The Thing That We Tried Didn’t Work Very Well:
Deictic Representation in Reinforcement Learning

Sarah Finney
Natalia H. Gardiol
Leslie Pack Kaelbling

SJFQAI.MIT.EDU
NHG@AI.MIT.EDU
LPKQ@QAI.MIT.EDU

Massachusetts Institute of Technology, Artificial Intelligence Lab, 200 Tech. Sq., Cambridge, MA 02139

Tim Oates

OATESQCSEE.UMBC.EDU

Dept of Computer Science & Electrical Engineering, Univ. of Maryland Baltimore County, Baltimore, MD 21250

Abstract

Most reinforcement learning methods oper-
ate on propositional representations of the
world state. Such representations are of-
ten intractably large and generalize poorly.
Using a deictic representation is believed to
be a viable alternative: they promise gener-
alization while allowing the use of existing
reinforcement-learning methods. Yet, there
are few experiments on learning with deic-
tic representations reported in the literature.
In this paper we explore the effectiveness
of two forms of deictic representation and a
naive propositional representation in a sim-
ple blocks-world domain. We find, empiri-
cally, that the deictic representations actu-
ally worsen performance. We conclude with
a discussion of possible causes of these results
and strategies for more effective learning in
domains with objects.

1. Introduction

Real-world domains involve objects: things like chairs,
tables, cups, and people. Yet most current machine
learning algorithms require the world to be represented
as a vector of attributes. How should we apply our
learning algorithms in domains with objects? Tt is
likely that we will have to develop learning algorithms
that use truly relational representations, as has been
done generally in inductive logic programming (Mug-
gleton & De Raedt, 1994), and specifically by Dzeroski
et al (Dzeroski et al., 2001) for relational reinforcement
learning. However, before moving to more complex
mechanisms, it is important to establish whether, and

if so, how and why, existing techniques break down
in such domains. In this paper, we document our
attempts to apply relatively standard reinforcement-
learning techniques to an apparently relational do-
main. One strategy that has been successful in the
planning world (Kautz & Selman, 1992) is to proposi-
tionalize what is essentially a relational domain. That
is, to make an attribute vector with a single Boolean
attribute for each possible instance of the properties
and relations in the domain.

There are some fairly serious potential problems with
such a representation, including the fact that it does
not give much basis for generalization over objects.
Additionally, the number of bits to be considered
grows with the number of objects in the world, even
if the task to be accomplished does not become more
complicated. An alternative to this full-propositional
representation is to create a deictic-propositional rep-
resentation that, intuitively, affords more possibility
for appropriate generalization.

The word deictic was introduced into the artificial in-
telligence vernacular by Agre and Chapman (Agre &
Chapman, 1987), who were building on Ullman’s work
on visual routines (Ullman, 1984). A deictic expression
is one that “points” to something: its meaning is rela-
tive to the agent that uses it and the context in which it
is used. The-book-that-I-am-holding and the-door-that-
is-in-front-of-me are examples of deictic expressions in
natural language. The primary motivation for the use
of deictic representation is that it avoids the arbitrary
naming of objects, naturally grounding them in agent-
centric terms (Ballard et al., 1997). Deictic represen-
tations have the potential to bridge the gap between
relational and propositional representations, allowing

much of the generalization afforded by FOL represen-
tations yet remaining amenable to solution (even in
the face of uncertainty) by existing algorithms.

Our starting hypothesis was that deictic represen-
tations would ameliorate the problems of the full-
propositional case. First, we hoped to achieve some
passive generalization through use of the markers. For
example, if I know what to do with the-cup-that-I-am-
holding, it doesn’t matter whether that cup is cup3
or cup?. Second, since the size of the deictic observa-
tion space only grows with the number of attentional
markers, our agent should be able to perform a task
in domains with varying numbers of objects more eas-
ily than the full-propositional agent. Last, we hoped
that our deictic agent would gain an advantage from
having its attention restricted to aspects of the world
that play a role in its current activity.

In most deictic representations, and especially those
in which the agent has significant control over what it
perceives, there is a substantial degree of partial ob-
servability: in exchange for focusing on a few things,
we lose the ability to see the rest. As McCallum ob-
served in his thesis (McCallum, 1995b), partial observ-
ability is a two-edged sword: it may help learning by
obscuring irrelevant distinctions as well as hinder it by
obscuring relevant ones.

What is missing in the literature is a systematic evalu-
ation of the impact of switching from full-propositional
to deictic representations with respect to learning per-
formance. The next sections report on a set of exper-
iments that begin such an exploration.

2. Experiment Domain

Our learning agent exists in a simulated blocks world.
It must learn to pick up a green block by first remov-
ing any blocks covering it. This problem domain was
introduced by Whitehead and Ballard (Whitehead &
Ballard, 1991) in their early work on deixis in rela-
tional domains. They developed the Lion algorithm
to deal with the domain’s partial observability. Mc-
Callum (McCallum, 1995a) showed that this partial
observability could be directly handled by keeping a
short history of observations.

The experiments described in this section differ from
previous empirical work with deictic representations in
two important ways. First, our goal was to compare
the utility of the different representations, rather than
to evaluate or develop a learning algorithm tailored
for one representation. Second, we have not tuned the
perceptual features, actions, or training paradigm to
the task but instead developed a set of perceptual fea-

tures and actions that seemed reasonable for an agent
that might be given an arbitrary task in a blocks world.

2.1 Two Deictic Representations

While a deictic name for an object can be conceived as
a long string like the-block-that-I’'m-holding, the idea
can be implemented with a set of markers. For ex-
ample, if the agent is focusing on a particular block,
that block becomes the-block-that-1'm-looking-at; if the
agent then fixes a marker onto that block and moves
its attention somewhere else, the block becomes the-
block-that-I-was-looking-at.

For our experiments, we developed two flavors of de-
ictic representation. In the first case, called “focused”
deixis, there is a focus marker and one additional
marker. The agent receives all perceptual information
relating to the focused block: its color (red, blue,
green, or table), and whether the block is in the
agent’s hand. In addition, the agent can identify a
marker bound to any block that is above, below, left
of, or right of the focus. The second case, called “wide”
deixis, receives perceptual information (color and iden-
tities of any adjacent markers) for each marked block,
not just the focused block. The action set for both
deictic agents is:

e move-focus(direction): The focus cannot be
moved beyond the top of the stack or below the
table. If the focus is to be moved to the side and
there is no block at that height, the focus falls to
the top of the stack on that side.

e focus-on(color): If there is more than one block of
the specified color, the focus will land randomly
on one of them.

e pick-up(): This action succeeds if the focused
block is a non-table block at the top of a stack.

e put-down(): Put down the block at the top of the
stack being focused.

e marker-to-focus(marker): Move the specified
marker to coincide with the focus.

e focus-to-marker(marker): Move the focus to co-
incide with the specified marker.

2.2 Full-Propositional Representation

In the fully observable propositional case, arbitrary
names are assigned to each block. The agent can per-
ceive a block’s color, the location of the block, and the
name of any block under it. In addition, there is a
single bit that indicates whether the hand is holding a
block. The propositional agent’s action set is:

e pick-up(block#): This action succeeds only if the
block is a non-table block at the top of a stack.

e put-down(): Put down the block at the top of the
stack under the hand.

e move-hand(left/right): This action fails if the
agent attempts to move the hand beyond the edge
of the table.

2.3 Comparing State and Action Spaces

Propositional representations yield large observation
spaces and full observability; deictic representations
yield small observation spaces and partial observabil-
ity. We examine the concrete implications of this next.

Our experiments used two different blocks-world start-
ing configurations (Figure 1). The number of distinct!
block arrangements is 12 in the blocks! setup and 60
in blocks2. The underlying state space in the full-
propositional case depends on all the ways to name
the blocks. This yields 5760 ground states in blocks1
and 172,800 in blocks2. The size of the observation
space, however, outpaces the number of ground states
dramatically: roughly 10 billion in blocks1 and roughly
3 trillion in blocks2.?

The underlying state space in the deictic case depends
on possible marker locations rather than on block
names. This gives a total of 1200 ground states in
blocks1 and 8640 in blocks2. The size of the observa-
tion space, however, is constant in both domains: the
focused deictic observation space is 512, and the wide
deictic observation space is 4096 (Finney et al., 2002).

R
G

R
B| G
a)‘T‘T‘T‘ b T T

7]

Figure 1. The two blocks-world configurations: a) blocks1
and b) blocks?2.

The action set for the deictic representations does not
change with additional blocks, so it is constant at 12
actions. The full-propositional representation requires
an additional pickup() action for each block, so it has
five possible actions in blocks! and six in blocks2.

3. Choice of Learning Algorithms

In these experiments, we took the approach of using
model-free, value-based reinforcement learning algo-
rithms, because it was our goal to understand their
strengths and weaknesses in this domain. In the con-
clusions, we discuss alternative methods.

!Blocks of the same color are interchangeable.

2Note that this observation space corresponds to the
size needed for a look-up table, and it includes many com-
binations of percepts that are not actually possible.

Because we no longer observe the whole state in the
deictic representation, we have to include some history
in order to make the problem more Markovian. The
additional information requirement renders the obser-
vation space too large for an explicit representation of
the value function, like a look-up table. Thus, we re-
quired learning algorithms that can approximate the
value function.

We chose Q-learning with a neural-network func-
tion approximator (known as neuro-dynamic pro-
gramming (Bertsekas & Tsitsiklis, 1996), or NDP)
as a baseline, since it is a common and successful
method for reinforcement learning in large domains
with feature-based representation. We hoped to im-
prove performance by using function approximators
that could use history selectively, such as the G algo-
rithm (Chapman & Kaelbling, 1991) and McCallum’s
U-Tree algorithm (McCallum, 1995b). After some ini-
tial experiments with U-Tree, we settled on using a
modified version of the simpler G algorithm.

3.1 Neuro-Dynamic Programming

Our implementation of NDP used a two-layer back-
propagation neural network for each action. The input
to the network was a vector containing the current ob-
servation plus some number of previous observations
and actions. The output of each network was the esti-
mated Q-value for that action in the state represented
by the input vector. As has been observed by oth-
ers (Tsitsiklis & Van Roy, 1997), we found that SARSA
led to more stable results than Q-learning because of
the partial observability of the domain.

3.2 G Algorithm

The G algorithm uses a tree structure to determine
which elements of the state space are important for
predicting reward. A leaf in the tree is the agent’s
internal representation for a state, and it corresponds
to a series of perceptual distinctions useful for predict-
ing reward. Each leaf determines the agent’s policy by
estimating Q-values for the possible outgoing actions.
The tree is initialized with a root node that makes no
state distinctions. The root has a fringe of nodes be-
neath it, where each fringe node represents a possible
further distinction. Statistics are kept in the root node
and the fringe nodes about reward received during the
agent’s lifetime. A statistical test determines whether
any of the distinctions in the fringe are worth adding
permanently to the tree. If a distinction is found to be
useful, the corresponding fringe nodes become official
leaves, and a new fringe set is created beneath each
new leaf node.

At this level of description, the G algorithm is essen-
tially the same as U-Tree. One major distinction be-
tween them is that U-Tree requires much less expe-
rience with the world at the price of greater compu-
tational complexity: it remembers historical data and
uses it to estimate a model of the environment’s tran-
sition dynamics, and then uses the model to choose a
state to split. The G algorithm makes each new split-
ting choice based on direct estimates of the Q values
from new data. U-Tree uses a non-parametric statis-
tical test (the Kolmogorov-Smirnov test) for splitting
nodes, which is more robust than the original test used
by G—the version of the G algorithm used in this work
uses that test as well. See the technical report (Finney
et al., 2002) for a discussion of the differences between
G and U-Tree, and the way in which the G algorithm
of this paper differs from the original.

4. Experiment Outcomes

We conducted a set of learning experiments in the
blocks-world environments shown in Figure 1. The
task in both cases was to pick up the green block. The
agent received a reward whenever it succeeded at the
task, a penalty if it took an action that failed (e.g., at-
tempted to move its hand off the edge of the world, or
attempted to pick up the table), and a smaller penalty
for each step otherwise. The agent used an e-greedy
exploration strategy, with e = 0.10.

The left plot in Figure 2 shows the results from running
the NDP algorithm in the blocksl domain. The graph
shows the scaled total reward® received in a testing
trial plotted against the number of training steps: at
the end of each set of 200 training steps, the state
of the learning algorithm was frozen and the agent
took a 100-step testing trial during which the total
accumulated reward was measured; exploration was
not turned off during testing. Each curve for blocks1
is averaged over 10 experiments, and for blocks2 over
five experiments.

From the graph, we see that the deictic representations
did not immediately show the edge we anticipated. We
expected, then, to see them gain an advantage with the
addition of a distractor block, as in blocks2. The re-
sults are shown on the right side of Figure 2. Rather
than surpassing, or even approaching, the performance
of the full-propositional agent, the deictic agents per-
formed worse than before.

Clearly, by adding additional blocks yet retaining the

3For each of the three representations, the reward to-
tal was scaled by the maximum reward achievable by the
optimal policy.

same observation space, we were aggravating the par-
tial observability for the deictic agents. Since selec-
tively using history is a way to manage partial observ-
ability, we tried it. Figure 3 shows the results of using
G in the two domains. While the deictic agents cer-
tainly learn faster than any of the agents learned using
NDP, the deictic agents with G never learn the task as
well as the full-propositional agent does with NDP.
Furthermore, the full-propositional agent was never
able to get off the ground with G.

5. Discussion

Because the goal of our work was to understand the
characteristics of these learning approaches, rather
than to build a particular working demonstration, we
continued with a program of experimentation aimed
at elucidating our counter-intuitive results.

5.1 On Deictic and Full-Propositional
Representations in NDP

We initially reasoned that the deictic agent had more
trouble learning in NDP because the action sequence it
needed to learn was longer than the full-propositional
agent’s. The optimal policy for the deictic agent is
to start with a focus-on(green) action, then to move
the focus up (until the top of the stack is reached),
then to pick up the top block and move it to the side.
This sequence should repeat until the green block is
uncovered and picked up. In both blocks-world setups,
this requires a sequence of nine actions. In the full-
propositional case, the optimal policy is tedious but
shorter. It goes roughly as follows: if block-1 is green
and clear, then the pick up block-1; otherwise, if block-
21is green and clear, then pick up block-2; etc. If there
is no block that is green and clear, then if block-1 is
on top of a green block and is clear, pick up block-1;
etc. In both blocks-world setups, the optimal policy
requires a sequence of four actions. While the actual
policy is short, the same ideas have to represented over
and over for each assignment of names to blocks.

Experiments with an extended task requiring the full-
propositional agent to take roughly the same number
of steps as the deictic agents required on the original
task showed that the length of the action sequence was
not what made learning difficult (Finney et al., 2002).
It seems that the problem with the deictic agent was
not the number of actions required but how easily the
agent’s progress towards the goal could be disrupted by
exploratory actions. Whenever the agent erroneously
moved the focus, it “lost its place” and essentially had
to begin the whole action sequence again.

NDP

full propositional

\ focused deictic

wide deictic

=4
>

Total Reward per Trial (scaled)
o
S [~ S

e
3

o
e

\wme deictic

/ focused deictic

Total Reward per Trial (scaled)
s o
N

bt
w

o
N

L L L
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18
Number of Training Iterations in "blocks1" Domain in Millions

L L
[05 1 15 2 25 3 35 4 45 5
Number of Training Iterations in "blocks2" Domain in Millions

Figure 2. Learning curves for NDP in a) the blocks! domain and b) the blocks2 domain.

G algorithm
T

0.9 / focused deictic

o
3

=4
>

Total Reward per Trial (scaled)
o o
s @

o
w

02§ / full propositional

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18
Number of Training Iterations in "blocks1" Domain in Millions

G algorithm
T

focused deictic

0.9F '

aQ
=

Total Reward per Trial (scaled)
&

\ wide deictic

1l propositonal

Number of Training Iterations in "blocks2" Domain in Millions

Figure 3. Learning curves for G algorithm in both domains.

In the deictic action set, the focus location is crucial—
the behavior of the agent’s actions is highly dependent
on it. Yet, the none of the marker locations are ob-
servable by the agent; indeed, the number of ways to
place the markers grows with the number of distractor
blocks. The dependence of the pick-up(), marker-to-
focus(marker), and focus-to-marker(marker) actions
on the focus location means that it is very easy for the
agent to thwart itself by unwittingly moving its focus
to useless parts of the state space. This “distractabil-
ity” reduces the effectiveness of using exploration to
make learning progress.

To analyze the exploration problem, we created a mod-
ified action set. In this new action set, the pick-up()
action automatically picks up the block at the top of
the stack pointed to by the focus, and the marker-
to-focus(marker) and focus-to-marker(marker) actions
were removed. Otherwise, the action set was the same
as the original action set.* The implication of chang-

“Interestingly, this modified action set is very similar to

ing the pick-up() action in this way is that the action is
now more likely to result in a successful pickup, since
the agent cannot even try to pick up blocks that are
not clear (i.e., the blocks in the middle of a tall stack).
The two other actions were removed for two reasons:
first, we found that the agent never used either action
once it had learned to complete the task successfully,
so they were merely providing distractions and aggra-
vating the exploration problem; second, those distrac-
tions were often particularly expensive to the agent
since they tended to move the agent’s attention to ir-
relevant parts of the state space. As we shall see, the
modified action set rendered exploration much more
effective in pointing the agent towards the goal.

To compare the effects on exploration of the original
and modified action sets, we measured, for each repre-
sentation, the number of steps required by a random
agent to stumble upon a solution. This metric, the

the set used by McCallum in his blocks-world experiments
(McCallum, 1995a).

mean time-to-goal, was plotted as a function of the
number of distractor blocks. Figure 4 shows the re-
sult of this experiment. It is dramatically clear from
the figure that the modified deictic action set makes
it much easier to achieve the goal via a random walk;
with the modified actions, exploration in the deictic
system scales in the same way as in the propositional
system. Furthermore, learning experiments with the
modified action set show the deictic agents able to
learn in blocks2 as expected (Finney et al., 2002).

x 10

v deictic
— full propositional
- = _modified deictic

o ®

IS

je Number of Steps to Reach Goal with Random Walk
o o I
@ ® e

g
°
=

Avera
)

4 5 7
Number of Additional Distractor Blocks

Figure 4. The mean time-to-goal for different action sets
plotted against the number of distractor blocks.

It is clear that naively chosen deictic state and action
sets not only fail to exhibit the advantages we expected
to find, but introduce new challenges to learning that
must be overcome in order to make effective use of
such representations. We conclude that it is possible
to tailor the action set to the task so that a deictic rep-
resentation is more feasible, but the flexibility of such
an action set is obviously more limited. It seems that
an action set that includes the ability for the agent to
control its own attentional focus inherently increases
the difficulty of the exploration problem by allowing it
to easily spend a lot of time exploring a useless part
of the state space. In addition, the fact that there
is information about the domain stored implicitly in
the location of the focus (and potentially the markers)
means that exploratory actions that “lose focus” make
it very hard for the agent to succeed initially.

Another strategy for dealing with the increased explo-
ration difficulty is to guide exploration. This strat-
egy turned out to be very important for McCallum in
his blocks-world task (McCallum, 1995a), where the
exploration was guided by a human. It is clear that
investigating exploration strategies is an important di-
rection for future work.

5.2 On NDP and G

The common wisdom is that function approximators
like neural nets are appropriate for problems in which
all of the input attributes are relevant to some small
degree, and that decision trees are appropriate when

the function is well represented in terms of an unknown
subset of the input features. In the full-propositional
representation, any of the bits could be important, so
it seems reasonable that NDP worked well. In the de-
ictic representation, we included many historical ob-
servations into the input vector, not knowing which
ones might be relevant to the problem. In this sit-
uation, we might expect the tree-growing algorithms
to be better: they should build a representation that
reveals only enough of the hidden state to do the job.

Our surprising results with the G algorithm seem to
be primarily caused by the trees growing much larger
than expected; they grew without reaching a natural
limiting state. To avoid running out of memory, we
had to add an arbitrary cap on the size of the trees.

While the deictic agents initially learn faster than with
NDP, they stopped making progress upon reaching
the tree-size cap, and therefore never completely learn
the task. Similarly, the full-propositional agent made
no progress at all before the tree reached its maxi-
mum size. Our intuition for this was the following:
tree splits are made throughout the course of learning,
which means that the structure of the tree is required
to have room enough to represent not only the value
function for a particular policy, but for all policies that
are followed during the course of learning. To verify
this intuition, we moved to a simpler and more easily
visualized maze domain.

5.2.1 UNNECESSARY DISTINCTIONS

We will use a very small maze example to illustrate
why the trees grow without bound. The maze is shown
in Figure 5. The agent only observes whether there is
a wall in each cardinal direction, so this simple maze
is partially observable; states 2 and 5 look identical,
but they require different actions to reach the goal. At
each time step, the agent receives an observation and
may move in one of the four directions. The agent is
rewarded for reaching the goal, penalized for each step
otherwise, and penalized slightly more for attempting
to move into a wall.

START

Figure 5. A simple partially observable maze-world.

In one trial, the G algorithm made the following se-
quence of distinctions. The first split distinguishes
states based on whether south is clear or blocked. This

separates states 1,2,4 and 5 from states 3 and 7 (state
6 is never actually observed by the agent, since the
trial is restarted). The first of these subgroups is then
further split according to whether east is blocked, sep-
arating states 2 and 5 from states 7 and 4. Since a
large reward is received for going east from state 5,
the leaf for states 2 and 5 contains a policy for going
east. Figure 6 shows the tree at this point during the
learning process. Clearly this policy is not yet optimal,
since we have distinguished states 2 and 5.

No Distinctions

South:BLOCKED
States: 3.7
Policy: WEST

South: CLEAR
States: 1,2.4,5

East: CLEAR
Policy: EAST

East BLOCKED
Policy: SOUTH

Figure 6. Example G tree after first two splits.

Intriguingly, the next distinction is made on the previ-
ous action under the node for states & and 7, as shown
in Figure 7. At first glance, this looks like a useless
distinction to make.

No Distinctions

South:CLEAR South:BLOCKED
States: 1.2.4.5 States: 3.7

Tast Action: Tast Action: Tast Action:
NORTH EAST SOUTH
Possible States: | | Possible States: Possible States:

East:CLEAR
States: 25] [States:i 14| 37
Policy: EAST | [Policy: SOUTH Probably in: 3 Probably in: 3

Policy: WEST Policy: WEST

States: 14

Probably in: 7
Policy: NORTH

Figure 7. Example G tree after the first three splits.

By examining the policy in effect when the agent
makes this split, the distinction begins to make sense.
When the agent is in state 2, the policy says to go
east. Thus when the agent visits state 3, it has gener-
ally just performed an east action. However when the
agent is in state 7, it has most likely performed either a
south or a west action. Thus, splitting on the previous
action, with the current policy, actually disambiguates
with high probability states 3 and 7 and yields a rea-
sonable policy, one that goes north from state 7, as
shown in Figure 7. Intermediate policies seem to lead
the algorithm to make more distinctions in an attempt
to fully represent the value function under each policy.
This is how the trees become much larger than they
would need to be if they were only required to store
the value function for the optimal policy.

The last experiment was to fix the policy of the agent
and allow the tree to grow. As expected, we obtain
trees that contain few or no unnecessary splits for
representing the value function for the fixed policy.
This problem of G growing unreasonably large trees
in POMDPs seems very difficult to address. Note

that this problem will almost certainly be exhibited
by U-Tree, as well. There is, fundamentally, a kind
of “arms race” in which a complex tree is required to
adequately explain the Q values of the current policy.
But the new complex tree allows an even more com-
plex policy to be represented, which requires an even
more complex tree to represent its Q values.

5.2.2 REDUNDANT LEAVES

There is another notable reason for trees growing large
in POMDPs. Given the ability to characterize the
current state in terms of historic actions and observa-
tions, the learning algorithm frequently comes up with
multiple perceptual characterizations that correspond
to the same underlying world state. For instance, the
set of states described by the focus was on a green block
and then I looked up is the same as those described by
the focus was on a green block and then I looked down,
then up, then up, etc.

Of course, it is clear to us that multiple action and
observation sequences can indicate a single underly-
ing state, but it is not so to the algorithm. It can-
not agglomerate the data it gets in those states, and
it is doomed to build the same sub-tree underneath
each one. This leads us to conclude, below, that ac-
tual identification of the underlying world dynamics, is
probably a prerequisite to effective value-based learn-
ing in POMDPs.

6. Conclusion

In the end, none of the approaches for converting
an inherently relational problem into a propositional
one seems like it can be successful in the long run.
The naive propositionalization grows in size with (at
least) the square of the number of objects in the en-
vironment; even worse, it is severely redundant due
to the arbitrariness of assignment of names to ob-
jects. The deictic approach also has fatal flaws: the
relatively generic action set leads to hopelessly long
early trials. Intermediate rewards might ameliorate
this, but assigning intermediate values to attentional
states seems particularly difficult. Additionally, the
inherent dramatic partial observability poses problems
for model-free value-based reinforcement learning algo-
rithms. We saw the best performance with NDP using
a fixed window of history; but as the necessary amount,
of history increases, it seems unlikely that NDP will be
able to select out the relevant aspects and will become
swamped with a huge input space. And, as we saw in
the last section, the tree-growing algorithms seem to
be precariously susceptible to problems induced by in-
teractions between memory, partial observability, and

estimates of Q-values.

We will have to change our approach at the higher
level. There are three strategies to consider, two of
which work with the deictic propositional representa-
tion but forgo direct, value-based reinforcement learn-
ing.

One alternative to value-based learning is direct policy
search (Williams, 1992; Jaakkola et al., 1994), which
is less affected by problems of partial observability but
inherits all the problems that come with local search.
It has been applied to learning policies that are ex-
pressed as stochastic finite-state controllers (Meuleau
et al.,, 1999), which might work well in the blocks-
world domain. These methods are appropriate when
the parametric form of the policy is reasonably well-
known a priori, but probably do not scale to very large,
open-ended environments.

Another strategy is to apply the POMDP framework
more directly and learn a model of the world dynamics
that includes the evolution of the hidden state. Solving
this model analytically for the optimal policy is almost
certainly intractable. Still, an online state-estimation
module can endow the agent with a “mental state”
encapsulating the important information from the ac-
tion and observation histories. Then, we might use
reinforcement-learning algorithms to more successfully
learn to map this mental state to actions.

A more drastic approach is to give up on proposi-
tional representations (though not entirely on deixis;
we might well want to use deictic expressions for nam-
ing individual objects), and use real relational repre-
sentations. Some important early work has been done
in relational reinforcement learning (Dzeroski et al.,
2001), showing that relational representations can be
used to get appropriate generalization in complex com-
pletely observable environments.

Ultimately, it seems likely that we will have to
deal with generalization over objects using relational
representations, and deal with partial observability
by learning models of the world dynamics. We
plan to pursue such a program of indirect reinforce-
ment learning—learning a model and doing state
estimation—using relational representations with de-
ictic names for objects in the world.

ACKNOWLEDGMENTS

This work was funded by the Office of Naval Research
contract N00014-00-1-0298, by the Nippon Telegraph
& Telephone Corporation as part of the NTT/MIT
Collaboration Agreement, and by a National Science
Foundation Graduate Research Fellowship.

References

Agre, P. E., & Chapman, D. (1987). Pengi: An implemen-
tation of a theory of activity. Proceedings of the Sixth
National Conference on Artificial Intelligence.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., & Rao, R. P.
(1997). Deictic codes for the embodiment of cognition.
Behavioral and Brain Sciences, 20.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-dynamic
programming. Belmont, MA: Athena Scientific.

Chapman, D., & Kaelbling, L. P. (1991). Input general-
ization in delayed reinforcement learning: An algorithm
and performance comparisons. Proceedings of the Inter-
national Joint Conference on Artificial Intelligence.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Rela-
tional reinforcement learning. Machine Learning, 43.

Finney, S., Gardiol, N. H., Kaelbling, L. P., & Oates, T.
(2002). Learning with deictic representations (‘Technical
Report (forthcoming)). A.I. Lab, MIT, Cambridge, MA.

Jaakkola, T., Singh, S., & Jordan, M. (1994). Reinforce-
ment learning algorithm for partially observable Markov
decision problems. Advances in Neural Information Pro-
cessing Systems 7.

Kautz, H. A., & Selman, B. (1992). Planning as satisfiabil-
ity. 10th European Conference on Artificial Intelligence.

McCallum, A. K. (1995a). Instance-based utile distinc-
tions for reinforcement learning with hidden state. 12th
International Conference on Machine Learning.

McCallum, A. K. (1995b). Reinforcement learning with
selective perception and hidden state. Doctoral disserta-
tion, University of Rochester, Rochester, New York.

Meuleau, N., Peshkin, L., Kim, K.-E.; & Pack, K. L.
(1999). Learning finite-state controllers for partially ob-
servable environments. 15th Conference on Uncertainty
in Artificial Intelligence.

Muggleton, S., & De Raedt, L. (1994). Inductive logic
programming: Theory and methods. Journal of Logic
Programming.

Tsitsiklis, J. N., & Van Roy, B. (1997). An analysis of
temporal-difference learning with function approxima-
tion. IEEFE Transactions on Automatic Control.

Ullman, S. (1984). Visual routines. Cognition, 18.

Whitehead, S., & Ballard, D. H. (1991). Learning to per-
ceive and act by trial and error. Machine Learning, 7.

Williams, R. J. (1992). Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8.

