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Abstract

This paper is about representation in RL. We
discuss some of the concepts in representation
and generalization in reinforcement learning
and argue for higher-order representations,
instead of the commonly used propositional
representations. The paper contains a small
review of current reinforcement learning sys-
tems using higher-order representations, fol-
lowed by a brief discussion. The paper ends
with research directions and open problems.
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1. Introduction
There is general agreement nowadays that intelligent
agents should be adaptive, i.e. capable of learning. For
learning to work, agents should be able to make the
proper generalizations to reuse learned knowledge to
apply it to new situations similar to encountered ones.
Generalization though, or inductive learning, can be
very difficult based on few examples.
To generalize based on examples one needs some form
of bias for representing and organizing the possible
hypotheses in a hypothesis space and some form of
operators to go through the hypothesis space to find
a suitable hypothesis that supports the experienced
evidence. The set of modelling assumptions, repre-
sentational language and hypothesis operators can be
termed inductive bias (Mitchell, 1997). It guides the
search for hypotheses consistent with the evidence and
it restricts the number and structure of possible hy-
potheses. An important bias is the language bias that
determines how concepts in the domain can be rep-
resented. Very roughly one has two choices; propo-
sitional and attribute-value (AV) representations, or
relational (first-order) representations.
The AV approach has dominated the field of Rein-
forcement Learning (RL) (Sutton & Barto, 1998) ever
since. Standard RL methods use an atomic, AV or
propositional representation for the current state of
the learner, and standard Machine Learning (ML)
(Mitchell, 1997) techniques are used for generalizing

experience. Popular approaches are neural networks
and decision trees which are naturally based on propo-
sitional or AV representations.
Although this type of representation suffices for many
applications, we argue that there is a need for rela-
tional representations. Relational representations rea-
son over objects with properties and there are many
possible relations between objects or types of objects.
To give a simple example, imagine that we want to ex-
press a basic fact about a state such as ’there is a book
on the table. . . ’, we can represent this by means of all
the states where there is a book on the table. In this
case we have to enumerate all these states and learn
about each of them. In a propositional representation,
we can express the fact by means of ϕ(b1)∨ . . .∨ϕ(bn).
In a first-order language we could express this state (or
actually the set of states) by just the simple formula
∃xϕ(x). This last representation does not change if
the number of domain objects is increased.
Recently, there is some interest in abstraction on dif-
ferent levels than generalization in statistical terms.
Abstraction over time (Sutton et al., 1999) or primitive
actions (Dietterich, 2000) are useful ways to abstract
from specific sub-actions or time. Currently there is
also interest in using higher-order representation lan-
guages in RL ((Kaelbling et al., 2001), (Dzeroski et al.,
2001)). The use of subsets of the language of first-
order logic (FOL) is desirable for its representational
power, but it creates additional problems concerning
tractability and learnability.
In this paper we would like to discuss some concepts
and issues which underly using higher order represen-
tation languages in RL. We are specifically interested
in RL for agents interacting with both humans and
other agents in multi-modal, virtual worlds (Heylen
et al., 2001). For these types of agents it will be neces-
sary to represent and reason about the world in terms
of cognitive notions like beliefs, desires, intentions and
emotions. Also, the use of natural language communi-
cation is a central notion, both by means of speech and
written text. Agents dealing with this rich information
context should be able to represent their subjective
view on the world in terms of objects and relations
between these objects. Also, they should have beliefs



about them and have ways of expressing their beliefs
and experience in terms of looks (i.e. facial animation),
language expressions and rational behavior. Thus, it
would be highly desirable to learn on this same level
of representation, i.e. in terms of objects (Kaelbling
et al., 2001).

The outline of this paper is as follows. In section 2
we discuss briefly some concepts of RL. In section 3
we discuss generalization and representational issues
in RL. Section 4 then gives a review of the main exist-
ing approaches in using higher-order representations
in RL. Some preliminary comparisons and discussion
of the approaches is given in section 5. This section
also mentions directions for further research.

2. Reinforcement Learning
Reinforcement Learning (Sutton & Barto, 1998) (RL)
is a powerful technique for learning in domains where
there is no instructive feedback (like in supervised
learning) but only evaluative feedback. Learning
agents are trained by rewarding and scaffolding, ex-
pressed in terms of real numbers (rewards).
In short, an agent perceives a state st, decides on
some action at, makes a transition from st to st+1

and receives the reward rt. The task of the agent is
to maximize the total reward it gets while doing ac-
tions. Agents have to learn a policy which maps states
into actions. Usually in RL this is done by learning
value functions. A state value (V) function returns
the expected total reward when the agent starts act-
ing from that state. A state-action value (Q) func-
tion returns the expected total reward when the agent
takes some action in the state and continues to follow
its policy after that. State values are useful when a
model of the environment is available. Many iterative
algorithms for learning value functions exist (Sutton
& Barto, 1998).

3. Representation and Generalization
Many interesting, if not all, problems have a large or
even infinite state space. In that case, storing all the
V- or Q-values is not feasible. Even if this would be
possible, there still remains a problem because all these
states would have to be visited many times to approxi-
mate their value which is not feasible with many states.
Thus, some form of generalization is needed for gen-
eralizing experience over multiple state-action pairs.
In the literature many methods have been used for
Value Function Approximation (VFA). Popular meth-
ods include neural networks, e.g (Grossmann, 2001;
Bazen et al., 2001), and decision and regression trees,
(Mitchell, 1997; Sutton & Barto, 1998).
For RL, learning a value function can be very difficult.
Just like in a supervised learning task, the correct fea-

tures have to be induced by the learning algorithm but
because the value function appears to be unstable, the
learning algorithm must be capable of tracking this
moving target. Next to this problem, VFA in gen-
eral cannot be proved to converge to the optimal value
function. For the table case, many RL algorithms can
be proved to converge in the limit.
The large majority of generalization mechanisms in
RL is based on AV representations and statistical phe-
nomena and geometrical distances are used to group
states together. Typical AV learners carve up the
input space by means of geometrical structures, hy-
perplanes, and group data points on the basis of dis-
tances in the input space. An intuitive name for these
learning mechanisms is fence-and-fill-learner (Thorn-
ton, 2000). These mechanisms put fences in the input
space, and fill the resulting parts virtually with simi-
larly labeled data points. The underlying assumption
of all the methods is that there are regularities shared
by data points that are in the same area in the input
space. The problem, however is that in many problems
the regularity must be found in the relation between
attributes of the data point itself. The most simple ex-
ample is the n-parity mapping. To classify this data
set with a nearest neighbor method, one has to create
as many areas of similarly labeled data points, as there
are data points. The regularity between data points
is not helpful at all. To solve the problem more ef-
ficiently, one has to look for regularities in the data
point itself, i.e. relations between attributes.
The problems that are solvable through exploitation
of observable statistical effects in the input data (e.g.
probabilities) can be termed type-1 and problems only
solvable efficiently by exploiting relations between at-
tributes type-2 (Clark & Thornton, 1997). Type-2
problems can be learned by AV learners only at the
cost of using many resources. For example, although
the value function for Tic-Tac-Toe can be stored by
means of a typical AV learner such as a multi-layer
perceptron, it is clear that the problem is of type-2.
A game state can be judged by looking at only a few
relations between board items. The n-parity task is an
extreme example of a type-2 problem.
To deal with intrinsically relational (type-2) problems,
Thornton (2000) mentions two possible methods for
AV learners. The first is called virtual supercharging
which essentially is sparse coding (Sutton, 1996). The
input dimensionality of the input is severely enlarged,
which makes it easier to find clusters in the data
based on geometrical distances. The second method is
called supercharging and allows the learning algorithm
to create additional fences while learning. A more
general term is constructive algorithms (Grossmann,
2001). Some of these methods have been specifically



designed for reinforcement learning problems (Gross-
mann, 2001; Chapman & Kaelbling, 1991; Utgoff &
Precup, 1998) containing special methods to deal with
concept drift.
To deal more directly with relational (type-2) prob-
lems, we need to consider relational learning algo-
rithms (Mitchell, 1997), generally known as Inductive
Logic Programming (Dzeroski & Lavrac, 2001a). In re-
lational learning, the hypothesis space contains logical
formulae. A more-general-than relation between hy-
potheses as a partial order over this space. Examples
can be stated in a relational language and learning con-
sists of searching the hypothesis space for proper pred-
icate definitions. The search process can be guided by
providing bias in the form of background knowledge or
search restrictions (mode declarations).
Besides the intrinsic properties of the data which can
be a reason to use a relational learning representation
for learning, there are a number of other reasons for
opting for higher-order representations in RL:
• Almost all interesting problems are simply too large;
at least some form of abstraction must be used. This
can be done by means of AV representations as well,
but FOL is more natural and compact
• Lookup tables, AV or propositional representations
are not able to represent the structural aspects of
states and actions. In Tic-Tac-Toe a board has spa-
tial structure and special board positions, like that of
almost-wining or making-a-fork, can be expressed as
a relation between some parts of the board. If these
structural aspects are useful, a representation that can
represent these explicitly is favorable.
• The use of relational representations enables knowl-
edge transfer. Learned knowledge can be reused for
related tasks of a higher complexity, or as part of a
larger task, because the operational knowledge is rep-
resented explicitly and can be manipulated as so.
• Relational representations allow for a more general
and more intuitive way of specifying and using knowl-
edge. A common knowledge representation in terms
of FO knowledge is more suitable for doing this. Also,
standard agent architectures and theories use subsets
or extensions of FOL. (Modal) logics are common in
agent modelling and design. (Wooldridge, 2002)
• As some argue (Kaelbling et al., 2001), a represen-
tation should enable representing and reasoning about
objects. We argue that this is even more evident if we
want to connect to existing agent architectures and
programming languages. We have to be able to repre-
sent objects and relations in our language if we want
to connect to higher-order cognitive notions like beliefs,
desires, intentions and emotions.
• A last argument is more technical in nature. It is
not necessary per se to use a representation language

that supports objects and relations. We could propo-
sitionalize the domain by representing a state using
a finite number of propositions. Three problems with
this occur (van Laer & de Raedt, 2001): 1) one has
to fix the number of objects, 2) one has to order the
objects in the representation and 3) every possible re-
lation should be present as a proposition in the repre-
sentation, which can make it very large, even for small
domains.

4. A Review of Relational RL
[Deictic Representations] From the perspective of
being able to generalize, it seems likely to use rela-
tional representations. But, as was mentioned in sec-
tion 2 much more experience exists with statistical
learning with propositional representations. Finney
et al. (2002b; 2002a) recently studied intermediate
representations: deictic representations (DR). DRs are
used in ordinary language, like that-book-over-there or
the-corridor-to-my-left and have a semantics relative
to the speaker (Kaelbling et al., 2001). DRs do not
have the difficulties associated with relational repre-
sentations, but do have some capability of generalizing
over objects. What will happen with the-thing-in-my-
hand if I drop it, is the same for all objects that I can
have in my hand: it falls. The main advantage of DRs
is that they avoid the arbitrary naming of objects.
The method uses so-called markers which can be
placed upon objects and moved around. The study
uses two types of DRs that differ in the amount
of information the agent receives about the mark-
ers. Agents using these DR have a normal action set
for acting in their environment, but additionally they
have actions for moving the markers around like move-
focus(direction) and marker-to-focus(marker).
In DRs there is a substantial degree of partial observ-
ability : in exchange for focusing on only a few things,
the agent loses the ability to see the rest. Proposi-
tional representations yield large observation spaces
but full observability, while DRs yield small observa-
tion spaces but partial observability. Because in DRs
it is no longer possible to observe the whole state, some
history is included.
To experimentally study the possible advantages of
DRs in RL, experiments are conducted in the blocks
world, comparing the two types of DRs with a full-
propositional representation. The task was to pick up
some green block. Two types of propositional learning
algorithms are used. A multi-layer perceptron (MLP)
representation (one for each action) is trained with
SARSA(λ) and also the G-algorithm (Chapman &
Kaelbling, 1991), an incremental tree learner, is used.
The experimental results show that when using MLPs
the full-propositional representation outperforms the



DRs in terms of total reward per trial, but the op-
posite is true when using the G-algorithm. However,
when using the G-algorithm, none of the representa-
tions reaches the performance level of the MLP ap-
proach, unless the trees are allowed to grow very large.
Although the authors’ first idea was that this could be
explained by the longer action sequence that is needed
in DRs, further experimentation shows that the actual
cause is the exploration process. In a DR the location
of the focus is crucial. The larger the domain is, the
more locations a marker can be placed upon and this
creates a large exploration space. This can be solved
to some degree by adapting the action set to the very
specifics of the task being solved but this degrades the
flexibility of the DR approach. It seems that an ac-
tion set that includes the ability for the agent to con-
trol its own attentional focus inherently increases the
difficulty of the exploration problem by allowing it to
easily spend a lot of time exploring a useless part of
the state space.
One of the conclusions by the authors is that the exper-
iments and the analysis show that although DRs have
been shown to be useful to some extent, in the end
none of the approaches for converting an inherently
relational problem into a propositional one seems like
it can be succesful in the long run. Naive proposition-
alization grows in size and is very redundant. DR has
the problem that it results in inherently long early tri-
als because of the exploration involving the markers.
Furthermore the partial observability of DRs involves
some extra problems. According to the authors the
experiments show that it is almost inevitable to move
towards relational representations.

[Relational Reinforcement Learning] Relational
Reinforcement Learning (RRL) (Dzeroski et al., 2001)
is a combination of RL and Inductive Logic Program-
ming (Dzeroski & Lavrac, 2001a). It combines a stan-
dard RL algorithm (Q-learning) with a relational re-
gression algorithm, TILDE-RT (Blockeel et al., 1998).
TILDE-RT can be seen as a first-order extension of
the C4.5 decision tree algorithm (Mitchell, 1997).
TILDE-RT is used as a representational tool to store
the Q-function in a first-order logic decision tree,
which is called a Q-tree. RRL collects experience in
the form of state-action pairs with corresponding Q-
values. During an episode, actions are taken according
to the current policy, according to the current Q-tree.
All newly encountered state-action pairs are stored,
while the values of already encountered pairs are up-
dated according to the Q-learning algorithm.
After each episode TILDE-RT is used to induce a first-
order decision tree from the example set. The resulting
tree contains nodes that are basically Prolog-queries.

Different nodes in the tree can share variables. To find
a Q-value one has to construct a Prolog KB with the
tree, all the facts in the state, the action and the goal.
Then, running the query ?-qvalue(Q) will return the
desired value. An example of (part of) a Q-tree for
Tic-Tac-Toe might be (left part):

action(move(Sq))? | qvalue(10) :-
| winX(Sq), !.

winX(Sq)? | qvalue(6) :-
+-- yes: [10] | winO(Sq), !.
+-- no: winO(Sq)? | qvalue(3).

+-- yes: [6] |
+-- no: [3] |

The decision trees can be transformed deterministi-
cally into a normal Prolog program (right part), which
can be used as a Q-function. The tests in the nodes de-
pend on the declarative bias and the tests in the nodes
higher in the tree. Individuals are not referred to in
the tree itself directly, but only through the variables
of the goal.
Note that this decision tree represents the tree con-
taining very few partitions. It is likely that an induced
tree is much larger and uses other predicates, simply
because different experience was acquired or the more
complex predicates winO and winX are not present as
background knowledge.
The P-RRL algorithm is an extension of the RRL al-
gorithm that abstracts aways from Q-values and rep-
resents just the policy. In P-RRL after each episode
first a Q-tree is induced, after which a so-called P-tree
is induced which represents the optimality of state-
action pairs. So essentially, whereas a Q-tree maps
state-action pairs to Q-values, so does a P-tree map
state-action pairs to optimal or non-optimal.
As was experimentally verified in the blocks world,
RRL is capable of doing RL with a relational repre-
sentation and it is able to transfer learned knowledge
to related tasks of higher complexity (Dzeroski et al.,
2001).
Although RRL is an effective tool for relational RL,
it suffers from a number of problems. First, after
each episode, a new Q-tree is induced from the exam-
ples, which is clearly not efficient. Second, the set of
examples is constantly growing; all state-action pairs
have to be memorized. Third, updating values for al-
ready experienced state-action pairs requires search-
ing through the whole example set. Fourth, generaliz-
ing is not done in an efficient way. When updating a
value for one state-action pair, the values of all pairs
in that leaf should be updated, but in standard RRL
only those pairs are updated that are experienced ex-
actly again.
To solve these problems, an incremental algorithm was



proposed (Driessens et al., 2001). This algorithm is a
first-order extension of the constructive, propositional
tree building algorithm, the G-algorithm (Chapman &
Kaelbling, 1991). The new algorithm, called TG, in-
crementally builds the same kind of trees as TILDE-
RT. Additionally, in the trees, each leaf contains some
statistics concerning a.o. Q-values and number of pos-
itive matches of examples. A node is split when it has
seen enough examples and some statistical test on the
node’s statistics becomes significant with high confi-
dence.
TG is much faster than the original RRL, but a prob-
lem is how to set the minimal sample size that deter-
mines when to split a node. A larger value means a
smaller representation, but also slower convergence.
Recently, RRL was used for learning the computer
game Digger (Driessens & Blockeel, 2001). In this
game the player controls a ’digger’ that can dig tun-
nels, has to evoid predators and collect valuable things.
Learning the whole task is very difficult but there are
two natural subtasks that can be distinguished. One is
to avoid monsters or shoot them and the other is to col-
lect gold. Usually in hierarchical RL (e.g. (Dietterich,
2000)) a hierarchical task decomposition consists of a
sequence of subtasks, whereas in digger the two sub-
tasks have to be performed in parallel.
Learning Digger with RRL is essentially a two-step
process. First, for both subtasks a Q-tree is induced
by learning on the isolated subtask. Learning to play
the complete game is done again by means of RRL,
where the Q-trees for both subtasks are given as back-
ground knowledge. In this way learning can make use
of knowledge about both subtasks. RRL can add, sub-
tract, compare and negate Q-values and in this way
is able to learn even actions that are both suboptimal
for each subtask but optimal for the whole task. While
learning the whole task, RRL can use other features of
the game, but as expected, prefers using the knowledge
from the Q-trees.

[Symbolic Dynamic Programming] The Situation
Calculus (SC) (Reiter, 2001) is a system for specifying
and implementing dynamical systems, based on FOL.
The logic used is based on three typical constructs in
the language, actions, situations and fluents.
Actions are first-order terms consisting of an action
symbol and some arguments. Examples of actions are
for example open(door) and goTo(x,y).
A situation is a first-order term denoting a sequence
of actions involving the operator do. The SC uses one
special situation S0 which is the initial situation, an
empty sequence of actions. For example, the situa-
tion term do(action3, do(action2, do(action1, S0)))
actually denotes the sequence of actions:

[action1, action2, action3]
The third ingredient, the fluents, are relations or
function symbols of which the extensions can vary
in different situations. So, relational and functional
fluents are situation-dependent and have therefor as
last argument a situation term. The fluents can be
viewed as the variables in the system. For example
open(door,s) is true if the door denoted by door is
open in situation s, and president(UnitedStates,s) =
Bush if s denotes January 2002.
Formalizing a domain consists further of specifying
the so-called action precondition axioms (apa) and
successor state axioms (ssa). The former is of the
form Poss(A(~x, s)) ≡ ΠA(~x, s) where ΠA(~x, s) gives
the preconditions for action A. The latter is of the
form F (~x, do(a, s)) ≡ ΦF (~x, a, s) which characterizes
completely the truth values of the fluent F in the next
situation do(a, s).
Regression of a formula φ through an action a is a
formula ψ that holds prior to a being performed iff
ψ holds after a. Successor state axioms naturally
support regression because of the way they are de-
fined. The outcome of the regression of F (~x, do(a, s))
is given by ΦF (~x, a, s) itself.
The first Symbolic Dynamic Programming (SDP)
algorithm was only recently developed (Boutilier
et al., 2001). This method solves a first-order MDP
specified in the SC and produces a logical description
of the optimal value function and policy.
The language of the SC is extended with stochastic
actions that are mapped onto a number of normal
SC actions, following some probability distribution.
For example, we can have a stochastic action a
and two primitive actions aFail and aSucc, with
corresponding probabilities 0.1 and 0.9. In this way
it is represented that in 90% of all cases, action a
succeeds. This can be expressed by a case statement:

pCase(a) = [aSucc, 0.9, aFail, 0.1]
In the formalization of the domain, these probabilities
have to be given, and for each primitive action, action
effect and successor state axioms have to be specified.
The algorithm itself uses the fact that, in general, from
a V-function, one can induce a Q-function if one knows
the model of the environment , and vice versa. In
short, the algorithm starts with an initial partition of
the state space which is determined by the goal states
and their values. Then subsequentially a number of
new partitions is created by using logical regression
on actions. The algorithm ends with a symbolic de-
scription of the value function.
Given a value function V for states, the classical ex-
pression for QV is given by:

QV (A(~x, s) = R(s) + γ · {
∑

t∈S Pr(s,A(~x, t)) · V (t)}
The FO definition is given by means of regression:



QV (A(~x, s) = rCase(s)⊕
γ · [⊕j{pCase(nj(~x), s)⊗Regr(vCase(do(nj(~x), s)))}]

The important notion which derives from this formula
is that by treating stochastic action as deterministic
nature’s choices it is allowed to use regression directly
to derive properties of the pre-action state that deter-
mine the value-relevant properties of the post-action
state. So, from a logical description of V we can de-
rive a logical description of Q. If the formulas in the
case statement for V form a partition then so does the
case statement for Q. From the new Q-partitioning, we
can derive a new partitioning for V by taking the best
actions. So, we can start for example with the follow-
ing partitioning according to the goal states (partition,
value):

case[xWon(s), 10; oWon(s), 0; draw(s), 5]

Now, take the following shortcuts:

W x ≡ ∃q.winForX(q, s)
W o ≡ ∃q.winForO(q, s)

Then a resulting partition could be:
case[W x, 10;¬W x ∧W o, 6;¬(W x ∨W o), 3]

which resembles the Q-tree from the previous section.
The SDP algorithm is capable of generating a logi-
cal description of the value function for a FO-MDP
without explicit state enumeration. To scale up better
methods for logical simplification are needed for the
method relies heavily on the simplification of partition
descriptions.

[Learning Background Knowledge] In the previ-
ous two sections we have seen complete algorithms for
using relational representations in RL domains. The
background knowledge used by RRL and SDP can be
specified a priori, but some of this knowledge can be
learned as well. Karimi and Hamilton (2000) use a
modification of the C4.5 decision tree algorithm to in-
duce rules like class(A1,X1,0) :- A1=2, X1=1 which
specifies that the next value of variable X1 is 0 if the
action A1 is 2 and the value of X1 was 1. Lorenzo and
Otero (2000) use a modified version of Progol (an ILP
algorithm) to learn action theories for a Situation Cal-
culus domain. Action effect learning in a robotic soc-
cer domain by means of ILP was considered by Matsui
et al. (2000).

5. Conclusion
From the previous section we have seen efforts to move
beyond propositional representations in RL. Deictic
representations are an intermediate step and make
smart use of the available knowledge about RL with
propositional representations, but are shown to be too
limited compared to relational representations. For
relational representations we discussed a model-based

method (SDP) and a model-free method (RRL). Both
methods can be considered as the core of the field of
relational RL today.
Both RRL and SDP partition the state space. SDP
explicitly handles a case statement containing the for-
mulae that make up the partition, while RRL delivers
a Q-tree which implicitly represents a partition. The
partition made by RRL is built up constructively with
the only operation being to split a part of the partition
into two parts. The problem with this is that unnec-
essary splits made in the beginning of learning cannot
be made undone. SDP on the other hand, manipu-
lates the partitions by means of logical conjunction
and simplification. It combines partitions according
to for example stochastic action decompositions and
value partitions to create a new partition of the state
space. With this, SDP can also merge parts of the
state space and unnecessary splits do no occur. This
is mainly due to the model.
Both DR and RRL use the G-algorithm, although
RRL uses a FO extension of it. The combination of ex-
ploration problems with this algorithm generates mas-
sive growth of the decision tree. This is due because of
unnecessary splitting of nodes. Many leafs have to be
recreated. It is possible that the same problem occurs
in TG as well. In general the decision when to split a
leaf is very difficult and once a split is being made it
cannot be reversed.
Both RRL and SDP use a relational language, but
their representational power differs. RRL uses a re-
stricted set of FOL containing Horn Clauses. SDP uses
a many-sorted first-order language including quantifi-
cation over variables. The representational power of
SDP dominates that of RRL, but the latter does not
require a model. Both methods can make use of back-
ground knowledge in the form of predicate definitions.
SDP additionally requires successor state and action
effect axioms.
New problems enter the RL process when we turn
to relational representations. In RRL so-called query
packs are used in order to make the process of query
generation more efficient. In SDP special care is
needed for the logical simplification module. Because
the formulae making up a partition can become very
complex syntactically, logical simplification is needed
in order to keep them as small as possible.

For further research, first of all, research should be
performed on the role of representation in RL. Much
of the research in RL focuses on performance issues of
algorithms, but more insight is needed in the interplay
between representation, value functions and rational
behavior. An interesting conceptual framework based
on the psychological notion of cognitive economy was



recently proposed by Finton (2002).
The need for higher-order languages and relational
learning algorithms in RL is being operationalized by
work in model-based RL (Boutilier et al., 2001) and
model-free RL (Dzeroski et al., 2001). Even though
these systems are now being developed, much has to be
done to meet the demands in (Kaelbling et al., 2001).
Fortunately much has been done in traditional RL al-
ready (Sutton & Barto, 1998), so maybe much of that
can be upgraded towards higher-order representations
(van Laer & de Raedt, 2001). Another two strategies
are outlined in the systems that we discussed briefly.
We can either use traditional RL algorithms with re-
lational VFA as in RRL (Dzeroski et al., 2001) or we
can work our way from existing specification languages
or executable logics and extending these to deal with
uncertainties and value functions as in SDP (Boutilier
et al., 2001).
Upgrading traditional RL algorithms with new repre-
sentational tools yields a large open space for further
research. ILP methods were applied in RRL and in
model learning (see section 3) and an upgraded ver-
sion of the G-algorithm was used in the incremental
extension of RRL, TG. Many more upgraded versions
of representational tools that are traditionally propo-
sitional can be used as part of a relational RL system.
For example, recent FO extensions of neural networks
(Kijsirikul & Chongkasemwongse, 2001) and Bayesian
networks (Getoor et al., 2001) can be used for RL. The
direction of upgrading traditional learning mechanisms
to the FO case in RL is part of a more general in Ma-
chine Learning (Dzeroski & Lavrac, 2001b). With the
field of ILP being mature, learning algorithms should
be capable of using knowledge representation schemes
such as XML, ER-diagrams and relational databases,
which are common practice in non-learning systems.
A second direction is to start from FO methods used
for programming and specifying non-learning agents,
and extend these methods with probability measures
and value functions. This was done in the SDP al-
gorithm (section 3) where the Situation Calculus was
extended with means for specifying stochastic actions
and value functions, after which a modified version
of value-iteration was used with concepts from the
SC itself, i.e. regression. In the agent literature
(Wooldridge, 2002) one can find other executable log-
ics like the SC framework by Reiter (Reiter, 2001)
and possibly extend these for use in RL contexts. A
problem is that although the semantics of extending
standard logics with probability measures (Halpern,
1990) is relatively understood, finding efficient com-
putational methods for these logics is still largely an
open problem.
Our own work will investigate more in detail the

semantics of relational representations in RL. We
strive to incorporate RL into Belief-Desires-Intentions
(BDI) reasoning agents (Rao & Georgeff, 1991;
Wooldridge, 2002) for VR environments (Heylen et al.,
2001).
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