
Challenges in Coevolutionary Learning: Arms-Race Dynamics,
Open-Endedness, and Mediocre Stable States

Sevan G. Ficici and Jordan B. Pollack

DEMO Lab
Computer Science Department

Volen National Center for Complex Systems
Brandeis University

Waltham, Massachusetts USA
http://www.demo.cs.brandeis.edu

Abstract

Coevolution has been proposed as a way to evolve a
learner and a learning environment simultaneously such
that open-ended progress arises naturally, via a com-
petitive arms race, with minimal inductive bias. Never-
theless, the conditions necessary to initiate and sustain
arms-race dynamics are not well understood; mediocre
stable states frequently result from learning through
self-play (Angeline & Pollack 1994), while analysis usu-
ally requires closed domains with known optima, like
sorting-networks (Hillis 1991). While intuitions regard-
ing what enables successful coevolution abound, none
have been methodically tested. We present a game that
a�ords such methodical investigation. A population of
deterministic string generators is coevolved with two
populations of string predictors, one \friendly" and one
\hostile"; generators are rewarded to behave in a man-
ner that is simultaneously predictable to the friendly
predictors and unpredictable to the hostile predictors.
This game design allows us to employ information the-
ory to provide rigorous characterizations of agent be-
havior and coevolutionary progress. Further, we can
craft agents of known ability and environments of known
di�culty, and thus precisely frame questions regarding
learnability. Our results show that subtle changes to
the game determine whether it is open-ended, and pro-
foundly a�ect the existence and nature of an arms race.

Introduction

Most machine learning (ML) systems operate by opti-
mizing to a �xed �tness function, or learning environ-
ment, and typically require considerable inductive bias
in order to succeed; this inductive bias takes the form
of either a learner that is pre-adapted to the learning
environment, or a carefully gradient-engineered �tness
landscape that provides the learner with a clear path
towards a global optimum. In both cases, however, the
onus inevitably falls upon the human user of ML technol-
ogy to imbue the learning system with the appropriate
bias. Thus, results are often attributable to inductive
bias as much as, or more than, the ML methods used.
As learning domains become more intricate and demand-
ing of ML systems, however, both methods of bias engi-
neering quickly become infeasible: gradient engineering

turns overwhelmingly complex, and, following the obser-
vation that \you can only learn what you almost already
know," pre-adaptation requires the learning problem to
be already substantially solved.

To address these problems, coevolution has been pro-
posed as a way to evolve a learner and learning environ-
ment simultaneously such that progress arises naturally
with minimal inductive bias. In coevolution, however,
the terms `learner' and `environment' no longer denote
absolute roles, but relative ones; each participant in a
coevolutionary system is both a learner as well as an
environment against which other participants learn |
the conventional asymmetry between learner and envi-
ronment does not exist.

The key to successful coevolutionary learning is a com-
petitive arms race between opposed participants. Com-
petitors must be su�ciently well-matched in skill to force
each other to improve. The di�erence between what
participants already know and what they must learn
is critical: if one competitor becomes relatively expert
such that the opponent is \overpowered," then the op-
ponent will fail to �nd a gradient towards improvement
and be subsequently unable to o�er continued challenge,
thereby breaking the arms race. If a balance in the arms
race is maintained, on the other hand, coevolution is hy-
pothesized to provide a way to gradually evolve opposing
forces such that each is always suitably pre-adapted to
learn against the other while, at the same time, o�ering a
suitably engineered gradient against which the other can
learn. In open-ended domains, coevolutionary progress
can, theoretically, continue inde�nitely.

Nevertheless, the precise conditions necessary to ini-
tiate and sustain such arms-race dynamics are neither
de�nitively known nor well understood; mediocre stable-
states (MSS) (Angeline & Pollack 1994; Pollack, Blair,
& Land 1997) are a common result in coevolutionary
systems, where the agents in the evolving population(s),
to anthropomorphise, discover a way to collude to give
the impression of competition without actually forcing
each other to improve in any \objective" sense. This
phenomenon is analogous to that found in accounts of
World-War I trench warfare (Axelrod 1984), where op-



posing forces established ritualized acts of aggression
meant to appear genuine to their respective comman-
ders that were, nevertheless, completely predictable to
each other, and thus of no real threat.

Complicating research into the arms-race mechanism
is the fact that analysis of coevolutionary systems usu-
ally requires domains with known optima, like sorting-
networks (Hillis 1991), and simple di�erential games
(Isaacs 1965), so that an objective metric of performance
is available. Unfortunately, these domains are closed-
ended, and are thus categorically less interesting than
open-ended domains. Without quantitative metrics of
agent behavior, researchers in open-ended coevolution-
ary domains can do no better than use qualitative lan-
guage to describe agent behavior and system progress.
Indeed, this problem has been recognized by researchers
in the pursuer-evader domain (Cli� & Miller 1996).

Thus, while current research is rich with insights and
intuitions regarding what enables coevolution, there is,
at the same time, a paucity of domains that can serve
as systematic testbeds for these intuitions; we present
a game that a�ords such methodical investigation. Our
game involves three agents: one bitstring generator, and
two string predictors | one \friendly" and one \hostile";
the generator is to behave in a manner that is simulta-
neously predictable to the friendly predictor partner yet
unpredictable to the hostile predictor opponent. The
two predictor roles produce a tension between cooper-
ative and competitive pressures, respectively. Because
agent behavior is expressed as a binary time series, we
can use information theory to quantitatively assess agent
behavior and coevolutionary progress. Further, we are
able to hand-build agents of known ability, which implies
that we can also build environments of known di�culty.
We may thus pose precisely-framed questions regarding
learnability, arms-race dynamics, mediocre stable-states,
and open-endedness.

Our results demonstrate the expressiveness of our do-
main in investigating coevolution; many di�erent dy-
namics can be produced by simple changes to our game.
While our substrate is capable of representing both good
generators and predictors, we �nd that high-quality play-
ers are not an inevitable outcome of coevolution; the ob-
vious competitive approach to coevolution in our game
(one that omits the friendly partner) does not produce
an open-ended arms-race. Rather, a mediocre stable-
state or closed-ended system is the result, depending on
a seemingly minor change in how the game is scored.
Mediocre stable-states result from a variety of causes in
coevolutionary research. Due substantially to our rigor-
ous metric of behavior, we can re�ne the notion of MSS
and begin a taxonomy of such causes. All three players in
our game are found required to enable an arms-race. The
viability of an arms race relies on the sustained learn-
ability (Pollack, Blair, & Land 1997) of environments;

we are able to construct environments that are too easy
and too di�cult for learning to take place, and quantita-
tively demonstrate the poorness of these environments.

This paper is organized as follows: we �rst explain
our game in detail, discuss the recurrent arti�cial neu-
ral network substrate used for our experiments, and de-
scribe the evolutionary algorithm. Next, key concepts
from information theory that are relevant to this work
are introduced. These concepts are then integrated into
the framework of arms-race dynamics. Results are pre-
sented and analyzed. Finally, we summarize our work
and present concluding remarks.

Game Setup, Substrate, and

Evolutionary Algorithm

Illustrated in Figure 1, our game is played by three
agents that operate in discrete time and space. The
generator, G, is an agent that ballistically produces a
binary time series. That is, its behavior is determined
solely by its own internal dynamics; at each time step,
the generator simply outputs a single new bit. The pre-
dictors, F and H, are agents that simultaneously try to
predict the generator's output for the current time step;
given their own internal state and the generator's out-
put from the previous time step as input, the predictors
also output a single bit in synchrony with the genera-
tor. The generator's job is to behave in a manner that
is both predictable to the friendly predictor, F , and un-
predictable to the hostile predictor, H. The purpose of
having both friendly and hostile predictors in our game is
to explore how the opposed needs for predictability and
unpredictability a�ect coevolutionary dynamics. Each
match lasts one thousand time steps.

Agents are coevolved in three distinct populations, one
population for each role (represented by F , G, and H)
in our game. The three populations are all of a �xed
size of 75 agents. For each generation of evolution, all
generators are played against all friendly and hostile pre-
dictors. Agent performance is measured strictly in terms
of the number of correct and incorrect predictions made.
Scores across all games are averaged to derive �tness
values. Game scores for all agents range between [0,
1]. The exact formulas used for scoring predictors are
discussed below in the experiment descriptions. A gen-
erator's score is computed by subtracting the average
score of its hostile opponents from the average score of
its friendly partners and normalizing the result to fall
within the range [0, 1]; values above 0.5 thus indicate
that a generator is able to make itself more predictable
to friendly predictors than hostile ones.

The substrate used for the agents is an enhanced ver-
sion of the deterministic, discrete-time recurrent arti�-
cial neural network used in the GNARL system (An-
geline, Saunders, & Pollack 1994); the network enhance-
ment consists of a set of nine new transfer functions,min,



HGF

Inputs from Time t-1

Outputs at Time t

Figure 1: Game Setup.

max, sum, product, sig-prod (sigmoid applied to prod-
uct), unit-time-delay, sign, uni-linear-truncate (truncate
outside range [-1, 1]), dec-linear-truncate (truncate out-
side range [-10, 10]), in addition to the traditional sig-
moid function. Though these supplementary transfer
functions increase the range of behavior signi�cantly,
they by no means guarantee successful coevolution, as
we will see. Unfortunately, the new functions also make
network analysis much more di�cult.

GNARL is used to coevolve networks' internal archi-
tectures and weights. Generators are allowed to have as
many as 60 hidden nodes and 400 weights. Because the
prediction task is more di�cult, predictors are allowed
to have as many as 150 hidden nodes and 700 weights.
These values merely reect intuition and are not known
to be optimal; indeed, actual network sizes fall far below
these limits.

Mutation is the only genetic operator used by the
GNARL algorithm | crossover is not used. Five forms
of mutation are implemented: change-weights, add-
hidden-nodes, remove-hidden-nodes, add-weights (con-
nections), and remove-weights (connections). When a
hidden node is removed, all e�erent and a�erent connec-
tions from and to that node are removed as well. New
nodes are added with no connections. Network weights
are modi�ed by adding a gaussian to each weight. Only
a single form of mutation is applied to a network when it
is modi�ed. The overall severity of mutation performed
to a network is determined by its temperature, which is
an inverse function of its �tness. The higher the tem-
perature of a network, the more severe the mutation will
be.

The input and output layers of the networks are �xed.
Generators and predictors have a single, real-valued out-
put that is thresholded to a binary value. Though the
game formally de�nes predictors to have a single input,
our current experiments provide predictors with a small
bu�er to enhance performance: the predictors have �ve
binary-valued inputs, corresponding to the last �ve out-
puts of the generator at times t� 1; :::; t� 5. Note that
this predictor enhancement in no way obviates the need
for a recurrent network architecture: generator behavior
can be induced only by observation over time.

Metric of Behavior

Introduction

In this section we introduce two key notions from the
�eld of information theory that provide our game with
a rigorous and quantitative metric of agent and system
behavior, namely entropy and order. Rather than give
their formal mathematical de�nitions, we emphasize a
more intuitive explanation of these concepts and their
implications as they relate to our domain. Readers in-
terested in more formal detail are referred to (Hamming
1980).

Entropy

Information theory is concerned with characterizing sig-
nals and their transmission. A signal source produces
some symbol, which is passed through a channel to a
receiver. We assume, for our purposes, that the chan-
nel does not distort the signal. The entropy, h, of a
source reects the receiver's uncertainty as to what it
will receive. The higher the entropy, the less certain
the receiver is, and the more it learns once the symbol
is actually received. Thus, entropy is a measure of the
amount of information in a signal. More precisely, the
entropy of a source is equal to the average number of
bits of information produced (conveyed) per generated
symbol.

By indicating the uncertainty of the receiver, entropy
inversely indicates the degree to which the source can be
predicted by the receiver, that is, the receiver's certainty.
We must be careful to point out that the receiver's opin-
ion of what the next symbol will be is based exclusively
upon the observed behavior of the source | assumptions
about the source's internal dynamics are not made.

Order

If the receiver's certainty is based upon observation of
the source, we can ask \How much observation is re-
quired to maximize the receiver's certainty?" For ex-
ample, let us consider some binary source, S. If the
receiver only tallies the number of occurrences of 0 and
1, this source may be found to produce each 50% of
the time. With this amount of behavioral context, the
receiver's certainty is zero and entropy is measured at
h = 1:0. Nevertheless, it may be that if the receiver
keeps track of the previous symbol received, then the
source will be found simply to be alternating between
0 and 1 ; in this case, a behavioral context of one sym-
bol makes the source completely predictable. Measured
entropy would now be h = 0:0. If the receiver keeps
track of yet another symbol, now the previous two, no
additional advantage is gained with respect to source S.

The minimal amount of behavioral context needed to
maximize a receiver's certainty of a source is the order
of the source. The order is equal to the number of sym-
bols that must be tracked, that is, the size of the history



window needed to maximize receiver certainty. The en-
tropy measured when using a window size equal to a
source's order is the true entropy of the source; window
sizes larger than a source's order will produce measure-
ments equal to the source's true entropy, but not lower.
Thus, a receiver cannot increase its certainty of a source
by using a window size larger than the source's order.

Order Statistics and Measured Entropy

With our example source, S, above, we �rst measured
entropy without keeping track of the previously gener-
ated symbol; this is equivalent to measuring entropy with
a window size of zero, or, alternatively, measuring en-
tropy with zero-order statistics. Our second measure-
ment, then, used a window size of one, or �rst-order
statistics. Our zero-order measurement gave us an en-
tropy of h = 1:0, but the �rst-order measurement fell to
the true entropy of h = 0:0. Indeed, measured entropy
will always monotonically decrease as window size is in-
creased, and eventually reach a source's true entropy, as
illustrated in Figure 2.

52

0.0

1.0

M
ea

su
re

d 
En

tro
py

1 3

Order Statistic

111094 6 7 8

Order

System

True

System

Entropy

True

Figure 2: Measured vs. True System Entropy and Order.

A source with true entropy h = 0:0, such as S, is com-
pletely predictable and regular. In contrast, a binary
source with maximum true entropy of h = 1:0 entirely
lacks structural regularity and cannot be predicted bet-
ter than random, on average, without speci�c knowledge
of its internal works. For a source with true entropy
somewhere in between, 0:0 < h < 1:0, there exists both
a regular component and an irregular component to the
source's signal. The regular component is that portion
of the signal that can be reliably predicted, while the ir-
regular component is that portion that cannot. By def-
inition, the information content of a source must reside
exclusively in the irregular component.

Order as Complexity

System order is also equal to the logarithm of the max-
imal number of states required for a Markov model to

reproduce behavior statistically identical to a source;
entropy reects the degree of certainty in the model's
state transitions. Consider a randomly behaving binary
source, with true entropy of h = 1:0. We �nd that the
minimal window size needed to maximize a receiver's
certainty of this source is zero! Since the order of such
a source is zero, the equivalent Markov model requires
20 = 1 state to reproduce statistically identical behavior.
This result is understandable since there exists no signal
structure to capture through state. This view of system
complexity thus considers random sources to be simpler
than completely predictable sources of higher order; the
size and structure of the Markov model is what counts,
not the compressibility of the produced signal (Kolen &
Pollack 1994).

Where's the Arms Race?

When considered together, order and entropy form
the nexus between generator complexity and predictor
power: if a signal has a regular component, then that
component can be predicted assuming the power of the
predictor is su�cient; that is, the predictor must use an
order statistic, i.e., history window, of size m � n, where
n is the order of the signal being predicted. If the pre-
dictor's window size is m, such that m < n, then it will
be able to predict only that portion of the signal's reg-
ular component that is detectable when measuring the
signal's entropy with mth-order statistics. Recall that
as window size decreases, measured entropy increases;
thus, predictors using smaller windows will necessarily
be weaker than those using larger windows.

Because irregular signal components are inherently
unpredictable, and our three-player game requires gen-
erators to be predictable to friendly predictors, gener-
ators must maintain substantial regular components in
order to succeed. Nevertheless, generators need to be
unpredictable to the hostile predictors. The only way
both goals can be e�ectively met is for the generators
and friendly predictors to evolve system order and pre-
dictive power that are closely matched, yet greater than
the predictive power of the hostile predictors.

Regular signals allow for a general solution to the pre-
diction task. A predictor of power n can predict any
generator of order m � n; to escape prediction, there-
fore, a generator has no choice but to increase its or-
der above n. The amount by which the generator in-
creases its order and the unpredictability it exhibits at
lower order-statistics determines how much the predic-
tor's performance degrades. Of course, a generator may
increase its true entropy instead; doing so, however, will
also defeat any hopes of being predicted by the friendly
predictor.

The assumption up to now has been that predictors
will actually evolve such a general prediction algorithm
and evolve the functional equivalent of ever-growing his-



tory windows. Of course, this represents an idealized
solution; in reality, the issue of generalization vs. spe-
cialization is intimately tied to that of diversity and do-
main \physics." Nevertheless, having some notion of
what idealized predictors can and cannot do, and what
an idealized arms race looks like, provides a useful frame-
work in which to examine empirical results.

Experiments and Results

Testing the Search Space

Our concern here is to verify that the combination of
our substrate and problem domain yields a search space
rich enough to support an arms race. Our �rst ques-
tion is whether the substrate is capable of representing
irregular generators and regular, high-order generators.
As recurrent networks are known to produce chaotic be-
havior with ease, this question is partly rhetorical. Nev-
ertheless, we seek to evolve generators in an environ-
ment that closely mimics our game. Using hand-built
(non-network) predictors that employ a variety of win-
dow sizes, we evolve generators to become minimally pre-
dictable to weaker predictors while remainingmaximally
predictable to more powerful ones. The hand-built pre-
dictors are used as the basis of a boot-strapping process:
predictors of known power are used to evolve generators
of speci�c order complexity. Seventy generators, pre-
dominantly of orders two through eight, are thus evolved.
Our second question is whether, given these generators of
known order, predictors can be evolved to predict them.
Evolving against this �xed population of generators, we
are able to produce predictors that perform at an av-
erage rate of 75% to 85% correct prediction, or 50% to
70% better than random. The nominal range of behav-
iors demonstrated by our networks suggest a non-trivial
solution space.

The Two Half-Games

We begin our analysis of game results by looking at the
two possible half-games. These are versions of the game
where generators coevolve only with friendly predictors
or hostile predictors, but not both. The purpose of the
half games is to explore convergent and competitive pres-
sures in isolation such that we may compare and contrast
results with those that include all three players.

In the �rst half-game, we coevolve generators with
friendly predictors only. The system is asked, essentially,
to establish a convention of behavior. This version of the
game quickly converges in less than twenty generations.
Generators and predictors alike display static behaviors
of all ones or zeros, depending on which the system set-
tles on. All agents receive perfect scores. Simply, there
is no pressure for complexity and none is observed.

The second half-game, coevolving generators against
hostile predictors, is more illuminating. A reasonable
intuition would expect an arms race to develop between

ever more complex generators and ever more powerful
predictors. The actual outcome depends strongly on how
the game is scored. One scoring method (A) gives pre-
dictors a point for each correct prediction. The tallies
are then normalized to the percentage of correct or in-
correct predictions. Another scoring method (B) tallies
correct predictions, like method A, but predictors are
now rewarded only to the extent that they perform bet-
ter than random; predictors that get less than or equal to
50% correct prediction receive a score of zero. Method A
gives maximal reward to a generator when a predictor is
unable to make any correct predictions, whereas method
B gives maximal reward when a predictor performs no
better than random. No other experiment parameters
are modi�ed between these two scoring methods.

20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictor

%
 B

e
tt
e

r 
th

a
n

 R
a

n
d

o
m

 o
n

 A
ve

ra
g

e

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictor

%
 B

e
tt
e

r 
th

a
n

 R
a

n
d

o
m

 o
n

 A
ve

ra
g

e

Figure 3: Performance of Best Predictors vs. Best Gen-
erators (Methods A, left, and B, right). The champion
predictors are arranged along the X axis in the order in
which they appear in evolutionary time. The Y axis is
prediction performance as percent better than random
guessing.

With each scoring method, we collect the champion
predictor and generator from each generation and play
the two sets of champions against each other. Pre-
dictors perform considerably worse than in the �xed-
environment substrate tests described above. With
method A the average prediction rate is 13% better than
random (56.5% correct), though many predictors per-
form 20%{30% better than random, as shown in Figure
3a. Method B gives an average prediction rate of 6%
better than random (53% correct); these data, shown
in Figure 3b, have a standard deviation of 0.03 | less
than half that of Figure 3a. The predictor scores alone
are not particularly informative. We must look at the
generators to discover why these scores are so low and
whether they are low for the same reason.
Our principle method of measuring generator behavior

is to take entropy measurements over a range of window
sizes; Figures 4 and 5 graph these entropy contours for
the best generators that arise over evolutionary time in
sample runs for scoring methods A and B, respectively.
These contour graphs indicate the extent to which the
generators can be predicted when observing their behav-
ior with various window sizes.



Neither �gure suggests the presence of an arms race |
generator characteristics do not change during the runs.
The contours produced by method A drop rapidly;
this indicates that the generators are substantially pre-
dictable and regular. In contrast, the contours produced
by method B decline gradually and consume a much
greater volume of space, indicating considerably more ir-
regular (unpredictable) generator behavior. This di�er-
ence results simply from the change in scoring method.

0

50

100

150

200

250

300

350

0
2

4
6

8
10

12
14

0

0.2

0.4

0.6

0.8

1

Window SizeGeneration

En
tro

py

Figure 4: Generator Behavior by Scoring Method A.

0

50

100

150

200

0
2

4
6

8
10

12
14

0

0.2

0.4

0.6

0.8

1

Window SizeGeneration

En
tro

py

Figure 5: Generator Behavior by Scoring Method B.

Signi�cantly, Figure 5 shows that the best genera-
tor from the initial population is already of relatively
high order and entropy, while Figure 4 does not | not
because such generators do not exist within the ini-
tial population of this run, but rather because they are
not as adaptive to scoring method A. That low-order,
regular generators out-score irregular ones by method
A indicates that simple prediction strategies can be
elicited from the initial predictor population | predic-
tion strategies against which the most adaptive genera-
tors act as potent anti-signals, sequences that make pre-
dictors perform worse than random (Zhu & Kinzel 1997).
Since the generators are ballistic, they require some ho-
mogeneity amongst the predictors in order to be viable
as anti-signals. Consequently, the selected-for generators
must reect this homogeneity and thus do not provide
a suitably diverse environment for subsequent predictor

evolution: the predictors do evolve to counter the genera-
tors, but through specialization instead of generalization.
At this point, much of the evolutionary turnover is due to
exploitation of peculiar weaknesses in the agents. Rather
than enter an arms race, the two populations form loose
food-chain relationships and fall into a circular pattern
of convention chasing | a mediocre stable-state.
Much like the CIAO graphs of (Cli� & Miller 1995),

Figure 6 shows the results of playing the champion
predictors against the champion generators that were
evolved by scoring method A. Each position on the axes
represents a moment in evolutionary time when a change
in champion occurred. A column (going up) thus shows
a particular predictor champion playing against all the
generator champions in the order in which they reigned
during the run; similarly, a row (going right) shows a par-
ticular generator champion playing against all predictor
champions in the order in which they reigned. The data
are thresholded such that a white point represents a pre-
diction score of � 40% better than random, and black
points < 40%.
The important details are the many prominent hori-

zontal and vertical lines. The pattern of a line serves
to characterize an individual predictor or generator with
respect to the opposing population. For example, cham-
pion generators #61, #100, and #129 have very similar
(horizontal) pro�les regarding which champion predic-
tors can predict them. The gaps in these lines indicate
periods where the predictor champion has lost some abil-
ity to predict this class of generator behavior. This re-
peated appearance and loss of particular generator and
predictor behaviors is the manifestation of convention
chasing.

20 40 60 80 100 120 140

20

40

60

80

100

120

140

Predictor

G
en

er
at

or

Figure 6: Evidence of Convention Chasing.

A frequently e�ective prediction behavior seen with
scoring method A is to simply predict all ones or zeros;
this strategy is general in the sense that it provides per-
formance similar to random guessing, on average. Nev-
ertheless, this strategy also dampens any tendency to
evolve generator complexity or irregularity: because a
random generator can cause it to do no worse than a sim-



ple oscillator, there is nothing to be gained by evolving or
maintaining irregular generators. In contrast, irregular
generator behavior is clearly adaptive by scoring method
B because it guarantees a minimal predictor score, re-
gardless of what the predictor does, short of specialized
memorization. Thus, method B de�nes an optimal gen-
erator strategy and makes the game closed-ended. The
anti-signal behavior from method A does not represent
an optimal generator solution, however, because its ef-
fectiveness depends entirely upon the simplicity and ho-
mogeneity of the predictor population.

The key observations of our analysis result from be-
ing able to characterize the nature of adaptiveness with
respect to a known environment, and are independent
of the mechanics of evolution, due to the evolutionary
algorithm (GNARL). The utility of isolating the con-
tributions made by these two components to an evolu-
tionary system's operation is considerable. Historically,
much more attention is paid to the algorithmics than
to the environment. This imbalance is perhaps due to
the inherent opaqueness of most problems domains with
regard to adaptiveness. Because information theory pro-
vides tools to analyze and synthesize agents, our domain
allows detailed exploration of adaptiveness in isolation
from the vagaries of mutation operators, reproduction
schemes, and so on.

The Full Game

For the full-game, where all three populations partici-
pate, we keep scoring method B, to provide a pressure
to evolve irregular generators. The tension between the
opposed requirements of being unpredictable to hostile
opponents while being predictable to friendly partners is
the feature of interest in the full-game. In this case, a
reasonable intuition might expect these opposing forces
to stie any possibility of an arms race; to the contrary,
we believe this tension to be a necessary ingredient. Two
particular runs of the full-game are discussed below; the
�rst run displays features of an arms race, while the sec-
ond run exhibits a phenomenon more typical of the full-
game setup, one that likely subsumes the arms race dy-
namic.

0

10

20

30

40

50

60

70

80

90

100

0

2

4

6

8

10

12

14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Window Size
Generation

En
tro

py

Figure 7: Generator Behavior in First Full-Game Run.

Evidence of the arms race is found �rst through en-
tropy contour graphs. Figure 7, unlike Figures 4 and
5, shows a general increase in the order and entropy
of the best generators over evolutionary time; that is,
higher-order generators are eventually required to keep
the hostile predictors at bay while remaining predictable
to the friendly predictors, ostensibly because the hostile
predictors have mastered simpler generator behaviors.
From each generation of the run we save the best

generator, friendly predictor, and hostile predictor and
play these champions against each other to look for ev-
idence of such skill accumulation in predictors. Figure
8 shows how well hostile predictor champions perform
against generator champions. The shade of the data
point refers to the success of the predictor in the match;
lighter shades indicate better prediction.

5 10 15 20 25 30 35 40 45 50 55

10

20

30

40

50

60

Predictor

Ge
ner

ato
r

Figure 8: Champion Hostile Predictors vs. Champion
Generators. Lighter shade indicates greater predictor
success.

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictor

% 
Be

tter
 tha

n R
and

om
 on

 Av
era

ge

Figure 9: Average Scores of Champion Hostile Predic-
tors against Champion Generators.

Figure 9 graphs the average performance of each
champion predictor against the entire set of champion
generators, that is, the average value of each column of
Figure 8. Starting approximately with predictor #18,
we see a clear accumulation of skill as the predictors
evolve. The �rst group of generators to be mastered is
the set #11{#25, then generators #26{#31 (starting
around predictor #23), and �nally generators #32{#45



(starting with predictor #27). The generators numbered
#46 and higher come to be predicted, on the whole, with
moderate success (up to about 50% above random).
Paradoxically, Figure 8 appears to show that predic-

tors #1{#17 already predict a rather wide range of gen-
erators. This seems to contradict the view that predic-
tors require evolution to generalize. If we look at Figure
9, we see that predictor #15, for example, performs no
better on average than predictor #25. But, predictors
#15 and #25 have very di�erent characteristics, accord-
ing to Figure 8; predictor #15 scores 40%{50% above
random against most generators, whereas predictor #25
does no better than random against many, but near per-
fect against others. Thus, predictor #25 is specialized.
Yet, predictor #15 is a generalist only in a weak sense be-
cause it does not e�ectively adapt its behavior to match
di�erent generators. In contrast, predictors that arise
later in the run (e.g., #40) actually master a variety of
generators, and exhibit a more substantive form of gen-
eralization.
In summary, these data suggest a decomposition of

the arms-race notion into �ner-grained events. Figures
8 and 9 suggest that predictor ability increases through
accumulation of speci�c and distinct skills rather than
a more di�use improvement of a monolithic prediction
strategy. Figure 7 allows us to see how generators evolve
in response.

0
50

100
150

200
250

300
350

400
450

500

0

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

Generation

Window Size

En
tro

py

Figure 10: Punctuated Shifts in Generator Behavior
from Second Full-Game Run.

More typically, however, the full-game exhibits punc-
tuated shifts in generator behavior, from simple to com-
plex and back again, rather than the monotonic increase
in complexity indicative of an arms race. Figure 10 shows
one such example; indeed, Figure 7, used to argue for
the presence of an arms race above, also shows abrupt
retreats in generator complexity. To help us discover
the adaptive utility of these sudden behavioral changes,
Figure 11 plots, from top to bottom, average population
�tness of the friendly predictors, hostile predictors, and
generators, and order of the most �t generator over evo-
lutionary time. We see that, on average, generators are

able to behave more predictably to their friendly part-
ners than to their hostile opponents almost throughout
the run, as generator scores rarely fall below 0.5; average
generator �tness increases, by de�nition, with increased
di�erence between average friendly and hostile predictor
�tness.

0 50 100 150 200 250 300 350 400 450 500
0.2

0.4

0.6

0.8

1

Av
e.

 P
re

di
ct

or
 F

itn
es

s

0 50 100 150 200 250 300 350 400 450 500
0.4

0.5

0.6

0.7

0.8

Av
e.

 G
en

er
at

or
 F

itn
es

s

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

Generation

Be
st

 G
en

er
at

or
 O

rd
er

Figure 11: Fitness Averages and Best Generator Order.

We can develop an intuition of the dynamics in this
run if we consider how generator order corresponds to �t-
ness; particularly, we wish to pay attention to when, and
how frequently, generator order changes. The periods of
greatest stability in generator order always span the on-
set and duration of a period of generator success, that
is, a period during which generators and their friendly
predictor partners are most easily and e�ectively able to
cooperate without falling prey to the hostile opponents.
Generators stably maintain relatively low-order behavior
during these periods.
Nevertheless, this very stability allows the hostile pre-

dictors to eventually learn the current behavioral con-
vention, as evidenced by their �tness values. Once both
populations of predictors are of comparable ability, gen-
erator �tness is minimal. Empirically, this tends to be
the moment at which the order of champion genera-
tors becomes unstable, often alternating between very
high-order and low-order behaviors. We conjecture that
this period of generator instability injects noise into
the evolutionary process of the predictor populations
such that the two, presumably similar, populations once
again diverge. When the two predictor populations be-
come suitably di�erentiated, some medium-order genera-
tor is found that only the friendly predictors can predict.
Thus, we enter a period of renewed generator stability
and success. While further analysis is required to con-
�rm this model of generator and predictor interaction,
Figures 10 and 11 clearly show that rather than con-
tinuously improve predictor ability over the entire run,
the system achieves mediocrity by repeatedly initiating
short-lived arms races | a particularly interesting MSS.
We must recognize, however, that the desired arms

race does not simply involve competition, but also en-



culturation towards convention. Presently, the genera-
tors and friendly predictors have no opportunity to de-
velop their convention of cooperative behavior in isola-
tion; once hostile predictors latch onto their current con-
vention, the opportunity to evolve a more complex con-
vention is long past. This issue may very well require a
richer model of coevolution that encompasses both \pub-
lic" and \private" interactions. Giving the generators
the ability to distinguish friend from foe does not solve
this problem, as a private sign of species \membership"
must still be evolved.

The Question of Learnability

The central tenet of coevolution deems that an environ-
ment must be neither too di�cult, nor too easy, for learn-
ing to take place. But, what precisely constitutes an
extreme environment for a particular learner in a partic-
ular domain is a question usually left unasked out of faith
that coevolutionary dynamics will correctly maintain a
balanced environment, thus obviating the need to know.
More seriously, most domains do not provide an obvi-
ous method of characterizing environment learnability,
nor of constructing environments of arbitrary hardness.
Our domain suggests ways in which to investigate not
only the question of learnability, but also the question of
what is really learned: to what extent might learning in
one environment confer knowledge that is applicable in
another? This kind of investigation is enabled only by
the existence of a behavioral metric.

What's Too Easy? If a learner is not su�ciently chal-
lenged, nothing will be learned. The friendly predictors
coevolved with the generators in the �rst half-game de-
scribed above had such an impoverished environment.
This half-game merely converged onto the simplest of
conventions. When we play these predictors against the
generators evolved in the full-game, they perform very
poorly | 12% better than random, or roughly 56% pre-
diction. Curiously, the generators frequently cause the
predictors to behave very di�erently than they do against
their \native" half-game opponents. Yet, the perfor-
mance the predictors do achieve above random stems
from games where they predict all 0 s and the generator
has slightly more 0 s than 1 s.

What's Too Hard? If a learner is overwhelmed, noth-
ing will be learned. Recall that, in the competitive half-
game with scoring methodB, the generators become rea-
sonably complex and the hostile predictors perform only
6% better than random. The predictors do not appear
to learn at all over the run. Consequently, we might as-
sume that the environment provided by the generators is
too hard. Yet, when we play these very same predictors
against the generators from the full-game depicted in
Figure 7, we are surprised to see that the predictors have,
in fact, learned something. Figure 12a shows that some

of these predictors actually perform as well as those co-
evolved in the full-game itself, though the skill displayed
by the group of half-game predictors is very inconsistent.

This result begs the question of how well the best full-
game predictors fare against the complex generators of
the half-game. Indeed, they perform very poorly. This
time we are not surprised, however, because we know
from comparing Figures 5 and 7 that the full-game did
not produce generators as complex as those seen in the
competitive half-game. The full-game predictors cannot
reasonably be expected to perform well versus genera-
tors much harder than those against which they evolved.
Thus, the half-game generators confer adaptiveness to
the full-game generators, but not vice versa.

20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictor

%
 B

e
tt
e

r 
th

a
n

 R
a

n
d

o
m

 o
n

 A
ve

ra
g

e

20 40 60 80 100 120 140 160 180
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Predictor

%
 B

e
tt
e

r 
th

a
n

 R
a

n
d

o
m

 o
n

 A
ve

ra
g

e

Figure 12: A (left): Performance of champion predictors
of competitive half-game vs. champion generators of full-
game; B (right): Predictors evolved against hand-built,
chaotic generator show no improvement over evolution-
ary time against champion generators of �rst full-game.

Can we construct an environment that is too di�cult
for substantial learning to occur? To �nd out we use the
logistic function as the sole sequence generator (instead
of a population of neural networks) against which we
evolve predictors. When the logistic function's behav-

ior is at chaos and its output values are thresholded,
it yields a binary sequence of true entropy h = 1:0.
Since this generator will cause, on average, predictors
to perform no better than random guessing, predictors
will all receive the minimum �tness of zero with scor-
ing method B. This makes the system behave equiva-
lently to random search. Figure 12b shows that predic-
tors thus evolved generally perform no better than 30%
above random (65% prediction) when played against the
full-game generators. Indeed, the lion's share of this 30%
stems from predicting the single band of similar genera-
tors numbered 11 through 25 in Figure 8. Therefore, this
pathological control is a signi�cantly harder environment
for evolving general prediction ability than the complex
generators of the half-game. The prediction task is non-
trivial and does not yield to simple random search.

Maintaining the Balance That cooperative half-
game predictors are ill-prepared to play against full-
game generators is not a particularly compelling result.



But, we also �nd that competitive half-game predictors
perform inconsistently against full-game generators, and
predictors evolved against the logistic function do poorly.
Finally, predictors evolved from a di�erent run of the
full-game do relatively well against the full-game gener-
ators of Figure 7, ranging mostly from 30% to 60% above
random prediction. We now see a picture consistent with
the hypothesis of learnability | coevolutionary progress
is heightened when a balance of skill can be maintained
between participants.

Conclusions

The information-theoretic tools described in this paper
allow us to measure the complexity of an evolved gen-
erator and construct a predictor that uses an arbitrar-
ily large order statistic. Conspicuously, we do not di-
rectly build generators of known complexity, but rather
we evolve them. Further, in this paper the power of
evolved predictors is measured only indirectly, with re-
spect to the evolved generators. We have recently built
new tools that will allow us to directly measure predic-
tor power and construct regular generators of arbitrary
complexity.

The experiments described here are suggestive of the
wide variety of questions our domain allows to be ex-
pressed. Our game provides not only a powerful metric
of behavior, but also the ability to explore convergent
and competitive dynamics and their interaction. The do-
main allows us to begin re�ning key notions in coevolu-
tionary learning, namely arms-race dynamics, mediocre
stable-states, and learnability.

By hand-building agents and environments we can ar-
ti�cially create situations that may arise during coevo-
lution. This allows us to systematically test our game,
our substrate, and coevolutionary dynamics. We dis-
cover, for example, that the ability of the substrate to
successfully perform the opposing roles of our game does
not guarantee that coevolution will �nd these solutions;
just because a substrate can do X and Y does not mean
that both will arise automatically when the substrate is
placed in a coevolutionary framework.

We �nd that open-ended coevolution is not necessar-
ily synonymous with a purely competitive framework;
our game requires a mixture of cooperative and com-
petitive pressures to avoid simple mediocre stable-states
and closed-endedness. In this sense, our result agrees
substantially with (Akiyama & Kaneko 1997).

Finally, because our domain allows us to characterize
the di�culty of an environment, we can identify arms
races that have broken because a participant has become
too good. Indeed, we can begin to tease apart the many
possible causes of system disfunction. While every do-
main has unique peculiarities, we believe the parsimony
of our prediction game extends the validity and applica-
bility of our results to other domains.

Acknowledgements

The authors gratefully acknowledge the many hours of
conversation that have contributed to this work provided
by Alan Blair, Marty Cohn, Paul Darwen, Pablo Funes,
Greg Hornby, Ofer Melnik, Jason Noble, Elizabeth Sklar,
and in particular Richard Watson. Thanks also to an
anonymous reviewer for many helpful comments.

References

Akiyama, E., and Kaneko, K. 1997. Evolution of com-
munication and strategies in an iterated three-person
game. In Langton and Shimohara (1997), 150{158.

Angeline, P. J., and Pollack, J. B. 1994. Competi-
tive environments evolve better solutions for complex
tasks. In Forrest, S., ed., Proceedings of the Fifth In-
ternational Conference on Genetic Algorithms, 264{
270. Morgan Kaufmann.

Angeline, P. J.; Saunders, G. M.; and Pollack, J. B.
1994. An evolutionary algorithm that constructs re-
current neural networks. IEEE Transactions on Neu-
ral Networks 5:54{65.

Axelrod, R. 1984. The Evolution of Cooperation. New
York: Basic Books.

Cli�, D., and Miller, G. F. 1995. Tracking the red queen:
Measurments of adaptive progress in co-evolutionary
simulations. In Moran, F., et al., eds., Third European
Conference on Arti�cial Life, 200{218. Berlin; New
York: Springer Verlag.

Cli�, D., and Miller, G. F. 1996. Co-evolution of pursuit
and evasion 2: Simulation methods and results. In
Maes, P., et al., eds., From Animals to Animats IV,
506{515. MIT Press.

Hamming,R.W. 1980. Coding and Information Theory.
Englewood Cli�s, NJ: Prentice-Hall, Inc.

Hillis, D. 1991. Co-evolving parasites improves simu-
lated evolution as an optimization procedure. In Lang-
ton, C.; Taylor, C.; Farmer, J.; and Rasmussen, S.,
eds., Arti�cial Life II (1990). Addison-Wesley.

Isaacs, R. 1965. Di�erential Games. New York: John
Wiley and Sons.

Kolen, J. F., and Pollack, J. B. 1994. The observer's
paradox: Apparent computational complexity in phys-
ical systems. The Journal of Experimental and Theo-
retical Arti�cial Intelligence (Summer).

Langton, C. G., and Shimohara, K., eds. 1997. Arti�cial
Life V (1996). MIT Press.

Pollack, J. B.; Blair, A.; and Land, M. 1997. Coevolu-
tion of a backgammon player. In Langton and Shimo-
hara (1997).

Zhu, H., and Kinzel, W. 1997. Anti-predictable se-
quences: Harder to predict than a random sequence.
(Submitted).


