Solution Concepts and Monotonicity

Sevan G. Ficici
Desired Algorithm Operation

• Assume our coevolutionary algorithm never discards a strategy once discovered
• If we query the algorithm (at “appropriate” points) over time, we desire the solution returned at time $t+1$ to be no worse than that at time t
• We desire monotonic improvement
• (Elitism in ordinary EA does this)
• In coevolution, whether we get monotonic improvement depends on the solution concept used
1) illegal strategies
2) solution may be unrepresented
3) features of 1 and 2
4) robot locomotion and tic-tac-toe
Measurement of Behavior

- Payoff indicates success of behavior w.r.t. a single metric of behavior; higher is better
- Payoffs are not utilities; utilities assume common currency of goodness
• Each behavior is a *pure strategy* of the game, but may be mixed strategy of the domain.
Game Types

- **Single-player game against nature**
 - Behaviors: \(w, x, y, z \)
 - Metrics: \(s, d, a \)
 - States of nature: \(N1, N2, N3 \)
 - Behaviors: \(sda, sda, sda \)

- **Multi-player game**
 - Behaviors: \(w, x, y, z \)
Sub-Game
Solution Concept

- Solution concept integrates over multiple metrics of goodness to give a holistic assessment of quality

domain → substrate → game → solution concept → solution(s)

what we care about → what we observe → metrics → we apply
Configuration and Solution

• Given n-player game, a configuration represents players’ strategy choices:
 \[K = < s_1, s_2, ..., s_n > \] (note: s_i may be a set)
• According to solution concept, some configurations are solutions, denoted K^*
• Solution set is set of solutions for game G according to solution concept O:
 \[S^*(G, O) = \{ K^* | G, O \} \]
Preference Relation I

- For a given game G, we prefer a solution K^* to a non-solution (configuration) K.
- We prefer configuration K_α to K_β iff:

 for each subgame G_β where K_β is the solution, there exists a game G_α where K_α is the solution, and $G_\alpha \supset G_\beta$.

![Diagram showing preference relations between subgames](attachment:diagram.png)
Preference Relation II

• Preference relation is transitive, asymmetric, ~reflexive

• Preference relation gives us a *poset* of configurations
Monotonicity

- We prefer K_x to K_y, yet E is a subgame of D.
- Given subgames α, β, γ, where $\alpha \supseteq \beta \supseteq \gamma$.
- If K is solution to α and γ, but not β, then solution concept is not monotonic; if all three, then monotonic.

Subgames where K_x is a solution

Subgames where K_y is a solution
Solution Concepts & Monotonicity

• Monotonic concept guarantees that solution improves monotonically with time, when strategies are never discarded
• Nash equilibrium is a monotonic concept
• Non-dominated front is monotonic only if identical appearing strategies are not allowed on front
• “Best-scoring strategy” is not monotonic
Sub-games and their solutions for Nash concept from a 5-strategy game
Monotonicity and Open-Endedness

• Open-ended arms race requires:
 – proper substrate (working on this...)
 – proper algorithm (we’ve learned a lot about this)
 – monotonic solution concept

• Because of monotonicity, we will never return to a configuration once we leave it; we will never return to offspring configurations
Same 5-strategy game, non-domination concept (non-monotonic version)
Random seven-strategy games
Random nine-strategy games