predictors.

Regular signals allow for a general solution to the
prediction task. A predictor of power n can predict any
generator of order m � n; to escape prediction, there-
fore, a generator has no choice but to increase its order
above n. The amount by which the generator increases its
order and the unpredictability it exhibits at lower order-
statistics determines how much the predictor's perfor-
mance degrades. Of course, a generator may increase its
true entropy instead; doing so, however, will also defeat
any hopes of being predicted by the friendly predictor.

The assumption up to now has been that predictors
will actually evolve such a general prediction algorithm.
Of course, this represents an idealized solution; in real-
ity, the issue of generalization vs. specialization is inti-
mately tied to that of population diversity and domain



\physics." Nevertheless, having some notion of what ide-
alized predictors can and cannot do, and what an ideal-
ized arms race looks like, provides a useful framework in
which to examine empirical results.

6. Results

6.1 Adaptive Pursuit Behavior
Our �rst experiments test the nominal capabilities of our
recurrent arti�cial neural networks with respect to our
problem domain. Due to the nature of our game, we can
easily hand-build predictors of known power through a
simple modi�cation of the algorithm used to compute
entropy. We thus craft an environment of two predic-
tors of unequal power and evolve generators to become
maximally unpredictable to the weaker predictor while
remaining maximally predictable to the more powerful
one. The generators that evolve successfully �ll the niche
between the two predictors. We use a variety of such
hand-built predictors to evolve a set of 70 generators
that range mostly over system-orders two through eight.

We then evolve predictors against this �xed set of gen-
erators. The operation of one such predictor is shown in
Figure 3. The �gure depicts the operation of our predic-
tor over 800 time steps. During these 800 time steps, the
predictor consecutively plays against eight di�erent gen-
erators (against which it evolved), each for one hundred
time steps. The generator's behavior is shown directly
above the predictor's in each match. Each generator net-
work has its activation levels reset to zero at the begin-
ning of its match. In contrast, the activation levels of the
predictor network is reset only once, at the beginning of
the �rst match at time-step zero; thus, from the predic-
tor's point of view, the generator changes its behavior
every one hundred time steps.

During evolution, however, predictors do have their
activation levels reset at the beginning of each match.
Therefore, predictors are not explicitly evolved to adapt
to such changes in generator behavior. Nevertheless, Fig-
ure 3 shows very compelling evidence of adaptive \pur-
suit" behavior against these generators; the sequence in
which the generators are met does not a�ect the predic-
tor's performance. Of special interest is the entrainment
behavior exhibited by the predictor at the beginning of
each match; in all matches (except the �rst), we see the
predictor continue its pursuit behavior from the previous
match for some period of time before it begins to entrain
to the new generator's behavior.

From Figure 3, we see that the predictor is always
\paying attention" to the generator, that is, the pre-
dictor does not settle into a single, immutable pattern
of behavior. The predictor shows sensitivity to the fre-
quency, phase, and duty-cycle of the �rst six generators.
Further, generators 7 and 8 show that the predictor is
capable of inducing more complex, \compound" signals,
though generator 7 is not perfectly induced. In summary,
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Figure 3 Adaptive Predictor Behavior. An evolved predictor
consecutively plays against eight di�erent generators, each for

100 time steps. Generator behavior is shown directly above

the predictor's in each match.
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Figure 4 Predictor vs. Hard Generator. The evolved predic-

tor is unable to entrain to this 5th-order generator.

these initial tests suggest a space of network behaviors
rich enough to support coevolution.

6.2 Complexity and Computational Demand
Because the generators described above are ballistic and
evolved to be predictable to someone, they settle quickly
into regular (periodic) patterns of behavior. Though all
regular generators have true entropies of zero, they can
make very di�erent demands of a predictor. For exam-
ple, the generators in Figure 3 all have a true entropy of
zero, but are of orders 2, 2, 2, 3, 3, 3, 13, and 6 (from
top to bottom). The predictor in Figure 3 does very well
against these generators. Yet, Figure 4 shows our predic-
tor to perform no better than random guessing against
a particular 5th-order generator. Since order indicates
the minimal number of symbols that must be tracked to
maximize prediction, this 5th-order generator should be
easier to predict than either the 6th or 13th-order gen-
erator, against which the predictor does well.

When we measure the entropies of these three genera-
tors with window sizes zero through thirteen, we see why
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Figure 5 Entropy Curves for the 5th, 6th, and 13th-Order
Generators. The X axis represents the window size used to
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neither entropy nor order tells the complete story alone.
Figure 5 graphs the entropy contours that are produced
by measuring entropy with di�erent window sizes. The
solid line is the entropy contour for the 13th-order gen-
erator; we see that this generator is already substantially
predictable with a much smaller window of four, but re-
quires manymore symbols to be tracked to be completely
predictable. The dashed line is the contour for the 6th-
order generator; this and the 13th-order generator are
almost equally predictable with a window of size �ve.
Yet, to be fully predictable, only one more symbol need
be tracked for the 6th-order generator. The dotted line
shows the entropy contour for the hard 5th-order gen-
erator; this generator's behavior appears random until
the window size reaches �ve, whereupon it is completely
predictable. That is, for all length-four subsequences of
this generator's output, the next symbol could be 0 as
easily as 1 ; all 32 possible length-�ve subsequences thus
appear in the output. For each length-�ve subsequence,
however, the next symbol is uniquely determined.

Thus, while the 5th-order generator requires the
fewest symbols to be tracked to be fully predictable, it
also has the most contingencies to be resolved; repre-
senting and resolving these contingencies is computation
that a generalized predictor must perform. All of the 32
possible �ve-bit patterns must be tracked to know unam-
biguously what the following bit will be. In contrast, the
13th-order generator requires only 17 of the 8192 pos-
sible 13-bit patterns (0.2%) to be tracked to determine
subsequent bits.

The number of unique n-bit patterns found in an nth-
order periodic sequence is equal to the period of the se-
quence. Thus, the 5th-order generator of Figure 4 has a
period of 32, whereas the 13th-order generator of Figure
3 has a period of 17. Further, the period of a sequence in-
dicates the number of functionally distinct states that a
predictor mustmaintain in its steady-state behavior (i.e.,
after entrainment). Thus, we can say that the 5th-order
generator is more di�cult to predict simply because it
requires more states. Nevertheless, the steady-state de-
mands placed on a predictor tell us nothing about the
computational \e�ort" the predictor spends to arrive at
its steady-state; the measure of period does not allow us

to distinguish between the �(2n) distinct period-n se-
quences. A periodic sequence of 31 ones followed by a
zero, a sequence of 16 ones followed by 16 zeros, and
the sequence seen in Figure 4 do not place identical de-
mands upon a predictor and are not equally di�cult to
evolve against. Information theory thus gives us a way
to more e�ectively characterize \hardness." This ability
is invaluable when investigating coevolutionary learning.

6.3 \Boilerplate" Strategies
The generality of a predictor strongly re
ects the di-
versity of the generators against which it evolved. For
example, when we evolve predictors exclusively against
4th-order and 5th-order generators, we �nd the predic-
tors to be rather specialized; the ability to predict these
generators does not necessarily confer an ability to pre-
dict lower-order behaviors. Indeed, despite its success,
the predictor in Figure 3 performs poorly against a sim-
ple, period-eight square-wave behavior.

If we evolve predictors against generators of various
long periods, but of near 50% duty cycle, we �nd that
a simple copier prediction strategy becomes tenable |
one that simply outputs what it saw in the previous time
step; such a strategy only misses on the generator's tran-
sitions between zero and one and \predicts" the rest (ma-
jority) of the sequence correctly. Other copier variants
seen appear tuned to particular periods, such that any
pattern of the appropriate period will be matched after
one cycle. Such mediocre solutions occur easily where (a
lack of) generator diversity allows.

6.4 Mediocrity and Protean Behavior
We begin our analysis of coevolutionary results by ques-
tioning the earlier-stated need for a friendly partner pre-
dictor. We describe two versions of the two-player PE
game in a coevolutionary setting; the friendly partners
are omitted. The versions are di�erentiated solely by the
scoring method used to reward the pursuer predictors.
The �rst scoring method (A) gives predictors a point
for each correct prediction. The tallies are then normal-
ized to the percentage of correct predictions. A gener-
ator thus receives maximal reward when a predictor is
unable to make any correct predictions. The second scor-
ing method (B) tallies correct predictions, like method
A, but predictors are now rewarded only to the extent
that they perform better than random; predictors that
get less than or equal to 50% correct prediction receive a
score of zero. In this case, a generator receives maximal
reward for causing a predictor to perform no better than
random. In both cases, the stage appears set for an arms
race. We �nd, however, that the scoring methods have
important repercussions in coevolutionary dynamics.

We gauge generator behavior by again taking entropy
measurements over a range of window sizes to get entropy
contours. Figures 6 and 7 graph the contours for the best
generators that evolve over evolutionary time in sample



runs for scoring methods A and B, respectively. Both
graphs show that generator behavior remains consistent
over the course of the run; we have no indication of an
arms race. The generators coevolved with method A are
substantially predictable and regular, as evidenced by
the rapidly dropping contours. The generators coevolved
with methodB, on the other hand, are considerably more
irregular (unpredictable), as the contours decline gradu-
ally and consume a much greater volume of space in the
graph. This contrast in outcome is found even in pairs of
runs that start with identical initial populations.
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Figure 6 Scoring Method A| Reward for Each Correct Pre-

diction. Rapidly declining entropy contours indicate substan-
tially predictable behavior.
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Figure 7 Scoring Method B | Reward for Predicting Better

than Random. Gradually declining entropy contours indicate

signi�cantly more complex behavior than that seen by scoring

method A.

The di�erence between scoring methods is manifested
quickly, if not immediately. Since the initial conditions
are similar (or, indeed, identical if we wish) we know
that we have isolated a selection pressure that stems sim-
ply from how games are scored: regular behavior is more
adaptive to scoring method A than is irregular behav-
ior. That regular generators out-score irregular ones by
method A indicates that simple prediction strategies can
be elicited from the predictor population | prediction

strategies against which the most adaptive generators
act as potent anti-signals, sequences that make predic-
tors perform worse than random (Zhu and Kinzel, 1997).
Indeed, the champion generators shown in Figure 6 re-
ceive scores that indicate exactly this. Nevertheless, if the
ballistic generators are to be viable as anti-signals, then
there must exist some su�cient amount of homogeneity
within the predictor population. This homogeneity ap-
pears to reverberate through the system; rather than en-
ter an arms race, the two populations fall into a circular
pattern of mutual specialization, or convention chasing

| a mediocre stable-state.
In contrast, scoring method B selects for an irregu-

lar behavior that reasonably captures the notion of pro-
teanism in the PE game. Figure 8 provides a sample
of behavior from a typical generator produced by this
run. This behavior is adaptive because it guarantees a
minimal predictor score, regardless of what the predic-
tor does, short of specialized memorization. Indeed, while
the generators in Figure 7 are not actually fully irregu-
lar, they are complex enough to cause the best predic-
tors from this run to score only an average of 6% better
than random guessing (53% correct prediction); that is,
these generators are near optimal with respect to their
predictor opponents. By de�ning an optimal strategy,
namely random behavior, method B makes the game
closed-ended.
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Figure 8 Typical Behavior of a Protean Generator.

6.5 Pursuing a Communicative Convention
The above results suggest that the two-player PE for-
mulation may be problematic if we wish to develop an
open-ended arms race. Particularly, the two-player game
may oversimplify the ecology by inadequately placing
constraints upon generator behavior. In the three-player
PE game, we maintain scoring method B to promote
complexity and simply add the friendly predictor part-
ner. Now, the evader and friendly partner must establish
a convention of behavior that allows the partner to en-
train to (coordinate with) the evader, but not the hostile
pursuer. We �nd that the tension created by the need to
\mate" with (be predictable to) the partner profoundly
a�ects evasion behavior. Far from extinguishing heated
competition, the triangle of relationships gives rise to
much more lively system dynamics than those found in
the absence of friendly partners.

In contrast with Figures 6 and 7, Figure 9 shows that
generator complexity in the three-player game is not at
all consistent over evolutionary time; we see an overall
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Figure 9 Entropy Contours from Full Game. Overall increase
in complexity indicates features of an arms race.
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Figure 10 Skill Accumulation in Pursuer. Champion predic-

tors that arise later in evolutionary time are more generalized

and perform better against the set of champion generators.

increase in both order and entropy. Figure 10 graphs
the performance of the champion pursuers from this run
against the set of champion generators of Figure 9. We
see clearly that the pursuers created later in evolutionary
time are more skillful. The abilities of the friendly pre-
dictors likewise increase. Thus, we have reasonable indi-
cations of an arms race between the cooperating agents
(evaders and friendly partners) and the hostile pursuers.

More typically, however, the three-player game pro-
duces punctuated shifts in generator behavior, from sim-
ple to complex and back again, rather than the mono-
tonic increase in complexity indicative of an arms race.
Indeed, Figure 9, used to argue for the presence of an
arms race above, also shows abrupt retreats in genera-
tor complexity. What might the adaptive utility of these
sudden changes be? Data from a di�erent run suggests
a hypothesis. The top three plots in Figure 11 graph
the average population �tness of the friendly predictors,
hostile predictors, and generators, respectively. Because
average generator �tness values are almost always above
0.5, we know that the generators usually succeed in mak-
ing themselves more predictable to the friendly partners
than to the hostile pursuers. But, the degree of their suc-
cess varies considerably during the run.

The bottom plot in Figure 11 depicts the order of the
best generator in each generation. We see that generator
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Figure 11 Punctuated Shifts in Generator Behavior in Full

Game. From top to bottom, average �tness of friendly predic-

tor partners, pursuer predictors, and generators, and order of
best generator in generation, over evolutionary time.

order is most stably maintained over the onset and du-
ration of periods of generator success | periods where
the evaders and partners share a private convention for
coordinated behavior. This very stability is what allows
the hostile pursuers to eventually learn the convention,
however. Once this happens, the propriety of the conven-
tion is lost and generator �tness reaches its nadir. This
tends to be the moment at which the order of the best
generators becomes unstable, often alternating between
high-order and low-order behaviors. We suspect that this
instability is adaptive because it forces the two, now sim-
ilarly skilled, predictor populations to diverge in abil-
ity. Once su�ciently di�erentiated, some new behavioral
convention can be found that only the friendly partner
can predict. A new period of evader/partner coordina-
tion thus emerges.

The system dynamics of the three-player domain can
resemble pursuit and evasion behavior; the meta-PE
game exists between populations and is played over evo-
lutionary time. The hostile pursuer population is \chas-
ing" the behavioral convention of the evader and part-
ner populations. To escape, the evader and partner pop-
ulations must alter their convention. In this particular
run, the speci�c escape strategy looks like a type of pro-
tean behavior on the part of the generator population;
when the pursuer population \catches" the behavioral
convention, the erratic changes in generator order serve
to mislead the pursuer's evolutionary course. The earlier
reference to cycling in host/parasite gene sequences is
particularly apt here.

We must point out, however, that this run presents a
particularly vivid example of the meta-PE phenomenon.
Other runs show the predictor population to be, as a
whole, unable to converge onto the behavioral conven-
tion of the evader and partner populations; in these cases,
changes in generator behavior cannot so easily be tied to
those of the pursuers. Nevertheless, we believe that our



methodology will allow us to clarify our data by contin-
uing work with hand-built environments.

7. Conclusions

We show that pursuer-evader can be reformulated as a
one-dimensional, time-series prediction game. Informa-
tion theoretic tools provide quantitative analyses and
help operationalize the domain. Because the linear PE
game emphasizes the informational (in the technical
sense) aspects of pursuit and evasion behavior, it cap-
tures a fundamental aspect of communication.

Our behavioral metrics also yield informative views
of coevolutionary dynamics. Though we can create good
evaders and pursuers with simple evolution, we �nd
that successful coevolution does not automatically fol-
low. Subtleties in scoring method strongly in
uence the
outcome of the two-player game; one method leads to
mediocrity while the other de�nes an optimal strategy
(protean behavior) and closes the world. The combina-
tion of competitive and convergent pressures of the three-
player game is needed to avoid simple mediocre stable-
states while keeping an open world.

Tools exist to characterize generator behavior and
hand-build predictors of known power. This toolset has
recently been augmented to include new methods that
allow us to construct by hand generators with particular
entropy contours and systematically analyze the general-
ity and power of evolved predictors. Our future work will
feature these techniques in a continued investigation of
generator complexity, the computational demands gen-
erators place on predictors, and the ease with which pre-
dictors evolve against them. The �nal results we report
are not fully understood and will require these tools to
elucidate.
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